�Ashish Gupta

Entry No. 98131

2nd year , CSE

�����Digital Hardware Design CS 311

Combinational Circuit Design with MSI blocks

Lecture #4 , Jan 10th 2000�
�

Incompletely Specified Functions

In some cases , output need not be specified for all possible inputs.

Example : f(a,b,c,d) = (m(2,3,4,5,6,8,9) + (d(10,11,12,13,14,15)

Here (m denotes the input states for which the output is logic HIGH and (d specifies the inputs for which the output can be unspecified (Don’t Care). For rest output is zero.

	�

Now we can minimise the K-Map as shown. Regarding the don’t care states it is our choice whether the include them as 1 or 0. Usually they are chosen so as to minimise the function.

Some Don’t Cares may remain 1 or 0.

Why Incompletely Specified functions ?

In some Boolean functions outputs don’t actually matter for certain subset of inputs.

Certain inputs may not occur at all.

�

In a BCD display certain inputs need not be specified like 10,11,12..15.

��Implementing Logic using MSI Blocks

 In this part of the lecture , implementation of Boolean functions using MSI blocks will be covered. Medium Scale Integration (MSI) devices have a complexity of approximately 10 to 200 gates in a single package. They usually perform specific elementary digital functions such as decoders , adders , and registers.

Combinational MSI Blocks

Various blocks available for implementing logic are :

Decoders

Encoders

Multiplexers

ROMs

PLAs (Programmable Logic Arrays)

Certain blocks may be preferred to others depending on the application and context of usage.

Arithmetic MSI Units

Various blocks available for implementing arithmetic logic are :

Adders

Subtracters

Shifters

Comparators

Decoders

Discrete quantities of information are represented in digital computers with binary codes. A binary code of n bits is capable of representing up to 2n distinct elements of the coded information. A decoder is a combinational circuit that converts binary information from the n coded inputs to a maximum of 2n unique outputs. If the n-bits coded information has unused bit combinations , the decoder may have less than 2n outputs.

The decoders presented in this section are called n-to-m line decoders , where n (2n. Their purpose is to generate the 2n (or fewer) binary combinations of the n input variables. A decoder has n inputs and 2n outputs and is also referred to as n to 2n decoder.

n to 2n Decoder

�

The logic diagram of a 2-to-4 decoder is shown. The two data inputs are decoded into 4 outputs , each output representing one of the combinations of the two binary input variables .Where required the inputs are inverted and each of the AND gates generates one of the binary combination.

Partial Decoding

Sometimes partial decoding may also be used i.e. not all the outputs of the decoder may be needed. Eg. In a BCD display only a 4 to 10 decoder is needed .

Enable Input

Commercial decoders include one or more enable inputs to control the operation of the circuit. The decoder is enabled when E is equal to 1 and disabled when E is equal to 0.

Implementation of Circuit

The circuit for decoders is implemented in a fairly simple manner :

�

The outputs of the decoder are mutually exclusive i.e. only one of the output can be logic 1 (Assuming active high output).

In some decoders active low output may also be there.

Logic Implementation using Decoders

y= f(a,b,c) = (m(0,3,4,6,7)

�

The above function is implemented using decoders in the above figure. Only the required outputs are fed to the OR gate as shown.

�
Multiplexer

A multiplexer is a combinational circuit that receives binary information from one of the 2n input data lines and directs it to a single output line. The selection of a particular input data line for the output is determined by a set of selection inputs. A 2n to 1 multiplexer has 2n input data lines and n input selection lines whose bit combinations determine which input data are selected for the output.

2n to 1 Multiplexers (n select lines)

�

A 4-to-1 line multiplexer is shown. Each of the four data inputs is applied to one input of an AND gate. The two selection inputs S1 and S0 are decoded to select a particular AND gate. The outputs of the AND gates are applied to a single OR gate to provide the single output. To demonstrate the circuit operation , consider the case when S1S0 = 10. The AND gate associated with input 2 has two of its inputs equal to 1. The third input of the gate is connected to input 2. The other three AND gates have at least one input equal to 0 , which makes their outputs equal to 0. The OR gate output is now equal to the value of input 2 , thus providing a path from the selected input to the output.

