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Abstract 
 

Recent advances in computational power and algorithmic sophistication have made ray 
tracing an increasingly viable and attractive algorithm for interactive rendering. 
Assuming that these trends will continue, we are investigating novel rendering strategies 
that exploit the unique capabilities of interactive ray tracing. Specifically, we propose a 
system that adapts rendering effort spatially, sampling some image regions more densely 
than others, and temporally, sampling some regions more often than others. Our system 
revisits and extends Bishop et al.'s frameless rendering with new approaches to sampling 
and reconstruction. We make sampling both spatially and temporally adaptive, using 
closed loop feedback from the current state of the image to continuously guide sampling 
toward regions of the image with significant change over space or time. We then send 
these frameless samples in a continuous stream to a temporally deep buffer, which stores 
all the samples created over a short time interval. The image to be displayed is 
reconstructed from this deep buffer. Reconstruction is also temporally adaptive, 
responding both to sampling density and color gradient. Where the displayed scene is 
static, spatial color change dominates and older samples are given significant weight in 
reconstruction, resulting in sharper images. Where the scene is dynamic, more recent 
samples are emphasized, resulting in a possibly blurry but up-to-date image. We describe 
a CPU-based implementation that runs at near-interactive rates on current hardware, and 
analyze simulations of the real-time performance we expect from future hardware-
accelerated implementations. Our analysis accounts for temporal as well as spatial error 
by comparing displayed imagery across time to a hypothetical ideal renderer capable of 
instantaneously generating optimal frames. From these results we argue that the 
temporally adaptive approach is not only more accurate than frameless rendering, but 
also more accurate than traditional framed rendering at a given sampling rate. 
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Abstract

Recent advances in computational power and algorithmic sophistication have made ray tracing an increasingly
viable and attractive algorithm for interactive rendering. Assuming that these trends will continue, we are inves-
tigating novel rendering strategies that exploit the unique capabilities of interactive ray tracing. Specifically, we
propose a system that adapts rendering effort spatially, sampling some image regions more densely than others,
and temporally, sampling some regions more often than others. Our system revisits and extends Bishop et al.’s
frameless rendering with new approaches to sampling and reconstruction. We make sampling both spatially and
temporally adaptive, using closed loop feedback from the current state of the image to continuously guide sampling
toward regions of the image with significant change over space or time. We then send these frameless samples in
a continuous stream to a temporally deep buffer, which stores all the samples created over a short time interval.
The image to be displayed is reconstructed from this deep buffer. Reconstruction is also temporally adaptive, re-
sponding both to sampling density and color gradient. Where the displayed scene is static, spatial color change
dominates and older samples are given significant weight in reconstruction, resulting in sharper images. Where
the scene is dynamic, more recent samples are emphasized, resulting in a possibly blurry but up-to-date image. We
describe a CPU-based implementation that runs at near-interactive rates on current hardware, and analyze sim-
ulations of the real-time performance we expect from future hardware-accelerated implementations. Our analysis
accounts for temporal as well as spatial error by comparing displayed imagery across time to a hypothetical ideal
renderer capable of instantaneously generating optimal frames. From these results we argue that the temporally
adaptive approach is not only more accurate than frameless rendering, but also more accurate than traditional
framed rendering at a given sampling rate.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation

1. Improving interactive rendering

In recent years a number of traditionally offline rendering al-
gorithms have become feasible in the interactive realm. The
sudden appearance of programmable high-precision graph-
ics processors (GPUs) has drastically expanded the range
of algorithms that can be employed in real-time graphics;
meanwhile, the steady progress of Moore’s Law has made
techniques such as ray tracing, long considered a slow algo-
rithm suited only for offline realistic rendering, feasible in
real-time rendering settings [23]:. These trends are related;
indeed, some of the most promising research on interactive
global illumination performs algorithms such as ray tracing
and photon mapping directly on the GPU [18, 19]. Future
hardware should provide even better support for these algo-

rithms, quickening the day when ray-based algorithms are an
accepted and powerful component of every production ren-
dering system. What makes interactive ray tracing attractive?
Researchers in the area have commented on the ray tracing’s
ability to model physically correct global illumination phe-
nomena, its easy applicability to different shaders and primi-
tive types, and its output-sensitive running time, only weakly
dependent on scene complexity [25]. We focus on another
unique capability available in a ray-based renderer but not
a depth-buffered rasterizer. We believe that the ability of in-
teractive ray tracing to selectively sample the image plane
enables a new approach to rendering that is more interactive,
more accurate, and more portable. To achieve these goals,
we argue that the advent of real-time ray tracing demands
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Figure 1: Adaptive frameless sampling of a moving car in a static scene. Left, the newest samples in each pixel region. Middle,
the tiles in the spatial hierarchy. Note small tiles over car and high contrast edges. Right, the per-tile derivative term, which
very effectively focuses on the car.

a rethinking of the fundamental sampling strategies used in
computer graphics.

