Cluster Service Notes
One line summary

A reusable layered architecture for cluster-based scalable network services.

Strengths

Clusters offer many advantages, but due to complex to deploy due to software challenges. SNS offers a readymade architecture suited to clusters, appropriate for web services

Seperation of content from implementation. Most if the *tilities are already there in the SNS layer, so web service deployer need not worry about these.

Quick and easy to write services as demonstrated by extension applications for their architecture.

They have a real life example TranSend to demonstrate the use of their architecture with real life performance measurements. It is a strong point for their paper.

Weaknesses
1. ACID vs BASE semantics:

Unappropriate for most web services (commerce related) , so a solution for only a class of web services

(Their soft-state fault tolerance, simplicity of architecture depends on this)

What kind of web services can you think of ?

What would be usable using their architecture ?

Hotmail

Google

CNN NEWs

Auction (ebay.com)

Amazon.com (booksellers site)

Soccer World Cup

Ecommerce sites (buy.com)

Secure web services

Web casting and streaming media services
GOOGLE

Google's hardware is a massive "farm" of more than 10,000 servers, capable of not only indexing more than 3 billion web documents but handling thousands of queries per second with sub-second response times. It's an awesome engineering feat in its own right.

http://searchenginewatch.com/searchday/02/sd0812-googletech.html

Google's application makes expensive proprietary hardware unsuitable, says Reese. "We are not like a transaction-based e-Commerce site, where it makes sense to spend a whole lot of money on some really big server iron and storage area network. We architected our solution to be scalable by using smaller servers that are multiply redundant and very fast through load balancing. Also it makes us very fault tolerant—we can lose a whole cluster or clusters, and we'll still be fine."

http://www.intel.com/eBusiness/casestudies/snapshots/google.htm
Tailoring Solutions
With 10,000 servers expected to be installed by the end of the year, co-location costs are an overriding factor.
2. Centralized load balancing:

Is it a good choice? (18000 requests per second)

Problems: (Must be fault tolerant and not a performance bottleneck)

Discussion: When would distributed load balancing be useful ? What are its issues ?

Can scale.

Could not find any real example in todays world

3. Scalability (limited by the shared components) : User profile database, SAN and the manager

SAN saturation is a potential concern for communication-intensive workloads.

Optimizing component placement given a specific network topology, technology, and workload (Important topic for future research
3.5 Cache miss penalities a huge factor:: No performance studies on this. Why ?

Increasing the user size increase the cache hit rate until a certain number… What is this number is crucial ?

Shaky figures on front end load in case of modest requests of 15 requests per second.

Discussion: How can we improve cache performance of the cluster ?

One Solution: Content based request distribution
3.6 Don’t talk about performance at all. Graph for request response time, according to load etc…. (their cache section indicates response time of20-22 seconds !

4. Front ends overloads: 4.4 states that for 15 req/sec, 150-350 outstanding requests (700 open tcp connections and 300 active thread contexts. Spends 70% of time in kernel under this overhead.

Later they state that bandwidth entering into the front end saturates and hence the cause for front-end replication ?
Paper claims that according to Harvest cache model, an average miss takes up to 100 seconds to fix and can dominate end-to-end latency throguhout the system. Why doesn’t any of the performance graphs reflect this? Can the cache never miss?

Discussion:
1. What is the difference in Availability and Fault Tolerance (Migration, Upgradation,…)

2. Shared Memory Multiprocessors (Symetric Multiprocessors) and Clusters. Pros and Cons

(no migration , upgradation possible in SMPs)

Why is cluster better suited to internet services ?

Any advantage of SMPs ?

Design decisions:

Centralized Load balancing (is it good or bad ?

Distributed load balancing can scale…

Fault tolerance:

Peer monitoring vs Pair fault tolerance ?

[image: image1.png]

There is only one manager, does this result in a single point of failure?

[image: image2.png]

Would it be beneficial if the manager service was a distributed entity? What considerations would you have to make if you wanted to distribute the manager?

Our thoughts:

FOX: The manager is responsible for balancing load and distribution of jobs across the workers. It is also responsible for spawning new workers as load increases.

FOX: Front end detects and restarts a crashed manager.

- Distributed managers cause synchronizations issues

- Better to have multiple manager control separate sections

- One manager assumes responsibility to distribute work load to others

- If only one manager, its easier to change the load balancing policy.

[image: image3.png]

Scalability: The paper claims that clusters allows for incremental scalability; however, aren’t there limitations? For example, the network capacity does not grow with the additions of new nodes resulting in increased latency and packet loss.

[image: image4.png]

[image: image5.png]

So, is this architecture truly scalable?

Our thoughts:

Scalability of this system is limited by a couple of factors.

- size of the network buses

- reach of the centralized components of the system

- however, Myrinet claims to be able to support up to thousands of nodes.

[image: image6.png]

Myrinet is the cost effective and high performance packet switching technology used in clustering.

[image: image7.png]

Features:

Flow control, error control, link monitoring

High performance, by having high-data-rate interconnects between clustered machines.

High availability, by being able to detect and isolate faults as well as provide alternative communication paths.

Ability to scale to thousands of hosts.

The monitor is responsible for identifying the location of failure nodes within the network. The proposed architecture only provides for a single monitor. However, if the monitor fails we loose visibility. How else can we take advantage of the distributed nature of the system to provide a more fault tolerant monitoring scheme?

Our thoughts:

- distributed monitoring… each node has a partner. Each node keeps information about its partner, so if a node dies the partner can revive it.

· hence don’t need a centralized monitor system anymore. But is this better than having one centralized monitor?

Clusters

Advantages

Very scalable

 - power greater in numbers

 - grow incrementally

 - no need for capacity planning

High availability

 - natural redundancy

 - non-destructive upgrading

Commodity Building Blocks

 - better cost/performance

No single point of failure*

Job Discrimination and Partitioning

Problems

Complex Administration

Individuals lack power/speed

 - Inability to complete job 100%

Partial failures*

Shared state too costly

 - too complex to manage

 - better to avoid in clusters