Output y = x0s0’s1’ + x1s0s1’ + x2s0’s1 + x3s0s1

�

Enable Input

As in decoders , Multiplexers may have an enable input to control the operation of the unit. When the enable input is in the inactive state , the outputs are disabled , and when it is in the active state , the circuit functions as a normal multiplexer. The enable input is useful for expanding two or more Multiplexers to a multiplexer with a large number of inputs.

Logic Implementation using Multiplexers

f(a,b,c) = (m(0,1,3,5,6)

�

Implementation of the above function is shown in the figure.

This implementation is not cost - efficient. See the next section for a better implementation.

A new design :

�

In this design we use on of the inputs to feed the inputs of the multiplexer instead of feeding it the select lines. This results in usage of a much smaller multiplexer. Of course, some logic is usually required when feeding the inputs of the multiplexer (usually an inverter for a single variable).

Two variables can also be used to feed the inputs using further logic.

ROM (Read Only memory)

As the name implies , a read-only memory (ROM) is a memory unit that performs the read operation only; it does not have a write capability. This implies that the binary information stored in a ROM is made permanent during the hardware production of the unit and cannot be altered by writing different words into it. Whereas a RAM is a general purpose device whose contents can be altered during the computational process , a ROM is restricted to reading words that are permanently stored within the unit. The binary information to be stored , specified by the designer , is then embedded in the unit to form the required interconnection pattern. ROMs come with special internal electronic fuses that can be “programmed” for a specific configuration. Once the pattern is established , it stays within the unit even when power is turned off and on again.

2n x m ROM (n address lines and m outputs)

�

An 2n x m ROM is an array of binary cells organised into 2n words of m bits each. As shown in the block diagram , a ROM has 2n input lines to select one of the 2n words of memory and m output lines , one for each bit of the word.

Logic Implementation using ROM

In ROM , the function is implemented directly. It is extremely flexible and can be reprogrammed to represent an entirely different function.

�

The above figure shows what is inside the ROM. Content of a ROM can be easily changed.

Multiple functions�More than one outputs can be got from the ROM by having n-bit cells instead of 1 bit cells associated with each address line. Thus a 4-bit cell ROM will yield n outputs thus implementing n functions simultaneously.

PLA (Programmable Logic Arrays)

Introduction :

PLAs belong to a class of components called programmable logic devices or PLDs , a term applied to ICs containing many gates or other general - purpose cells whose interconnections can be configured or “programmed” to implement any desired combinational or sequential function. PLDs are relatively easy to design and inexpensive to manufacture. They constitute a key technology for building application-specific integrated circuits (ASICs).

The programmable logic array (PLA) shown in the figure is intended to realise a set of combinational logic functions in minimal SOP form. It consists of an array of AND gates (the AND plane) , which realise a set of product terms , and a set of OR gates (the OR plane) , which form various logical sums of the product terms. The inputs to the AND gates are programmable and include all the input variables and their complements. Hence it is possible to program any desired product term into any row of the PLA. For example……………

PLA specification : n x k x m

(n inputs , k product terms and m outputs)

�

The above figure shows a (4 x 8 x 6) PLA. PLA consists of an AND plane and an OR plane.

�
Implementing logic using PLAs

The following functions are implemented using PLA as shown.

y1 = ab + b’c’d 						y2 = ab + bc’ c’d’

�

Advantages :

In PLA , required logic is much less than ROM , MUX etc. Only partial decoding is done. A large no. of functions can be implemented using only few product terms. There is one restriction in the sense that functions must have less than a critical no. of product terms (k). But overall PLAs are very concise.

Summary

To implement a n-variable function (with k minterms) we have the following options available with us :

n to 2n decoder + k input OR gate.

2n : 1 multiplexer

2(n-1) : 1 multiplexer + 1 inverter (n-1) select lines

2n x 1 ROM

n x p x 1 PLA with p <= k.

�

(footnote continued)

��

�PAGE �10�

�PAGE �9�

.�.�.�.�.�.�.�.�.

.�.�.�.�.�..�.�.�.

�

..........

.�.�.�.�.�.�..�.�.

.�.�.�.�.�.�.�.
