
Inferring the Topology and Traffic Load of Parallel Programs
Running In a Virtual Machine Environment

Ashish Gupta Peter A. Dinda�
ashish,pdinda�@cs.northwestern.edu

Department of Computer Science, Northwestern University

Abstract

We are developing a distributed computing environment
based on virtual machines featuring application monitor-
ing, network monitoring, and an adaptive virtual network.
In this paper, we describe our initial results in monitoring
the communication traffic of parallel applications, and in-
ferring its spatial communication properties. The ultimate
goal is to be able to exploit such knowledge to maximize
the parallel efficiency of the running parallel applicationby
using VM migration, virtual overlay network configuration
and network reservation techniques, which are a part of the
distributed computing environment. Specifically, we demon-
strate that: (1) we can monitor the parallel application net-
work traffic in our layer 2 virtual network system with very
low overhead, (2) we can aggregate the monitoring infor-
mation captured on each host machine to form a global pic-
ture of the parallel application’s traffic load matrix, (3) we
can infer from the traffic load matrix the application topol-
ogy. In earlier work, we have demonstrated that we can
capture the time dynamics of the applications. We begin
here by considering offline traffic monitoring and inference
as a proof of concept, testing it with a variety of synthetic
and actual workloads. Next, we describe the design and im-
plementation of our online system, the Virtual Topology and
Traffic Inference Framework (VTTIF), and evaluate it using
a NAS benchmark.

1 Introduction

Virtual machines have the potential to simplify the use of
distributed resources in a way unlike any other technology
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available today, making it possible to run diverse applica-
tions with high performance after only minimal or no pro-
grammer and administrator effort. Network and host bot-
tlenecks, difficult placement decisions, and firewall obsta-
cles are routinely encountered, making effective use of dis-
tributed resources an obstacle to innovative science. Such
problems, and the human effort needed to work around
them, limit the development, deployment, and scalability
of distributed parallel applications.

We have presented a detailed case for virtual machine-
based distributed and parallel computing [4], and we are
now developing a system, Virtuoso, which has the following
model:

� The user receives what appears to be a new computer or
computers on his network at very low cost. The user can
install, use, and customize the operating system,
environment, and applications with full administrative
control.� The user chooses where to execute the virtual machines.
Checkpointing and migration is handled efficiently through
Virtuoso. The user can delegate these decisions to the
system.� A service provider need only install the VM management
software to support a diverse set of users and applications.� Monitoring, adaptation, resource reservation, and other
services are retrofitted to existing applications at the VM
level with no modification of the application code, resulting
in broad application of these technologies with minimal
application programmer involvement.

An important element of our system is layer 2 virtual net-
work, VNET, which we initially developed to create the
“networking illusion” needed for the first element of the
model. It can “move” a set of virtual machines in a WAN
environment to the user’s local Layer 2 domain. We are
now expanding VNET into a tool that supports arbitrary
overlay topologies and routing rules, passive application
and network monitoring, adaptation (based on VM migra-
tion and topology/routing changes), and resource reserva-
tion. VNET is described in detail in a previous paper [11].



This paper reports on one of our first steps toward achiev-
ing the last element of the model. The question we address
in particular is: can we monitor, with low overhead and no
application or operating system modifications, the commu-
nication traffic of a parallel application running in a set of
virtual machines interconnected with a virtual network, and
compute from it the traffic load matrix and application com-
munication topology? Our initial results demonstrate that
this is possible. We are integrating the online implemen-
tation of our ideas, VTTIF (Virtual Topology and Traffic
Inference Framework), into the evolving VNET system.

We consider here Bulk-Synchronous Parallel [6] (BSP)
style applications. Specifically, we consider parallel pro-
grams whose execution alternates between one or more
computing phases and one or more communication phases,
including metaphases. We are testing whether our results
hold for more general applications. In earlier work, we
have demonstrated that the network traffic of compiler-
parallelized BSP applications, when measured using tech-
niques similar to those used here, exhibits clear time dy-
namical structure (periodicity with harmonics) [3]. Our re-
sults here show that we can quickly and efficiently recover
its spatial structure, its topology and traffic load, as well.

