Network Traffic Characteristic

Hojun Lee
hlee02@purros.poly.edu
Outline

- Motivation
- What is self-similarity?
- Behavior of Ethernet traffic
- Behavior of WAN traffic
- Behavior of WWW traffic
Motivation for network traffic study

- Understanding network traffic behavior is essential for all aspects of network design and operation
 - Component design
 - Protocol design
 - Provisioning
 - Management
 - Modeling and simulation
Three main reference papers

In the past ...

- Traffic modeling in the world of telephony was the basis for initial network models
 - Assumed Poisson arrival process
 - Assumed Poisson call duration
 - Well established queuing literature based on these assumptions
 - Enabled very successful engineering of telephone networks
What is self-similarity in nature?

- No natural length of a bust, at every time scale, similar looking traffic bursts are evident (structure repeats at all scales)
- Aggregating streams of such traffic intensifies the self-similarity instead of smoothing it
- Aggregation causes more burstsness and requires larger buffers (just as Stochastic processes are invariant to time, self-similar processes are invariant to scale)
Definition of self-similarity

- Consider a zero-mean stationary time series $X = (X_t; t = 1, 2, 3, \ldots)$, we define the m-aggregated series $X^{(m)} = (X_k^{(m)}; k = 1, 2, 3, \ldots)$ by summing X over blocks of size m. We say X is **H-self-similar** if for all positive m, $X^{(m)}$ has the same distribution as X rescaled by m^H.

- If X is H-self-similar, it has the same autocorrelation function $r(k)$ as the series $X^{(m)}$ for all m. This is actually **distributional self-similarity**.

$$r(k) = \frac{\sigma^2}{\sigma_k^2}$$

- $X(t)$ is **exactly second-order self-similar** with Hurst parameter H $(1/2 < H < 1)$ if

$$\gamma(k) = \frac{\sigma^2}{2} ((k+1)^{2H} - 2 k^{2H} + (k-1)^{2H}) \quad \text{for all } k \geq 1$$

- $X(t)$ is **asymptotically second-order self-similar** if

$$\lim_{m \to \infty} \gamma^m(k) = \frac{\sigma^2}{2} ((k+1)^{2H} - 2 k^{2H} + (k-1)^{2H})$$
Values at any instant are typically nonnegligibly positively correlated with values at all future instants.

Return the definition of second-order self-similarity and its autocovariance.

Let autocorrelation function, \(r(k) = \frac{\gamma(k)}{\sigma^2} \). For \(0 < H < 1 \), \(H \neq \frac{1}{2} \), it holds

\[r(k) \sim H (2H-1) k^{2H-2}, \quad k \to \infty \]

Particularly, for \(\frac{1}{2} < H < 1 \)

\[r(k) \sim c k^{-\beta} \quad \text{where} \quad 0 < \beta < 1 \quad \text{and} \quad c > 0 \]

From this, \(\beta = 2 - 2H \) and \(\sum_{k=-\infty}^{\infty} r(k) = \infty \) (LRD)

\[\Rightarrow \sum_{k=-\infty}^{\infty} r(k) < \infty \quad \text{, SRD(Short Range Dependence)} \]
Long-range dependence vs. SS cont’d

• Self-similar processes are the simplest way to model processes with long-range dependence – correlations that persist (do not degenerate) across large time scales

• Degree of self-similarity is expressed as the speed of decay of series autocorrelation function using the Hurst parameter

 \[H = 1 - \beta / 2 \]

 – For SS series with LRD, \(\frac{1}{2} < H < 1 \)

 – Degree of SS and LRD increases as \(H \to 1 \)
Definition: A random variable Z has a heavy-tailed distribution if
\[P(Z > x) \sim cx^{-\alpha}, \quad x \to \infty \]
where $0 < \alpha < 2$ = tail index or shape parameter
\[c = \text{positive constant} \]

- Tail of the distribution decays hyperbolically.
- Infinite variance for $0 < \alpha < 2$
- Unbounded mean for $0 < \alpha \leq 1$
- Frequently used heavy-tailed distribution is the Pareto distribution, whose distribution function is
\[P(Z \leq x) = 1 - \left(\frac{b}{x} \right)^{\alpha}, \quad b \leq x \quad \text{where} \quad 0 < \alpha < 2 \]

- Light-tailed distribution: exponential and Gaussian – which possess an exponentially decreasing tail.
Graphical tests for self-similarity

- Variance-time plots
 - Relies on slowly decaying variance of self-similar series
 - The variance of \(X^{(m)} \) is plotted versus \(m \) on log-log plot
 - Slope \((-\beta)\) greater than \(-1\) is indicative of SS

