Network Traffic Characteristic

Hojun Lee hlee02@purros.poly.edu

Outline

- Motivation
- What is self-similarity?
- Behavior of Ethernet traffic
- Behavior of WAN traffic
- Behavior of WWW traffic

Motivation for network traffic study

- Understanding network traffic behavior is essential for all aspects of network design and operation
 - Component design
 - Protocol design
 - Provisioning
 - Management
 - Modeling and simulation

Three main reference papers

- W. Leland, M. Taqqu, W. Willinger, D. Wilson, On the Self-Similar Nature of Ethernet Traffic, IEEE/ACM TON, 1994.
- V. Paxson, S. Floyd, Wide-Area Traffic: The Failure of Poisson Modeling, IEEE/ACM TON, 1995.
- M. Crovella, A. Bestavros, Self-Similarity in World Wide Web Traffic: Evidence and Possible Causes, IEEE/ACM TON, 1997.

In the past ...

- Traffic modeling in the world of telephony was the basis for initial network models
 - Assumed Poisson arrival process
 - Assumed Poisson call duration
 - Well established queuing literature based on these assumptions
 - Enabled very successful engineering of telephone networks

What is self-similarity in nature?

- No natural length of a bust, at every time scale, similar looking traffic bursts are evident (structure repeats at all scales)
- Aggregating streams of such traffic intensifies the self-similarity instead of smoothing it
- Aggregation causes more burstsness and requires larger buffers (just as Stochastic processes are invariant to time, selfsimilar processes are invariant to scale)

Definition of self-similarity

- Consider a zero-mean stationary time series $X = (X_t; t = 1,2,3,...)$, we define the m-aggregated series $X^{(m)} = (X_k^{(m)}; k = 1,2,3,...)$ by summing X over blocks of size m. We say X is $\frac{H-self-similar}{similar}$ if for all positive m, $X^{(m)}$ has the same distribution as X rescaled by $m^H => X_t = m^{-H} \sum_{i=(t-1)m+1}^{tm} X_i$
- If X is *H*-self-similar, it has the same autocorrelation function r(k) as the series $X^{(m)}$ for all m. This is actually *distributional* self-similarity. \Rightarrow $r(k) = E[(X_t \mu)(X_{t+k} \mu)]/\sigma^2$
- X(t) is *exactly second-order self-similar* with Hurst parameter $H(1/2 \le H \le 1)$ if $\gamma(k) = \frac{\sigma^2}{2}((k+1)^{2H} 2k^{2H} + (k-1)^{2H}) \text{ for all } k \ge 1$

X(t) is asymptotically second-order self-similar if

$$\lim_{m\to\infty} \gamma^m(k) = \frac{\sigma^2}{2}((k+1)^{2H} - 2k^{2H} + (k-1)^{2H})$$

Long-range dependence vs. SS

- Values at any instant are typically nonnegligibly positively correlated with values at all future instants
- Return the definition of second-order self-similarity and its autocovariance
- Let autocorrelation function, $r(k) = \frac{\gamma(k)}{\sigma^2}$ For 0 < H < 1, $H \neq \frac{1}{2}$, it holds

$$\rightarrow r(k) \sim H(2H-1)k^{2H-2}, \quad k \rightarrow \infty$$

Particularly, for , $\frac{1}{2}$ < H < 1

$$\rightarrow r(k) \sim ck^{-\beta}$$
 where $0 < \beta < 1$ and $c > 0$

From this,
$$\beta = 2 - 2H$$
 and $\sum_{k=0}^{\infty} r(k) = \infty$ (LRD)

→ If
$$\sum_{k=-\infty}^{\infty} r(k) < \infty$$
 , SRD(Short Range Dependence)

Long-range dependence vs. SS cont'd

- Self-similar processes are the simplest way to model processes with long-range dependence correlations that persist (do not degenerate) across large time scales
- •Degree of self-similarity is expressed as the speed of decay of series autocorrelation function using the Hurst parameter
 - $-H = 1 \beta / 2$
 - -For SS series with LRD, $\frac{1}{2}$ < H < 1
 - **–Degree of SS and LRD increases as H** \rightarrow 1

Heavy-tailed distribution

- Definition: A random variable Z has a heavy-tailed distribution if $P(Z>x)\sim cx^{-\alpha}$, $x\to\infty$ where $0<\alpha<2$ = tail index or shape parameter c = positive constant
- Tail of the distribution decays hyperbolically.
- Infinite variance for $0 < \alpha < 2$
- Unbounded mean for $0 < \alpha \le 1$
- Frequently used heavy-tailed distribution is the Pareto distribution, whose distribution function is

$$P(Z \le x) = 1 - \left(\frac{b}{x}\right)^x$$
, $b \le x$ where $0 < \alpha < 2$

 Light-tailed distribution: exponential and Gaussian – which possess an exponentially decreasing tail.