The ultimate motivation behind recovering the spatial
and temporal properties of a parallel application running in
a virtual environment is to be able to maximize the parallel
efficiency of the running application by migrating its VMs,
changing the topology and routing rules of the communica-
tion network, and taking advantage of underlying network
reservations on the application’s behalf.

A parallel program may employ various communication
patterns for its execution. A communication pattern con-
sists of a list of all the message exchanges of a representa-
tive processor during a communication phase. The result of
each processor executing its communication pattern gives
us the application topology, such as a mesh, toroid, hyper-
cube, tree, etc, which is in turn mapped to the underlying
network topology [7]. In this paper, we attempt to infer the
application topology and the costs of its edges, the traffic
load matrix, by observing the low-level traffic entering and
leaving each node of the parallel application, which is run-
ning inside of a virtual machine.

It is important to note that application topologies may
be arbitrarily complex. Although our initial results are for
BSP-style applications, our techniques can be used with ar-
bitrary applications, indeed, any application or OS that the
virtual machine monitor (we use VMWare GSX server in
this work) can support. However, we do not yet know the
effectiveness of our load matrix and topology inference al-
gorithms for arbitrary applications.

In general, it is difficult for an application developer, or,

for that matter, the user of a “dusty deck” application, to
analyze and describe his application at the level of detail
needed in order for a virtual machine distributed computing
system to make adaptation decisions on its behalf. Further-
more, the description may well be time or data dependent
or react to the conditions of the underlying network.

The goal of VTTIF is to provide these descriptions au-
tomatically, as the unmodified application runs on an un-
modified operating system. In conjunction with information
from other monitoring tools, and on the policy constraints,
VTTIF information will then be used to schedule the VMs,
migrate them to appropriate hosts, and change the virtual
network connecting them. The adaptation control mecha-
nisms will query VTTIF to understand what, from a com-
munication perspective, the parallel application is attempt-
ing to accomplish.

We began by offline analysis, using traffic logs of par-
allel applications to develop our three step monitoring and
analysis process. Although this initial work was carried out
without the use of VMs, using PVM applications whose
traffic was captured using tcpdump techniques, it is directly
applicable for two reasons. First, VNET interacts with the
virtual interfaces of virtual machines in a manner identical
(packet filter on the virtual interface) to how tcpdump in-
teracts with physical interfaces (packet filter on a physical
interface). Second, the physical machines generate consid-
erably more “noise” than the virtual machines, thus making
the problem harder. In Section 2, we describe our three step
process and how it is implemented for physical monitoring.
In Section 3 we describe a set of synthetic applications and
benchmarks we will use to evaluate VTTIF. In Section 4,
we show the performance results of applying the process to
a wide variety of application topologies and parallel bench-
marks.

The results for the offline, physical machine-based were
extremely positive, so we designed and implemented an on-
line process that is integrated with our VNET virtual net-
working tool. Section 5 describes the design of the online
VTTIF tool and provides an initial evaluation of it. We
are able to recover application topologies online for a NAS
benchmark running in VMs and communicating via VNET.
The performance overhead of the VTTIF implementation in
VNET is negligible.

In Section 6, we conclude by describing our plans for us-
ing the VTTIF and other monitoring information for heuris-
tic adaptive control of the VMs and VNET to maximize ap-
plication performance.
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Figure 1. The three stages involved in infer-
ring the topology and traffic load matrix of a
parallel application

2 VTTIF and its offline implementation

The inference of parallel application communication is
based on analysis of low level traffic. We first wanted to
test whether this approach was practical at all, and, if so, to
develop a initial framework for traffic monitoring, analysis
and inference, enabling us to test our ideas and algorithms.
This initial step resulted in an offline process that focusedon
parallel programs running on physical hosts. In Section 5,
we describe how these results have been extended to an on-
line process that focuses on parallel programs running in
virtual machines.

In both our online and offline work, we study PVM [5]
applications. Note that the techniques described here are
general and are applicable to other parallel applications also
e.g. MPI programs. We run programs on the nodes of our
Virtuoso cluster, which is an IBM e1350 with 32 compute
nodes, each of which as dual 2.2 GHz Intel HT Xeon Pro-
cessors, 1.5 GB RAM, and 40 GB of disk. Each node runs
Red Hat Linux 9, PVM 3.4.4, and VMWare GSX Server
2.5. Each VM runs Red Hat Linux 7.3 and PVM 3.4.4. The
communication measured here is via a 100 mbit switched
network, specifically a Cisco 3550 48 port switch. The
nodes speak NFS and NIS back to a separate management
machine via a separate network.