The topic of sampling in ray tracing, and related ap-
proaches such as path tracing, may seem nearly exhausted,
but almost all previous work has focused on spatial sam-
pling, or where to sample in the image plane. In an interac-
tive setting, the question of temporal sampling, or when to
sample with respect to user input, becomes equally impor-
tant. Temporal sampling in traditional graphics is bound to
the frame: an image is begun in the back buffer incorporat-
ing the latest user input, but by the time the frame is swapped
to the front buffer for display, the image reflects stale input.
To mitigate this, interactive rendering systems increase the
frame rate by reducing the complexity of the scene, trad-
ing off fidelity for performance. We consider this tradeoff
in terms of spatial error and temporal error. Spatial error is
caused by rendering coarse approximations for speed, and
includes such factors as resolution of the rendered image
and geometric complexity of the rendered models. Tempo-
ral error is caused by the delay imposed by rendering, and
includes such factors as how often the image is generated
(frame rate) and how long the image takes to render and dis-
play (latency).

In this paper we investigate novel sampling schemes for
managing the fidelity-performance tradeoff. Our approach
has two important implications. First, we advocate adaptive
temporal sampling, analogous to the adaptive spatial sam-
pling that takes place in progressive ray tracing [16, 2, 14].
Just as spatially adaptive renderers display detail where it
is most important, adaptive temporal sampling displays de-
tail when it is most important. Second, we advocate frame-
less rendering [3], in which samples are not collected into
coherent frames for double-buffered display, but instead are
incorporated immediately into the image. Frameless render-
ing, which requires a per-sample rendering algorithm such as
real-time ray tracing, decouples spatial and temporal updates

and thus enables very flexible adaptive spatial and temporal
sampling.

Our prototype adaptive frameless render is broken into
three primary sub-systems. An adaptive sampler directs ren-
dering to image regions undergoing significant change (in
space and/or time). The sampler produces a stream of sam-
ples scattered across space-time; recent samples are col-
lected and stored in a temporally deep buffer. An adap-
tive reconstructor repeatedly reconstructs the samples in the
deep buffer into an image for display, adapting the recon-
struction filter to local sampling density and color gradients.
Where the displayed scene is static, spatial color change
dominates and older samples are given significant weight in
reconstruction, resulting in sharper images. Where the scene
is dynamic, only more recent samples are emphasized, re-
sulting in a possibly blurry but up-to-date image.

We describe the design of an interactive system built on
these principles, and show in simulation that this system
achieves superior rendering accuracy and responsiveness.
We evaluate our system with a “gold standard” analysis that
compares displayed imagery to the ideal image that would be
displayed by a hypothetical ideal renderer, evaluating the im-
age difference at using mean RMS error and and show that
it outperforms not only the pseudorandom frameless sam-
pling of Bishop et al. [3], but also traditional framed sam-
pling strategies with the same overall sampling rate. Since
our approach is self-monitoring, we also argue that it can
achieve a new level of portability and adaptivity to changes
in platform and load.

2. Related work

2.1. Interactive ray tracing

Recent years have seen interactive ray tracing go from an
oxymoron to a reality. Interactive ray tracers have been
demonstrated on supercomputers [17], PC clusters [26], on
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the SIMD instruction sets of modern CPUs [24], and on
graphics hardware [18] [4]. Wald et al. provide a good sum-
mary of the state of the art [25]. To build an interactive ray
tracer, while hardly simple, is becoming a matter of engi-
neering. Looking forward, hardware and software systems
are being developed [21] [10] that help harness the render-
ing power of PC clusters, and consumer graphics hardware is
growing more powerful and more flexible at an astonishing
rate. Real-time ray tracing is currently feasible; we believe it
will soon become commonplace even on commodity desk-
top hardware.