Graphical tests for self-similarity

Variance-time plots

- Relies on slowly decaying variance of self-similar series
- The variance of $X^{(m)}$ is plotted versus m on log-log plot
- Slope $(-\beta)$ greater than -1 is indicative of SS

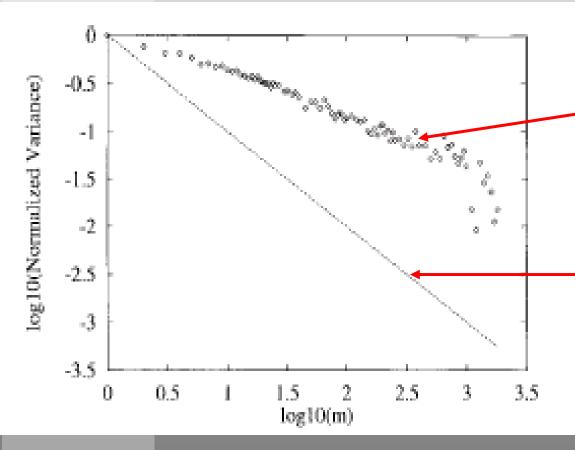
R/S plots

- Relies on rescaled range (R/S)statistic growing like a power law with H as a function of number of points n plotted.
- The plot of R/S versus n on log-log has slope which estimates

Periodogram plot

- Relies on the slope of the power spectrum of the series as frequency approaches zero
- The periodogram slope is a straight line with slope β 1 close to the origin