The VTTIF framework has three stages as shown in Fig-
ure 1. In the first stage, we monitor the traffic being sourced
and sinked by each process in the parallel program. In the
offline analysis, this is accomplished by using tcpdump on
the physical interface with a packet filter that rejects all but

PVM traffic. In the online analysis, we integrate monitor-
ing into our virtual network tool VNET. VNET does the
equivalent of running tcpdump on the virtual interface of
the virtual machine, capturing all traffic. The Virtuoso clus-
ter uses a switched LAN, so the interface of each node must
be monitored separately and the data aggregated. A chal-
lenge in the online system is that it must decide when to
start and stop this monitoring.

The second stage of the framework eliminates irrelevant
traffic from the aggregated traffic and integrates the packet
header traces captured by tcpdump to produce a traffic ma-
trix, � . Element���� represents the amount of traffic sent
from node� to node�. A challenge in the online system is
to decide when to recompute this matrix.

The final stage of the framework applies inference al-
gorithms to eliminate noise from the traffic matrix to infer
from it the likely application topology. Both the original
matrix and the inferred topology are then returned. The
topology is displayed graphically. A challenge in the on-
line system is to decide when to recompute the topology.

The current offline framework is designed to automate
all of the above steps, allowing the user to run a single com-
mand,infer [parallel PVM program] This runs
the PVM program mentioned in the argument, monitors it
for its entire execution, completes the remaining steps of the
framework, and prints the matrix and displays the topology.
The framework is implemented as a set of Perl scripts, as
described below.

Monitor This script is responsible for synchronized traf-
fic monitoring on all the physical hosts, running the parallel
program, and storing the packet header traces to files. The
script also reads a configuration file that describes the set
of hosts on which monitoring is to be done. It runs tcp-
dump on each of the hosts with a packet filter that elimi-
nates all ssh, X11, and NFS packets. It then executes the
parallel program and waits for it to finish. Each tcpdump
stores its packet header trace output into a file named by the
hostname, the date, and the time of execution. Hence, each
execution produces a group of related packet header trace
files.

Generate This script parses, filters and analyzes the
packet header traces to generate a traffic matrix for the given
hosts. It sums the packets sizes between each pair of hosts,
filtering out irrelevant packets. Filtering is done according
to the following criteria:

� Type of packet. Packets which are known not to be a part of
the parallel program communication, like ARP, X11, ssh,
etc, are discarded. This filtering has only a modest effect in



the Virtuoso cluster because there is little extra traffic.
However, in the future, we may want to run parallel
programs in a wide area environment or one shared with
many other network applications, where filtering and
extracting the relevant traffic may pose extra challenges.� The source and destination hosts involved in the packet
transmission. We are only interested traffic among a specific
group of hosts.

The matrix is emitted in a single file.

Infer This script infers the application topology from the
traffic matrix file. In effect, topology inference amounts to
taking the potentially “noisy” graph described by the traffic
matrix and eliminating edges that are unlikely to be signifi-
cant. The script also outputs a version of the topology that
is designed to be viewed by the algorithm animation system
Samba [10].

For inferring the topology, various algorithms are possi-
ble. One method is to prune all matrix entries below a cer-
tain threshold. More complex algorithms could employ pat-
tern detection techniques to choose an archetype topology
that the traffic matrix is most similar to. For the results we
show, topology inference is done using a matrix normaliza-
tion and simple edge pruning technique. The pseudo-code
description of the algorithm is:

InferTopology(trafficmatrix T,pruningthreshold����)�

���� ���	
���� � ����
 � �
foreach(����)�

���� � ���� �����
if (���� � ����)�

add edge(i,j) to G�
�

return G�

In effect, if the maximum bandwidth entry in T is
����, then if ratio of any edge value (����) to ���� is below
a certain threshold����, then the edge is pruned. The value
of ���� determines the sensitivity of topology inference.