2.2. Interruptible rendering

Recent work on temporally adaptive sampling includes a
new approach to fidelity control called interruptible render-
ing [30] that adaptively controls frame rate to minimize the
sum of spatial and temporal error. They propose a progres-
sive rendering framework that renders a coarse image into
the back buffer and continuously refines it, while tracking
the error introduced by subsequent input (such as changes in
viewpoint). When this temporal error exceeds the spatial er-
ror caused by coarse rendering, there is no longer any reason
to refine further, since any improvement to the appearance
of objects in the image will be overwhelmed by their incor-
rect position and/or size. In other words, further refinement
becomes pointless when the error due to the image being
late is greater than the error due to the image being coarse.
The front and back buffers are then swapped and rendering
begins again into the back buffer for the most recent view-
point. The resulting system produces coarse, high frame-rate
display when input is changing rapidly, and finely detailed,
low frame rate display when input is static.

2.3. Frameless rendering

Interruptible rendering retains a basic underlying assump-
tion of interactive computer graphics: all pixels in a given
image represent a single moment in time (or possibly a fixed
duration surrounding that moment, e.g. the “shutter speed”
used for motion blur). When the system swaps buffers, all
pixels in the image are simultaneously replaced with pix-
els representing a different moment in time. In interactive
settings, this coherent temporal sampling strategy has sev-
eral unfortunate perceptual consequences: temporal alias-
ing, delay, and temporal discontinuity. Temporal aliasing re-
sults when the sampling rate is inadequate to capture high
speed motion. Motion blur techniques can compensate for
this aliasing, but are generally so expensive that in interac-
tive settings they actually worsen the problem. Delay is a
byproduct of double buffering, which avoids tearing (simul-
taneous display of two partial frames) at the cost of ensuring
that each displayed scene is at least two frames old before it
is swapped out. Even at a 60 Hz frame rate, this introduces
33 ms of delay – a level that human factors researchers have

consistently shown can harm task performance [29] [20]. Fi-
nally, when frame rates fall below 60 Hz, the perceptual sen-
sation of image continuity is broken, resulting in display of
choppy or “jerky” looking motion.

Interruptible rendering performs adaptive temporal sam-
pling to achieve higher accuracy, but that sampling is still
coherent: all pixels (or, more generally, spatial samples)
still represent the same moment in time. We have since fo-
cused our research on the unique opportunities for tempo-
rally adaptive rendering presented by Bishop et al.’s frame-
less rendering [3]. This novel rendering strategy replaces the
coherent, simultaneous, double-buffered update of all pixels
with stochastically distributed spatial samples, each repre-
senting the most current input when the sample was taken.
Frameless rendering thus decouples spatial and temporal
sampling, so that the pixels in a frameless image represent
many moments in time.

We build on and improve the original frameless rendering
approach. Our rendering system samples rapidly changing
regions of an image coarsely but frequently to reduce tempo-
ral error, while refining static portions of the image to reduce
spatial error. We improve the displayed image by perform-
ing a reconstruction step, filtering samples in space and time
so that older samples are weighted less than recent samples;
reconstruction adapts to the local sampling density and color
gradient to optimize the filter width for different parts of the
scene.

In the following sections we describe our temporally
adaptive sampling and reconstruction strategies, and discuss
their implementation in a simulated prototype system. We
next describe the “gold standard” evaluation technique and
analyze our prototype against traditional rendering as well as
an “oracle” system that knows which samples are valid and
which contain stale information. We close by discussing fu-
ture directions and argue that frameless, temporally adaptive
systems will ultimately provide more interactive, accurate,
portable rendering.

3. Temporally adaptive, closed-loop sampling

While traditional frameless sampling is unbiased, we make
our frameless renderer adaptive to improve rendering qual-
ity. Sampling is both spatially adaptive, focusing on regions
where color changes across space; and temporally adaptive,
focusing on regions where color changes over time (Fig-
ure 1). As in previous spatially adaptive rendering methods
[16] [2] [14] [9], adaptive bias is added to sampling with
the use of a spatial hierarchy of tiles superimposed over
the view. However, while previous methods operated in the
static context of a single frame, we operate in a dynamic
frameless context. This is has several implications. First,
rather than operating on a frame buffer, we send samples to a
temporally deep buffer that collects samples scattered across
space-time. Our tiles therefore partition a space-time vol-
ume using planes parallel to the temporal axis. As in framed
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schemes, color variation within each tile guides rendering
bias, but variation represents change over not just space but
also time. Moreover, variation is not monotonically decreas-
ing as the renderer increases the number of tiles, but con-
stantly changing in response to user interaction and anima-
tion. Therefore the hierarchy is also constantly changing,
with tiles continuously merged and split in response to dy-
namic changes in the contents of the deep buffer.