Graphical test examples – VT plot



slope = -0.48 then β = 0.48 Estimate H = 1- $\beta/2$ = **0.76**

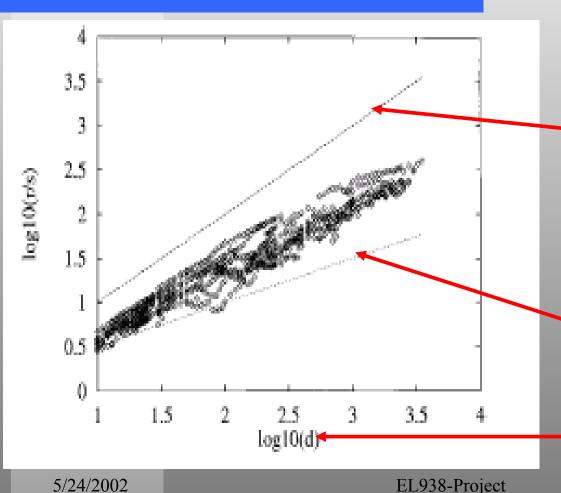
 $-\beta = -1$ -the variance of

X^(m) is plotted against m on a log-log plot

5/24/2002

EL938-Project

Graphical test example – R/S plot



R = autocorrelation

S = variance

H = 1

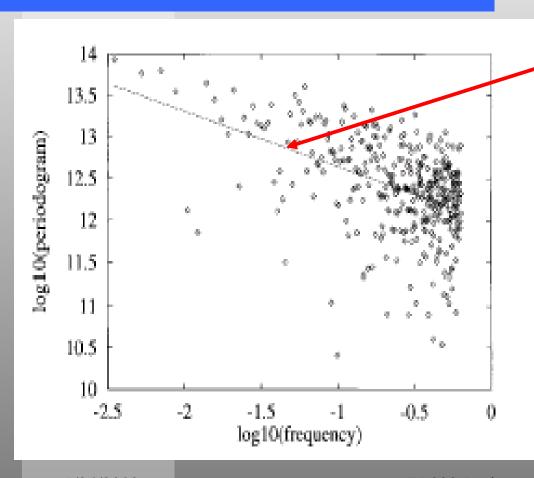
Estimated H = 0.75

H = 1/2

Degree of aggregation

13

Graphical test examples - Periodogram



Slope =
$$\beta$$
-1 = 1-2H

In this case, slope = -0.66then H = 0.83

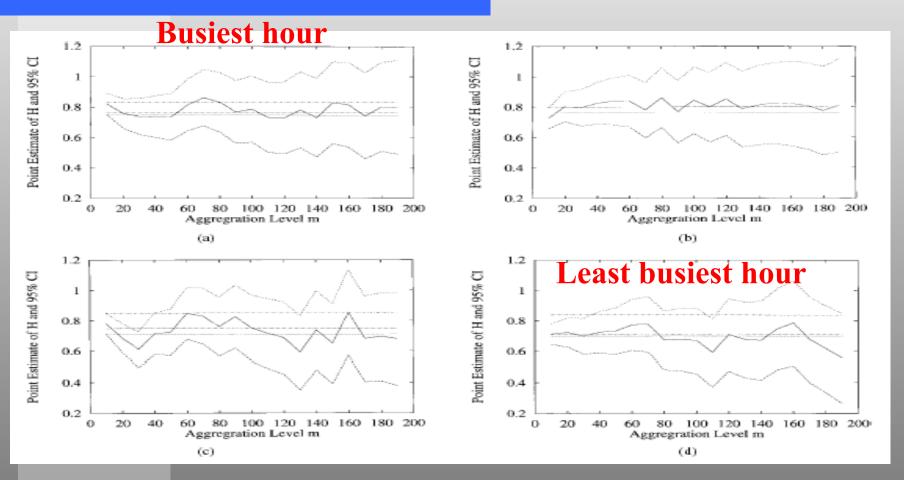
5/24/2002 EL938-Project 14

Non-graphical self-similarity test

Whittle's MLE Procedure

- Provides confidence intervals for estimation of H (advantage)
- Requires an underlying stochastic process for estimate (disadvantage)
 - Typical examples
 - FGN (Fractional Gaussian Noise) → exactly self-similar models
 - Fractional-ARIMA (Autoregressive Integrated Moving Average) → asymptotically self-similar models
 - FGN assumes no SRD(Short Range Dependence); however, F-ARIMA can assume a fixed degree of short-range dependence

Non-graphical test example – Whittle estimator



Analysis of Ethernet traffic

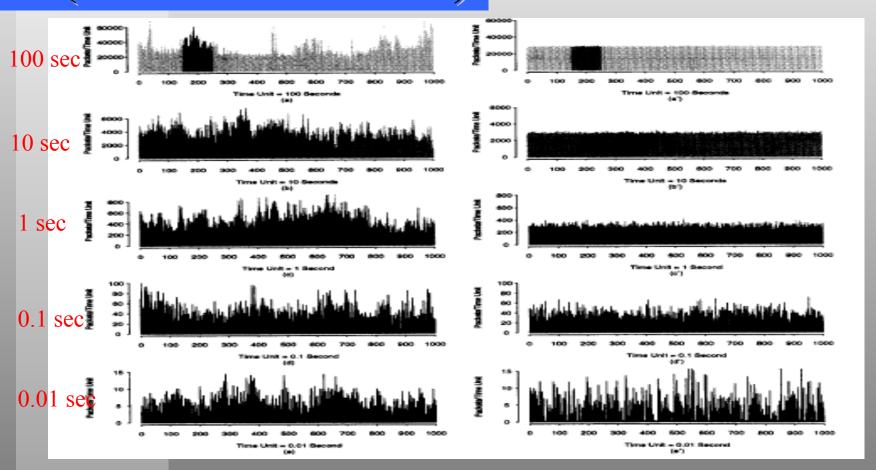
- In 1989, Leland and Wilson begin taking high resolution traffic traces at Bellcore
 - Ethernet traffic from a large research lab
 - 100 μ sec time stamps (update the version of monitor)
 - Packet length, status, 60 bytes of data
 - Mostly IP traffic (a little NFS)
 - Four data sets over three year period
 - Traces considered representative of normal use

The packet count picture analysis

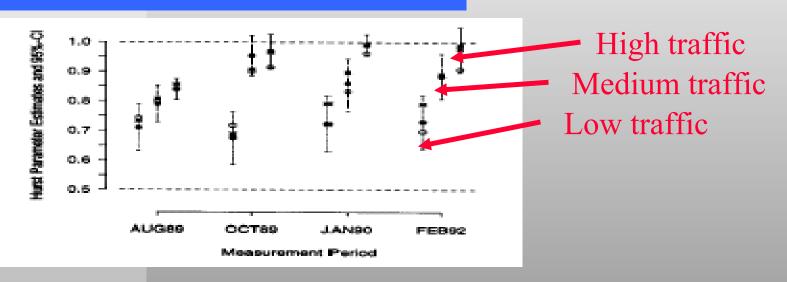
A Poisson process

- When observed on a fine time scale will appear bursty
- When aggregated on a coarse time scale will flatten (smooth) to white noise
- A self-similar (fractal behavior) process
 - When aggregated over wide range of time scales will maintain its bursty characteristic

Pictorial proof of self-similarity (Ethernet Traffic)