Visualization makes it very convenient to quickly under-
stand the topology used by the parallel program. By de-
fault, we have Samba draw each topology with the nodes
laid out in a circle, as this is versatile for a variety of differ-
ent topologies. However, there is an option to pass a custom
graph layout. An automated layout tool such as Dot could
also be used.

Figure 2. An example of the final output of the
Topology Inference Framework for the PVM-
POV application. The PVM-POV application
runs on four hosts.

Figure 2 shows an example of the final output for the
program PVM POV, a parallel ray tracer, running on four
hosts. The thickness of an edge indicates the amount of
traffic for that particular run. Each host is represented by a
different color and color of the edge represents the source
host for the edge traffic.

3 Workloads for VTTIF

To test our ideas, we first needed some actual parallel
applications and measure. We created and collected the fol-
lowing applications.

� Patterns: This is a synthetic workload generator, which we
describe below. It can execute many different kinds of
topologies common in BSP parallel programs. We use this
extensively to test our framework.� NAS Parallel Benchmarks: We use the PVM
implementation of the NAS benchmarks [1] IS, MG, FT,
and EP as developed by Sundaram, et al [12].� PVM POV: PVM version of the popular ray tracer
POVRAY. The PVM version gives it the ability to distribute
a rendering across multiple heterogeneous systems. [2].

Except for patterns, these are all well known benchmark
programs.

Patterns does message exchanges according to a topol-
ogy provided at the command line. Patterns emulates a



BSP program with alternating dummy compute phases and
communication phases according to the chosen topology. It
takes the following arguments:

� pattern: The particular topology to be used for
communication.� numprocs: The number of processors to use. The processors
are determined by a special hostfile.� messagesize: The size of the message to exchange.� numiters: The number of compute+communicate phases� flopsperelement: The number of multiply-add steps� readsperelement: The number of main memory reads� writesperelement: The number of main memory writes

Patterns generates a deadlock free and efficient commu-
nication schedule at startup time for the given topology and
number of processors to be used. The following topologies
are supported:

� �-dimensional mesh, neighbor communication pattern� �-dimensional torus, neighbor communication pattern� �-dimensional hypercube, neighbor communication pattern� Binary reduction tree� All-to-all communication

4 Evaluation of offline VTTIF

We evaluated our offline inference framework with the
various parallel benchmarks described in the previous sec-
tion. Figure 13 (located at the end of the paper) shows the
inferred application topologies of various patterns bench-
mark runs, as detected by our offline framework. These re-
sults suggest that there is indeed considerable promise in
traffic-based topology inference: parallel program commu-
nication behavior can be inferred without any knowledge
of the parallel application itself. Of course, more complex
filtering processes may need to be used for more complex
applications and complex network environments where par-
allel application traffic is just a part of the network traffic.

We also ran the application benchmarks described ear-
lier. These results are also promising. Figure 3 shows a rep-
resentative, the traffic matrix for an execution of the Integer
Sort (IS) NAS kernel benchmark on 8 physical hosts, with
the corresponding topology shown in Figure 4. The topol-
ogy resembles an all-to-all communication, but the thick-
ness of the edges vary indicating that the bandwidth require-
ments vary depending on the host pairs. A closer look at the
traffic matrix reveals that

����� receives data in the range of
20 MB from each of the other hosts, indicating that this is
a communication intensive benchmark. Other hosts

�����
to

����� transfer data of� 	
 � 		 MB with each other,
almost half of that exchanged with

�����.

h1 h2 h3 h4 h5 h6 h7 h8

h1 19.0 19.6 19.2 19.6 18.8 13.7 19.3

h2 22.6 10.7 10.8 10.7 10.9 9.7 10.5

h3 22.2 8.78 11.2 10.4 10.1 10.5 10.5

h4 22.4 8.9 9.5 11.1 10.8 10.6 10.2

h5 22.3 10.0 9.51 9.72 11.7 10.9 11.9

h6 24.0 8.9 10.7 9.9 10.8 12.2 12.1

h7 23.2 10.0 9.7 9.5 10.3 10.2 12.0

h8 24.9 11.2 11.0 11.8 11.5 11.2 10.7

*numbers indicate MB of data trans ferred.
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h4 22.4 8.9 9.5 11.1 10.8 10.6 10.2