We implement our dynamic spatial hierarchy using a K-D
tree. Given a target number of tiles, the tree is managed to en-
sure that the amount of color variation per unit space-time in
each tile is roughly equal: the tile with the most color varia-
tion is split and the two tiles with the least summed variation
are merged, until all tiles have roughly equal variation. As a
result, small tiles are located over buffer regions with signif-
icant change or fine spatial detail, while large tiles emerge
over static or coarsely detailed regions (Figure 1).

Sampling then becomes a biased, probabilistic process.
Since time is not fixed as in framed renderers, we cannot
simply iteratively sample the tile with the most variation per
unit space-time – in doing so, we would overlook newly
emerging motion and detail. At the same time, we cannot
leave rendering unbiased and unimproved. Our solution is
to sample each tile with equal probability, and select the
sampled location within the tile using a uniform distribu-
tion. Because tiles vary in size, sampling is biased towards
those regions of the image which exhibit high spatial and/or
temporal variance. Because all tiles are sampled, we remain
sensitive to newly emerging motion and detail.

This sampler is in fact a closed loop control system [7],
capable of adapting to user input with great flexibility. In
control theory, the plant is the process being directed by
the compensator, which must adapt to external disturbance.
Output from the plant becomes input for the compensator,
closing the feedback loop. In a classic adaptive framed sam-
pler, the compensator chooses the rendered location, the ray
tracer is the plant that must be controlled, and disturbance is

Figure 2: Adaptive frameless sampling as closed loop con-
trol. Output sample from the ray tracer (plant) is sent to an
error tracker, which adjusts the spatial tiling or error map.
As long as the error map is not zero everywhere, the adap-
tive sampler (compensator) selects one tile to render, and
one location in the tile. Constantly changing user input (dis-
turbance) makes it very difficult to limit error.

Figure 3: A snapshot of color gradients in the car scene.
Green and red are spatial gradients, blue is the temporal
gradient. Here the spatial gradients dominate, and the num-
ber of tiles is fairly high.

provided by the scene as viewed at the time being rendered.
Our frameless sampler (Figure 2) faces a more difficult chal-
lenge: view and scene state may change after each sample.
Unfortunately, a ray tracer is extremely nonlinear and highly
multidimensional, and therefore very difficult to analyze us-
ing control theoretic techniques.

Nevertheless, more pragmatic control engineering tech-
niques may be applied. One such technique is the use of PID
controllers, in which control may respond in proportion to
error itself (P), to its integral (I), and to its derivative (D).
In our sampler, error is color variation – if it were small
enough, we could assume that rendering was complete. In
biasing sampling toward variation, we are already respond-
ing in proportion to error. However, we have also found it
useful to respond to error’s derivative. By biasing sampling
toward regions in which variation is changing, we compen-
sate for delay in our control system and direct sampling to-
ward changing regions of the deep buffer, such as the edges
of the car in Figure 1. We accomplish this by tracking vari-
ation change d, and adding it to variation itself p to form
a new summed control error: e = kp + (1 − k)d, where k
in the range [0,1] is the weight applied to the proportional
term. The right image in Figure 1 visualizes d for each tile
by mapping high d values to high gray levels.

Our prototype adaptive sampler will be less effective
when the rendered scene is more dynamic. In control the-
ory, one way of compensating for varying rates of change in
the target signal is to adjust gain, thereby damping or am-
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plifying the impact of control on the plant. A similar sort of
compensation is possible in our sampling control system by
restricting or increasing the ability of the sampler to adapt
to deep buffer content. We implement this approach by ad-
justing the number of tiles in the K-D tree according to the
ratio of color change over time to color change across space.
We achieve this by ensuring that dC/dsS = dC/dtT , where
dC/ds and dC/dt are color change over space and time (Fig-
ure 3), S is the average width of the tiles, and T the average
age of the samples in each tile. By solving for S we can de-
rive the current number of tiles that would be appropriate.