- R/S plots
 - Relies on rescaled range (R/S) statistic growing like a power law with \(H \) as a function of number of points \(n \) plotted.
 - The plot of R/S versus \(n \) on log-log has slope which estimates \(H \)

- Periodogram plot
 - Relies on the slope of the power spectrum of the series as frequency approaches zero
 - The periodogram slope is a straight line with slope \(\beta - 1 \) close to the origin
Graphical test examples – VT plot

- The variance of $X(m)$ is plotted against m on a log-log plot.
- $\beta = -1$
- The variance of $X(m)$ is plotted against m on a log-log plot.

Slope: -0.48

Then $\beta = 0.48$

Estimate $H = 1 - \frac{\beta}{2} = 0.76$
Graphical test example – R/S plot

R = autocorrelation
S = variance

H = 1/2

Estimated H = 0.75

Degree of aggregation
Graphical test examples - Periodogram

Slope = $\beta - 1 = 1 - 2H$

In this case, slope = -0.66 then $H = 0.83$
Non-graphical self-similarity test

- Whittle’s MLE Procedure
 - Provides confidence intervals for estimation of H (advantage)
 - Requires an underlying stochastic process for estimate (disadvantage)

 • Typical examples
 - FGN (Fractional Gaussian Noise) \rightarrow exactly self-similar models
 - Fractional-ARIMA (Autoregressive Integrated Moving Average) \rightarrow asymptotically self-similar models

 • FGN assumes no SRD (Short Range Dependence); however, F-ARIMA can assume a fixed degree of short-range dependence
Non-graphical test example – Whittle estimator

Busiest hour

Least busiest hour
Analysis of Ethernet traffic

- In 1989, Leland and Wilson begin taking high resolution traffic traces at Bellcore
 - Ethernet traffic from a large research lab
 - 100 µ sec time stamps (update the version of monitor)
 - Packet length, status, 60 bytes of data
 - Mostly IP traffic (a little NFS)
 - Four data sets over three year period
 - Traces considered representative of normal use
The packet count picture analysis

- A Poisson process
 - When observed on a fine time scale will appear bursty
 - When aggregated on a coarse time scale will flatten (smooth) to white noise

- A self-similar (fractal behavior) process
 - When aggregated over wide range of time scales will maintain its bursty characteristic
Pictorial proof of self-similarity
(Ethernet Traffic)
Higher the load in the Ethernet traffic, higher the Hurst parameter

Confidence Interval corresponding to H for the low traffic hours are typically wider than the normal and high traffic hours

- Reason: Ethernet traffic during low traffic periods is asymptotically self-similar rather than exactly self-similar.
Major results of reference [1]

- Analysis of traffic logs from perspective of packets/time unit found H to be between 0.8 and 0.95
 - Aggregation over many orders of magnitude
 - Initial looks at external traffic pointed to similar behavior
- First use of VERY large measurements in network research
- Very high degree of statistical rigor brought to bare on the problem
- Blew away prior notions of network traffic behavior
 - Ethernet packet traffic is self-similar
- Led to ON/OFF model of network traffic [WTSW97]
What about wide area traffic?

- Paxson and Floyd evaluated 24 wide-area traces
 - Traces included both Bellcore traces and five other sites taken between ’89 and ‘95
 - Focus was on both packet and session behavior
 - TELNET and FTP were applications considered
 - Millions of packets and sessions analyzed
Result of testing for Poisson arrivals

- TELNET (T) and FTP connection (F) interarrivals are well modeled by a Poisson process
TCP connection interarrivals

- The behavior analyzed was TCP connection start times
 - A simple statistical test was developed to assess accuracy of Poisson assumption
 - Exponential distribution of interarrivals
 - Independence of interarrivals
 - TELNET and FTP connection interarrivals are well modeled by a Poisson process
 - Evaluation over 1 hour and 10 minute periods
 - Other applications (NNTP, SMTP, WWW, FTP DATA) are not well modeled by Poisson
The interarrival times of TELNET originator’s packets (a user typing at a keyboard) was analyzed.