h5 22.3 10.0 9.51 9.72 11.7 10.9 11.9

h6 24.0 8.9 10.7 9.9 10.8 12.2 12.1

h7 23.2 10.0 9.7 9.5 10.3 10.2 12.0
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h1h1 h2h2 h3h3 h4h4 h5h5 h6h6 h7h7 h8h8

h1h1 19.019.0 19.619.6 19.219.2 19.619.6 18.818.8 13.713.7 19.319.3

h2h2 22.622.6 10.710.7 10.810.8 10.710.7 10.910.9 9.79.7 10.510.5

h3h3 22.222.2 8.788.78 11.211.2 10.410.4 10.110.1 10.510.5 10.510.5

h4h4 22.422.4 8.98.9 9.59.5 11.111.1 10.810.8 10.610.6 10.210.2

h5h5 22.322.3 10.010.0 9.519.51 9.729.72 11.711.7 10.910.9 11.911.9

h6h6 24.024.0 8.98.9 10.710.7 9.99.9 10.810.8 12.212.2 12.112.1

h7h7 23.223.2 10.010.0 9.79.7 9.59.5 10.310.3 10.210.2 12.012.0

h8h8 24.924.9 11.211.2 11.011.0 11.811.8 11.511.5 11.211.2 10.710.7

*numbers indicate MB of data trans ferred.*numbers indicate MB of data trans ferred.

Figure 3. The traffic matrix for the NAS IS ker-
nel benchmark on a 8 host cluster

Figure 4. The inferred topology for the NAS IS
kernel benchmark

Notice that this information could be used to boost the
performance of the IS benchmark if it were running in our
VM computing model. Ideally, we would move the VM����� to a host with relatively high bandwidth links and re-
configure the virtual network with appropriate virtual routes
over the physical network [9]. Such decisions need to be
dynamic, as the properties of a physical network vary [13].
Without any intervention by the application developer or
knowledge of the parallel application itself, it is feasible
to infer the spatial and temporal [3] properties of the par-
allel application. Equipped with this knowledge, we can
use VM checkpointing and migration along with VNET’s



virtual networking capabilities to create a efficient network
and host environment for the application.

5 Online VTTIF

After working with offline parallel program topology in-
ference on the physical hosts, the next step was to develop
an online framework for a virtual machine environment. We
extended VNET [11], our virtual networking tool, to in-
clude support for traffic analysis and topology inference.
VNET allows the creation of layer 2 virtual networks in-
terconnecting VMs distributed over an underlying TCP/IP
networking infrastructure. A VNET daemon manages all
the network traffic of the VMs running on its host, and thus
is an excellent place to observe the application’s network
traffic. All traffic monitoring is done at Layer 2, provid-
ing flexibility in analyzing and filtering the traffic at many
layers.

Due to a networking issue with the Virtuoso cluster, the
work in the section was done on a slower cluster consisting
of dual 1 GHz Pentium III processors with 1 GB of RAM
and 30 GB hard disks. We used a switched 100 mbit net-
work connecting the machines. As before VMWare GSX
Server 2.5 was used, except here it was run on Red Hat
Linux 7.3. The VMs were identical. A Dell PowerEdge
4400 (dual 1 GHz Xeon, 2 GB, 240 GB RAID) running
Red Hat 7.1 was used as the VNET proxy machine.

5.1 Observing traffic phenomena of interest: re-
active and proactive mechanisms

VMs can run for long periods of time, but their traffic
may change dramatically over time as they run multiple ap-
plications in parallel or serially. In the offline VTTIF, mon-
itoring and aggregation are triggered manually while run-
ning the parallel application. This is not possible in an on-
line design. The online VTTIF needs a mechanism to detect
and capture traffic patterns of interest, reacting automati-
cally to interesting changes in communication behavior of
the VMs. Essentially, it needs to be able to switch between
active states, when it is accumulating data and computing
topologies, and passive states, when it is waiting for traffic
to intensify or otherwise become relevant. Ideally, VTTIF
would have appropriate information available whenever a
scheduling agent requests it.

