Problem 1

NULL Value:
A value of a given attribute which is unspecified (i.e. is not) from the domain of the attribute or is different from any other value of that domain is called a NULL value. It may mean any of the following:
- Missing entry
- Unknown value
- Not applicable
And hence it is ambiguous.

Role:
Role is the nature (or function) of an entity in a given relationship.

Problem 2

A weak entity class cannot be directly represented as a schema as it does not have an unique key. It can be represented as a schema in which the key consists of
- Key attributes from the entity class involved in the relationship
- Discriminators from the weak entity class itself

Problem 3

Following is the relation based schema of the given ER diagram:
Entity_1 (key_1, attribute_1)
Entity_2 (key_2, attribute_2)
Rel_12 (key_1, key_2, rel_attribute)
Problem 4
Following is the ER diagram representing the problem domain specified in the problem:

Since it is a disjoint specialization, all of the following conversions apply:

Possible answer 1:
Vehicle (VIN, year, make, model, mileage)
Car (VIN, nameLastOwner, currentOwner, dateOil, mileageOil)
Truck (VIN, loadCapacity, driver, maxDailyMiles)

Possible answer 2:
Car (VIN, year, make, model, mileage, nameLastOwner, currentOwner, dateOil, mileageOil)
Truck (VIN, year, make, model, mileage, loadCapacity, driver, maxDailyMiles)

Possible answer 3:
Vehicle (VIN, year, make, model, mileage, nameLastOwner, currentOwner, dateOil, mileageOil, loadCapacity, driver, maxDailyMiles)

Problem 5
The given relational schema is R (A, B, C, D, E, F, G, H)
Given functional dependencies are:
FD1: A -> C, D
FD2: B -> E, F, G
FD3: C -> E, F

Reflexivity:
From FD2 we obtain
FD3: B, D -> E, F, G, D
Augmentation:
From FD2 (augmenting with H) we obtain:

\textit{FD4}: \(B, H \rightarrow E, F, G, H \)

Transitivity:
Decomposing FD1 we obtain:

FD5: \(A \rightarrow C \)

Using FD5 and FD3 we obtain:

\textit{FD6}: \(A \rightarrow E, F \)

Decomposition:
Decomposing FD1 we obtain:

\textit{FD7}: \(A \rightarrow D \)

Union:
Using FD1 and FD6 we obtain:

\textit{FD8}: \(A \rightarrow C, D, E, F \)

\textit{Pseudo-Transitivity}:
Using FD7 and FD3 we obtain:

\textit{FD9}: \(B, A \rightarrow E, F, G, D \)

Problem 6
1NF specifies that every attribute of a schema must take its values from an atomic domain. It is now primarily of interest from a historical perspective.

Problem 7

The set of functional dependencies that are full, maximal and non-trivial are:

FD1: \(A, B \rightarrow C, D, E, F, G, H \)

FD2: \(A \rightarrow C, D \)

FD3: \(B \rightarrow E, F, G \)

FD2 and FD3 violate 2 NF, so the relational schema \(R (A, B, C, D, E, F, G, H) \) must be broken down. As you would notice below, it has to be broken down twice and the order is not relevant.

\(R (A, B, C, D, E, F, G, H) \)
- R12 (\(A, B, E, F, G, H \))
 - \textbf{R121} (\(A, B, H \))
 - \textbf{R122} (\(B, E, F, G \))
- \textbf{R22} (\(A, C, D \))

Alternatively

\(R (A, B, C, D, E, F, G, H) \)
- R12 (\(A, B, C, D, H \))
 - \textbf{R121} (\(A, B, H \))
 - \textbf{R122} (\(A, C, D \))
- \textbf{R22} (\(B, E, F, G \))