Analysis of Ethernet traffic cont'd



- Higher the load in the Ethernet traffic, higher the Hurst parameter
- Confidence Interval corresponding to H for the low traffic hours are typically wider than the normal and high traffic hours
 - Reason: Ethernet traffic during low traffic periods is asymptotically selfsimilar rather than exactly self-similar

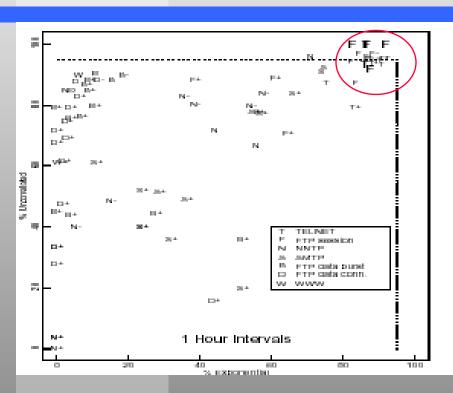
Major results of reference [1]

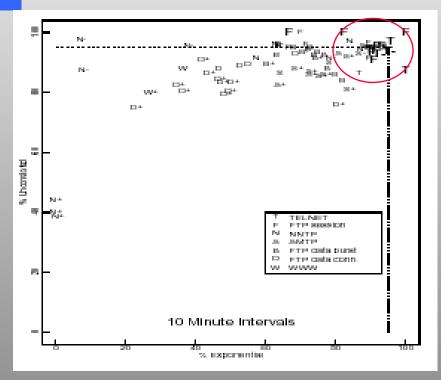
- Analysis of traffic logs from perspective of packets/time unit found H to be between 0.8 and 0.95
 - Aggregation over many orders of magnitude
 - Initial looks at external traffic pointed to similar behavior
- First use of VERY large measurements in network research
- Very high degree of statistical rigor brought to bare on the problem
- Blew away prior notions of network traffic behavior
 - Ethernet packet traffic is self-similar
- Led to ON/OFF model of network traffic [WTSW97]

What about wide area traffic?

- Paxson and Floyd evaluated 24 wide-area traces
 - Traces included both Bellcore traces and five other sites taken between '89 and '95
 - Focus was on both packet and session behavior
 - TELNET and FTP were applications considered
 - Millions of packets and sessions analyzed

Result of testing for Poisson arrivals





1 Hour Interval

10 Minute Interval

-TELNET (T) and FTP connection(F) interarrivals are well modeled by a Poisson process

TCP connection interarrivals

- The behavior analyzed was TCP connection start times
 - A simple statistical test was developed to assess accuracy of Poisson assumption
 - Exponential distribution of interarrivals
 - Independence of interarrivals
 - TELNET and FTP connection interarrivals are well modeled by a Poisson process
 - Evaluation over 1 hour and 10 minute periods
 - Other applications (NNTP, SMTP, WWW, FTP DATA) are not well modeled by Poisson

TELNET packet interarrivals

- The interarrival times of TELNET originator's packets (a user typing at a keyboard) was analyzed.
 - Process was shown to be heavy-tailed
 - P[X > x] ~ $x^{-\alpha}$ as $x \rightarrow inf$. and $0 < \alpha < 2$
 - Simplest heavy-tailed distribution is the Pareto which is hyperbolic over its entire range
 - $p(x) = \alpha k^{\alpha} x^{-\alpha-1}, \alpha, k > 0, x >= k$
 - If $\alpha = < 2$, the distribution has infinite variance
 - If $\alpha = < 1$, the distribution has infinite mean
 - It's all about the tail!
 - Variance-Time plots indicate self-similarity

TELNET session size (packets)

- Size of TELNET session measured by number of originator packets transferred
 - Log-normal distribution was good model for session size in packets
 - Log-extreme has been used to model session size in bytes in prior work
- Putting this together with model for arrival processes results in a well fitting model for TELNET traffic

FTPDATA analysis

- FTPDATA refers to data transferred after
 FTP session start
 - Packet arrivals within a connection are not treated
 - Spacing between DATA connections is shown to be heavy tailed
 - Bimodal (due to mget) and can be approximated by log-normal distribution
 - Bytes transferred
 - Very heavy tailed characteristic
 - Most bytes transferred are contained in a few transfers

Self-similarity of WAN traffic

- Variance-time plots for packet arrivals for all applications indicate WAN traffic is consistent with selfsimilarity
 - The authors were not able to develop a single Hurst parameter to characterize WAN traffic