We have implemented two mechanisms for detecting in-
teresting dynamic changes in communication behavior: re-
active and proactive. In the reactive mechanism, VTTIF
itself alerts the scheduling agent when it detects certain pre-
specified changes in communication. For example, in the

current implementation, VTTIF monitors the rate of traffic
for all flows passing through it and starts aggregating traffic
information whenever the rate crosses a threshold. If this
rate is sustained, then VTTIF can alert the scheduling agent
about this interesting behavior along with conveying its lo-
cal traffic matrix.

In the proactive mechanism, VTTIF allows an external
agent to make traffic-related queries such as:what is traffic
matrix for the last 512 seconds?VTTIF stores sufficient
history to answer various queries of interest, but it does
not alert the scheduling agent, unlike the reactive mecha-
nism. The agent querying traffic information can determine
its own policy, for example polling periodically to detect
any traffic phenomena of interest and thus making appro-
priate scheduling, migration and network routing decisions
to boost parallel application performance.

Figure 5 shows the high level view of the VNET-VTTIF
architecture. The VM and overlay network scheduling
agent may be located outside the VM-side VNET daemon,
and all relevant information can conveyed to it so that it can
make appropriate scheduling decisions.

5.2 Implementation

We extended VNET so that each incoming and outgoing
Ethernet packet passes through a packet analyzer module.
This function parses the packet into protocol headers (Ether-
net, IP, TCP) and can filter it if it is irrelevant. Currently all
non-IP packets are filtered out—additional filtering mecha-
nisms can be installed here. Packets that are accepted are
aggregated into a local traffic matrix. Specifically, for each
flow, a row and column of the matrix are determined in this
way. The matrix is stored in a specialized module Traffic-
Matrix. TrafficMatrix is invoked on every packet arrival.

Reactive mechanism The TrafficMatrix module
does non-uniform discrete event sampling for each
source/destination VM pair to infer the traffic rate between
the pair. The functioning ofrate_threshold mech-
anism is illustrated in Figure 6. It takes two parameters:
byte_threshold and time_bound. Traffic is said
to cross therate_threshold, if for a particular VM
pair, byte_threshold bytes of traffic is transmitted
in a time less thantime_bound. This is detected by
time-stamping the packet arrival event whenever the
number of transmitted bytes for a pair exceeds a integral
multiple of byte_threshold. If two successive time-
stamps are less thantime_bound, this indicates our
rate_threshold requirement has been met.

Once a pair crosses therate_threshold, TrafficMa-
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Figure 5. The VNET-VTTIF topology inference architecture. VTTIF provides both reactive and proac-
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Figure 6. The rate-threshold detection based reactive mech anism in VNET-VTTIF. Whenever two
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trix starts accumulating traffic information for all the pairs.
Before therate_threshold is crossed, TrafficMatrix
doesn’t accumulate any information, i.e. it is a memoryless
system.

After therate_threshold is crossed, TrafficMatrix
alerts the scheduling agent in two situations. First, if the
high traffic rate is sustained up to time

����, then it sends
all its traffic matrix information to the scheduling agent. In

other words, TrafficMatrix informs the scheduling agent if
an interesting communication behavior persists for a long
enough period of time. The second situation is if the
rate falls below the threshold and remains there for more
than

����� seconds, in which case TrafficMatrix alerts the
scheduling agent that the application has gone quiet.

Figure 7 illustrates the operation of the reaction mecha-
nism in flowchart form.
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Figure 7. The steps taken in the VM-side VNET daemon for the re active mechanism.

Proactive mechanism The proactive mechanism allows
an external agent to pose queries to VTTIF and then take
decisions based on its own policy. VTTIF is responsible
solely for providing the answers to useful queries. Traffic-
Matrix maintains a history for all pairs it is aware in order
to answer queries of the following form: What is the traf-
fic matrix over the last� seconds? To do so, it maintains a
circular buffer for all pairs in which each entry corresponds
to the number of bytes transferred in a particular second.
As every packet transmission is reported to TrafficMatrix, it
updates the circular buffer for the particular pair. To answer
the query, the last� entries are summed up, up to the size
of the buffer.