4. Space-time reconstruction for interactive rendering

Frameless sampling strategies demand a rethinking of the
traditional computer graphics concept of an “image”, since
at any given moment the samples in an image plane repre-
sent many different moments in time. The original frame-
less work [3] simply displayed the most recent sample at
every pixel, a strategy we refer to as traditional reconstruc-
tion of the frameless sample stream. The result is a noisy,
pixelated image which appears to sparkle or scintillate as
the underlying scene changes (see Figure 4). Instead we
store a temporally deep buffer of recent frameless samples,
and continuously reconstruct images for display by convolv-
ing the samples with a space-time filter. This is similar to
the classic computer graphics problem of reconstruction of
an image from non-uniform samples [14], but with a tem-
poral element: since older samples may represent “stale”
data, they are treated with less confidence and contribute
less to nearby pixels than more recent samples. The resulting
images greatly improve over traditional reconstruction (see
again Figure 4).

The key question is what shape and size filter to use. A
temporally narrow, spatially broad filter (i.e. a filter which
falls off rapidly in time but gradually in space) will give
very little weight to relatively old samples; such a filter em-
phasizes the newest samples and leads to a blurry but very
current image. Such a filter provides low-latency response
to changes and should be used when the underlying image is
changing rapidly (Figure 4, right member of leftmost pair).
A temporally broad, spatially narrow filter will give nearly
as much weight to relatively old samples as to recent sam-
ples; such a filter accumulates the results of many samples
and leads to a finely detailed, antialiased image when the
underlying scene is changing slowly (Figure 4, right mem-
ber of rightmost pair). However, often different regions of
an image change at different rates; for example, in a sta-
tionary view in which an object is moving across a static
background. A scene such as this demands spatially adap-
tive reconstruction, in which the filter width varies across
the image. What should guide this process?

We use local sampling density and space-time gradient
information to guide filter size. The sampler provides an es-
timate of sampling density for an image region, based on

the overall sampling rate and on the tiling used to guide
sampling. We size our filter – which can be interpreted as
a space-time volume – as if we were reconstructing a regular
sampling with this local sampling density, and while pre-
serving the total volume of the filter perturb the filter widths
according to local gradient information. We reason that a
large spatial gradient implies an edge, which should be re-
solved with a narrow filter to preserve the underlying high
frequencies. Similarly, a large temporal gradient implies a
“temporal edge” such as an occlusion event, which should
be resolved with a narrow filter to avoid including stale sam-
ples from before the event.

What function to use for the filter kernel remains an open
question. Signal theory tells us that for a regularly sampled
bandlimited function, ideal reconstruction should use a sinc
function, but our deep buffer is far from regularly sampled
and the underlying signal (an image of a three-dimensional
scene) contains high-frequency discontinuities such as oc-
clusion boundaries. We currently use an inverse exponential
filter so that the relative contribution of two samples does not
change as both grow older; however, the bandpass properties
of this filter are less than ideal. We would like to investigate
multistage approaches inspired by the classic Mitchell filter
[14].

Our implementation of a deep buffer stores the last n sam-
ples within each pixel; typical values of n range from 1 to 8.
As samples arrive they are bucketed into pixels and added
to the deep buffer, displacing the oldest sample in that pixel;
average gradient information is also updated incrementally
as samples arrive. At display time a reconstruction process
adjusts the filter size and widths at each pixel as described
(using gradient and local sample density) and gathers sam-
ples “outwards” in space and time until the maximum possi-
ble incremental contribution of additional samples would be
less than some threshold ε (ε = 1% in our case). The final
color at that pixel is computed as the normalized weighted
average of sample colors. This process is expensive – our
simulation requires reconstruction times of a few hundred
ms for small (256× 256) image sizes – so we are investi-
gating several techniques to accelerate reconstruction. One
currentlykey technique will be to implement the reconstruc-
tion process directly on the graphics hardware, and we have
a prototype implementation of a GPU-based reconstructor in
which the deep buffer is represented as a texture with sam-
ples interleaved in columns; samples are added to the buffer
by rendering points with a special pixel shader enabled. At
display time the system reconstructs an image by drawing a
single screen-sized quad with a (quite elaborate) pixel shader
that reads and filters samples from the deep buffer texture.
Though not yet fully adaptive, our initial GPU implementa-
tion provides a promising speedup (more than an order of
magnitude) over the CPU version. We plan to revisit this
implementation, which is far from optimized, and hope for
another order of magnitude to allow the system to achieve
interactive frame rates on realistic image resolutions.
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Figure 4: Adaptive reconstructions. The left pair shows a dynamic scene, with the traditional frameless reconstruction on the
left and the adaptive reconstruction on the right. The right pair shows a static scene, with the traditional reconstruction once
more on the left and the adaptive reconstruction on the right.