The M/G/Inf. Model for generating self-similar traffic

- M/G/inf. Queue model considers customers that arrive at an infinite-server queue according to a Poisson process with rate ρ.
- In the count process $\{X_t\}_{t=0,1,2,...}$ produced by M/G/Inf. Queue model, X_t gives the number of customers in the system at time t.
 - Reference: D. Cox and V. Isham, Point Processes, Chapman and Hall, 1980. shows: autocorrelation function r(k) for the count process is

$$r(k) = \operatorname{cov}\left\{X(t), X(t+k)\right\} = \rho \int_{k}^{\infty} (1 - F(x)) dx$$

• If the service time has Pareto distribution with location parameter a and shape parameter β , for 1< β <2, then r(k) is the following:

$$r(k) = \rho \int_{k}^{\infty} \left(\frac{a}{x}\right)^{\beta} dx = \frac{\rho a^{\beta}}{\beta - 1} k^{(1 - \beta)}$$

• Result: For Pareto service times and an arbitrary arrival rate ρ , the count process of the M/G/Inf. Model is <u>asymptotically self-similar</u> but <u>not exactly self-similar</u>.

major results of reference [2]

- Verify that TCP session arrivals are well modeled by a Poisson process
- Showed that a number of WAN characteristics were well modeled by heavy tailed distributions
- Establish that packet arrival process for two typical applications (TELNET, FTP) as well as aggregate traffic is self-similar
- Provide further statistical methods for generating self-similar traffic

What about WWW traffic?

- Crovella and Bestavros analyze
 WWW logs collected at clients over a
 1.5 month period
 - First WWW client study
 - Instrumented MOSAIC
 - ~600 students
 - ~130K files transferred
 - ~2.7GB data transferred

Self-similar aspects of Web traffic

- One difficulty in the analysis was finding stationary, busy periods
 - A number of candidate hours were found
- All four tests for self-similarity were employed
 - -0.7 < H < 0.8

Explaining self-similarity

- Consider a set of processes which are either ON (transferring the data at constant rate) or OFF
 - The distribution of ON and OFF times are heavy tailed (α_1, α_2)
 - The aggregation of these processes leads to a self-similar process
 - → H = (3 min (α_1, α_2))/2 [WTSW97]
- On-time: transmission duration of individual web-files
- Off-time: interval between transmission

Reference: [WTSW97]→ W. Willinger, M. S. Taqqu, R. Sherman, and D.V. Wilson, "self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level," *IEEE/ACM* Trans. Networking, vol 5.pp. 71-86 Feb, 1997.

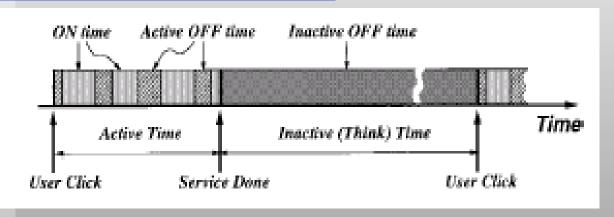
Heavy tailed ON times and file sizes

 Analysis of client logs showed that ON times were, in fact, heavy tailed

$$-\alpha \sim 1.2$$

- This lead to the analysis of underlying file sizes
 - $-\alpha \sim 1.1$
 - Similar to FTP data traffic where 0.9 <= α <=1.1
- Files available from UNIX file systems are typically heavy tailed

Heavy tailed OFF times



 Analysis of OFF times showed that they are also heavy tailed; heavy-tailed nature of OFF time is a result of user think time (Inactive OFF) rather than machine-induced (Active OFF) delays

$$-\alpha \sim 1.5$$

- Distinction between Active and Inactive(user think) OFF times
- ON times are more likely to be cause of self-similarity

Major results of reference [3]

- Established that WWW traffic was self-similar
- Modeled a number of different WWW characteristics (focus on the tail)
- Provide an explanation for selfsimilarity of WWW traffic based on underlying file size distribution

Where are we now?

- There is no mechanistic model for Internet traffic
 - Topology?
 - Routing?
- People want to blame the protocols for observed behavior
- Many people (vendors) chose to ignore self-similarity
- Lots of opportunity!!
- Current Research
 - 1. G. Mansfield, T.K. Roy and N. Shiratori, "Self-similar and Fractal Nature of Internet Traffic Data", Infocom 2001.
 - 2. B. Zwart, S. Bors, and M. Mandjes, "Exact queueing asymptotics for multiple heavy-tailed on-off flows," Infocom 2001.
 - 3. C. Kotopoulos, N. Likhanov, and R.R. Maxumdar,"Asymptotic analysis of GPS systems fed by heterogeneous long-tailed sources," Infocom 2001.