The space requirements for storing the state history
needs some consideration. The space requirements depends
on the maximum value of�. For each pair,

�� bytes are
needed for the circular buffer. If there are� VMs, then
the total space allocation is

���
�
. For� � ��

 (1 hour)

and� � 	� VMs, the worst case total space requirement
is 3.7 Mbytes. A sparse matrix representation could consid-
erably reduce this cost and thus the communication cost in
answering the queries.

5.3 Aggregation

Aggregation of traffic matrices from the various VNET
daemons provides a global view of the communication be-
havior exhibited by the VMs. Currently, we aggregate the
locally collected traffic matrices to a global, centralized
matrix that is stored on the VNET proxy daemon, which
is responsible for managing the virtual overlay network in
VNET. We use a push mechanism—the VNET daemons de-
cide when to send their traffic matrix based on their reactive
mechanism. A pull mechanism could also be provided, in
which the proxy would request traffic matrices when they
are needed based on queries.

The storage analysis of the previous sections assumes
that we will collect a complete copy of the global traffic
matrix on each VNET daemon—in other words, that we
will follow the reduction to the proxy VNET daemon with
a broadcast to the other VNET daemons. This is desirable
so that the daemons can make independent decisions. How-
ever, if we desire only a single global copy of the whole
matrix, or a distributed matrix, the storage and computa-
tion costs will scale with the number of VMs hosted on the
VNET daemon.



Method Throughput
Direct 11485.75 KB/sec
VNET 8231.82 KB/sec
VNET-VTTIF 7895.06 KB/sec

Figure 9. Throughput comparison between
VTTIF and other cases

Scalability is an issue in larger instances of the VM-
based distributed environment. Many possibilities exist for
decreasing the computation, communication and storage
costs of VTTIF. One optimization would be to maintain a
distributed traffic matrix. Another would be to implement
reduction and broadcast using a hierarchical structure, tuned
to the performance of the underlying network as in ECO [8].
Fault tolerance is also a concern that needs to be addressed.

5.4 Performance overhead

Based on our measurements, VTTIF has minimal impact
on bandwidth and latency. We considered communication
between two VMs in our cluster, measuring round-trip la-
tency with ping and bandwidth with ttcp. Figure 8 compares
the latency between the VMs for three cases:

� Direct communication. Here VNET is not involved. The
machines communicate locally using VMWare’s bridged
networking. This measures the maximum performance
achievable between the hosts, without any network
virtualization.� VNET. Here we use VNET to proxy the VMs to a different
network through the PowerEdge 4400. This shows the
overhead of network virtualization. Note that we are using
an initial version of VNET here without any performance
enhancements running on a stock kernel. We continue to
work to make VNET itself faster.� VNET-VTTIF. This case is identical to VNET except that
we are monitoring the traffic using VTTIF.

There is no significant difference between the latency of
VNET and VNET-VTTIF.

Figure 9 shows the effect on throughput for the three
cases enumerated above. These tests were run using ttcp
with a 200K socket buffer, and 8K writes. The overhead of
VNET-VTTIF compared to VNET is a mere 4.1%.

5.5 Online VTTIF in action

Here we show results of running a parallel program in
the online VNET-VTTIF system. We use the NAS Integer

Figure 10. The PVM IS benchmark running on
4 VM hosts as inferred by VNET-VTTIF

Sort (IS) benchmark for illustration because of its interest-
ing communication pattern and traffic matrices. We exe-
cuted NAS IS on 4 VMs interconnected with VNET-VTTIF.
Here, the Virtuoso cluster, as used in the offline work, was
employed. The rate-based reactive mechanism was used to
intelligently trigger aggregation mechanisms on detecting
traffic flow from the benchmark. When the benchmark fin-
ished executing, the traffic matrix was automatically aggre-
gated at the VNET proxy. For comparison, we also executed
the same benchmark with on 4 physical hosts and analyzed
the traffic using the offline method.

Figures 10 and 11 show the topology and traffic matrix as
inferred by the online system. Figure 12 shows the matrix
inferred from the physical hosts using the offline method.
The topology for the offline method is identical to that for
the offline method and is not shown. There are some differ-
ences between the online and offline traffic matrices. This
can be attributed to two factors. First, the byte count in
VNET-VTTIF includes the size of the entire ethernet packet
whereas in the offline method, only the TCP payload size is
taken into account. Second, tcpdump, as used in the offline
method, is configured to allow packet drops by the kernel
packet filter. In the online method, VNET’s packet filter
is configured not to allow this. Hence, the offline method
is seeing a random sampling of packets while the online
method is seeing all of the packets.