- Process was shown to be heavy-tailed
 - $P[X > x] \sim x^{-\alpha}$ as $x \to \infty$ and $0 < \alpha < 2$
 - Simplest heavy-tailed distribution is the Pareto which is hyperbolic over its entire range
 - $p(x) = \alpha k^\alpha x^{-\alpha-1}$, $\alpha, k > 0$, $x \geq k$
 - If $\alpha \leq 2$, the distribution has infinite variance
 - If $\alpha \leq 1$, the distribution has infinite mean
 - It’s all about the tail!
 - Variance-Time plots indicate self-similarity
TELNET session size (packets)

- Size of TELNET session measured by number of originator packets transferred
 - Log-normal distribution was good model for session size in packets
 - Log-extreme has been used to model session size in bytes in prior work

- Putting this together with model for arrival processes results in a well fitting model for TELNET traffic
FTPDATA analysis

- FTPDATA refers to data transferred after FTP session start
 - Packet arrivals within a connection are not treated
 - Spacing between DATA connections is shown to be heavy tailed
 - Bimodal (due to mget) and can be approximated by log-normal distribution
 - Bytes transferred
 - Very heavy tailed characteristic
 - Most bytes transferred are contained in a few transfers
Self-similarity of WAN traffic

- Variance-time plots for packet arrivals for all applications indicate WAN traffic is consistent with self-similarity
 - The authors were not able to develop a single Hurst parameter to characterize WAN traffic
The M/G/Inf. Model for generating self-similar traffic

- M/G/inf. Queue model considers customers that arrive at an infinite-server queue according to a Poisson process with rate \(\rho \).
- In the count process \(\{X_t\}_{t=0,1,2,...} \) produced by M/G/Inf. Queue model, \(X_t \) gives the number of customers in the system at time \(t \).
 - shows: autocorrelation function \(r(k) \) for the count process is
 \[
 r(k) = \text{cov}\{X(t), X(t+k)\} = \rho \int_{-\infty}^{\infty} (1 - F(x)) dx
 \]
- If the service time has Pareto distribution with location parameter \(a \) and shape parameter \(\beta \), for \(1 < \beta < 2 \), then \(r(k) \) is the following:
 \[
 r(k) = \rho \int_{a}^{\infty} \left(\frac{a}{x} \right)^{\beta} dx = \rho a^{\beta} \frac{k^{(1-\beta)}}{\beta - 1}
 \]
- Result: For Pareto service times and an arbitrary arrival rate \(\rho \), the count process of the M/G/Inf. Model is asymptotically self-similar but not exactly self-similar.
major results of reference [2]

- Verify that TCP session arrivals are well modeled by a Poisson process
- Showed that a number of WAN characteristics were well modeled by heavy tailed distributions
- Establish that packet arrival process for two typical applications (TELNET, FTP) as well as aggregate traffic is self-similar
- Provide further statistical methods for generating self-similar traffic
What about WWW traffic?

- Crovella and Bestavros analyze WWW logs collected at clients over a 1.5 month period
 - First WWW client study
 - Instrumented MOSAIC
 - ~600 students
 - ~130K files transferred
 - ~2.7GB data transferred
Self-similar aspects of Web traffic

- One difficulty in the analysis was finding stationary, busy periods
 - A number of candidate hours were found
- All four tests for self-similarity were employed
 - $0.7 < H < 0.8$
Explaining self-similarity

- Consider a set of processes which are either ON (transferring the data at constant rate) or OFF
 - The distribution of ON and OFF times are heavy tailed (α_1, α_2)
 - The aggregation of these processes leads to a self-similar process
 \[H = \frac{3 - \min(\alpha_1, \alpha_2)}{2} \] [WTSW97]
- On-time: transmission duration of individual web-files
- Off-time: interval between transmission

Heavy tailed ON times and file sizes

- Analysis of client logs showed that ON times were, in fact, heavy tailed
 - \(\alpha \approx 1.2 \)
- This lead to the analysis of underlying file sizes
 - \(\alpha \approx 1.1 \)
 - Similar to FTP data traffic where \(0.9 \leq \alpha \leq 1.1 \)
- Files available from UNIX file systems are typically heavy tailed
Heavy tailed OFF times

- Analysis of OFF times showed that they are also heavy tailed; heavy-tailed nature of OFF time is a result of user think time (Inactive OFF) rather than machine-induced (Active OFF) delays
 - $\alpha \sim 1.5$
- Distinction between Active and Inactive (user think) OFF times
- ON times are more likely to be cause of self-similarity
Established that WWW traffic was self-similar
Modeled a number of different WWW characteristics (focus on the tail)
Provide an explanation for self-similarity of WWW traffic based on underlying file size distribution
Where are we now?

- There is no mechanistic model for Internet traffic
 - Topology?
 - Routing?
- People want to blame the protocols for observed behavior
- Many people (vendors) chose to ignore self-similarity
- Lots of opportunity!!

Current Research