The main point here is that the online method (VNET-



Method Average STDEV Min Max
Direct 0.529 ms 0.026 ms 0.483 ms 0.666 ms
VNET 1.563 ms 0.222 ms 1.277 ms 2.177 ms
VNET-VTTIF 1.492 ms 0.198 ms 1.269 ms 2.218 ms

Figure 8. Latency comparison between VTTIF and other cases

h1 h2 h3 h4

h1 7.7 7.6 7.8

h2 13.1 6.6 6.5

h3 13.5 6.4 6.6

h4 13.2 6.5 6.5

*numbers indicate MB o f data transferred.

h1 h2 h3 h4

h1 7.7 7.6 7.8

h2 13.1 6.6 6.5

h3 13.5 6.4 6.6

h4 13.2 6.5 6.5

*numbers indicate MB o f data transferred.

h1h1 h2h2 h3h3 h4h4

h1h1 7.77.7 7.67.6 7.87.8

h2h2 13.113.1 6.66.6 6.56.5

h3h3 13.513.5 6.46.4 6.66.6

h4h4 13.213.2 6.56.5 6.56.5

*numbers indicate MB o f data transferred.*numbers indicate MB o f data transferred.

Figure 11. The PVM IS benchmark traffic ma-
trix as inferred by VNET-VTTIF

h1 h2 h3 h4

h1 5.1 5.0 5.0

h2 4.5 4.3 3.8

h3 4.7 3.9 3.8

h4 4.5 3.9 3.9

*numbers indicate MB o f data transferred.

h1 h2 h3 h4

h1 5.1 5.0 5.0

h2 4.5 4.3 3.8

h3 4.7 3.9 3.8

h4 4.5 3.9 3.9

*numbers indicate MB o f data transferred.

h1h1 h2h2 h3h3 h4h4

h1h1 5.15.1 5.05.0 5.05.0

h2h2 4.54.5 4.34.3 3.83.8

h3h3 4.74.7 3.93.9 3.83.8

h4h4 4.54.5 3.93.9 3.93.9

*numbers indicate MB o f data transferred.*numbers indicate MB o f data transferred.

Figure 12. The PVM IS benchmark traffic ma-
trix running on physical hosts and inferred
using the offline method.

VTTIF) can effectively infer the application topology and
traffic matrix for a BSP parallel program running in a col-
lection of VMs.

6 Conclusions and future work

We have demonstrated that it is feasible to infer the
topology and traffic matrix of a bulk synchronous parallel
application running in a virtual machine-based distributed
computing environment by observing the network traffic
each VM sends and receives. We have also designed and
implemented an online framework (VTTIF) for automated
inference in such an environment. This monitoring can be
piggy-backed, with very low overhead, on existing, neces-
sary infrastructure that establishes and optimizes network
connectivity for the VMs. We are now focusing on expand-
ing this work in the following ways:

� We plan to generalize our results to other forms of
applications and to determine the limits of network behavior
that can be inferred.� We are implementing a general query interface for querying
traffic matrix information from our system.� We plan to evaluating our system in more complex network
environments, possibly revealing more filtering and
topology inference based issues.� We plan to improve the scalability and resilience of the
system by adopting a distributed information aggregation
approach.� We intend to exploit the topological information provided
by VNET-VTTIF to do optical call path setup on behalf of
applications in networks that support it.� We are working on leveraging VNET to do passive network
measurement as a side effect of inter-VM data transfers.� Finally, we are working on adaptation algorithms that will
make use of VNET-VTTIF and network information to
guide VM placement and migration, and VNET overlay
topology construction and routing in order to maximize the
performance of unmodified applications.
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tree-reduction 3x3 2D Mesh 3x2x3 3D toroid

all-to-all 3D hypercube

Figure 13. The communication topologies inferred by the fra mework from the patterns benchmark. It shows the inferred tr ee-
reduction, 3x3 2D Mesh, 3x2x3 3D toroid, all-to-all for 6 hos ts and 3D hypercube topologies.