5. Gold standard evaluation

Using the gold standard validation described in [30], we
find that our adaptive frameless renderer consistently out-
performs other renders that have the same sampling rates.

Gold standard validation uses as its standard an ideal ren-
derer I capable of rendering imagery in zero time. To per-
form comparisons to this standard, we create n ideal images
I j ( j in [1,n]) at 60 Hz for a certain animation A using a sim-
ulated ideal renderer. We then create n more images R j for
animation A using an actual interactive renderer R. We next
compare each image pair (I j ,R j) using an image comparison
metric comp, and average the resulting image differences:
1/nΣn

1comp(I j ,R j). Note that if this comparison metric is
root mean squared (RMS) error, this result is very closely re-
lated to the peak signal-to-noise ratio (PSNR), a commonly
used measure of video quality.

We report the results of our gold standard evaluation us-
ing PSNR in Figure 5 below. In the figure, we compare sev-
eral rendering methods. Two framed renderings either max-
imize Hz at the cost of spatial resolution (lo-res), or spatial
resolution at the cost of Hz (hi-res). The traditional frame-
less rendering uses a pseudorandom non-adaptive sampler
and simply displays the newest sample at a given pixel. The
adaptive frameless renderings come in two groups: one that
uses a fixed number of tiles (256), and one that uses a vari-
able number of tiles, as determined by balance between spa-
tial and temporal change in the sample stream. In both the
fixed and variable groups, there are three biases in response
to sampling: biased toward color change itself (k=.8) (P), to-
ward the derivative of color change (k=.2) (D), or balanced.
Rendering methods were tested in 3 different animations: the
publicly available BART testbed [12]; a closeup of a toy car
in the same testbed, and a dynamic interactive recording. All
of these animations were rendered at sampling rates of 100K
pixels per second, two at 1M pixels per second.

Adaptive frameless rendering is the clear winner, with
high PSNRs throughout. In the largely static Toycar stream,
it made almost no difference whether adaptive frameless ren-

dering used a fixed or variable number of tiles. But in the
other more dynamic streams, the variable number of tiles
consistently had a small edge. Responding to the deriva-
tive of color change was slightly more effective when the
scene was static, but the pattern here was less clear. In all
cases however, adaptive frameless rendering was better than
framed or traditional frameless rendering.

A quick glance at Figure 6 confirms this impression.
These graphs show frame by frame comparisons using RMS
between many of these rendering techniques and the ideal
rendering. Adaptive frameless rendering is the consistent
winner with traditional frameless and framed renderings al-
most always with more error. The lone exception is in the
BART 100K stream, when the animation begins with a very
dynamic content and uses sampling rate 20x too slow to sup-
port 60Hz at full resolution.

In addition to evaluating the ability of our entire adap-
tive renderer to approximate a hypothetical ideal renderer,
we can evaluate the ability of our reconstruction sub-system
to approximate a hypothetical ideal reconstructor. This sam-
ple oracle evaluation generates crucial and detailed feedback
for the development of both the reconstruction sub-system
and by extension, the entire rendering system. Sample ora-
cle evaluation is identical to gold standard evaluation in all
respects save one: rather than comparing the reconstructed
interactive image R j to a corresponding ideal image I j , it

Render Method Toycar 100K Toycar 1M BART 100K BART 1M Dynamic 100K
Framed: lo-res 11.26 15.82 10.16 12.69 10.35
Framed: hi-res 9.01 15.38 4.58 7.51 7.54
Traditional frameless 16.71 18.07 6.31 9.97 10.54
Adaptive: fixed (k=0.2) 18.11 19 10.35 15.08 13.95
Adaptive: fixed (k=0.5) 18.01 18.99 10.4 15.39 14.17
Adaptive: fixed (k=0.8) 17.86 18.93 10.21 15.58 14.13
Adaptive: var (k=0.2) 18.15 18.97 10.86 15.07 14.04
Adaptive: var (k=0.5) 18.01 18.96 11 15.42 14.31
Adaptive: var (k=0.8) 17.85 18.92 10.95 15.7 14.36

Animation / Sampling Rate

Figure 5: A comparison of several rendering techniques to
an ideal rendering using peak signal to noise ratio (PSNR),
across three animations and two sampling rates.
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Figure 6: A more detailed peak at the frame-by-frame root mean squared (RMS) error for some of the rendering techniques and
streams from the above table.

will compare R j to a corresponding oracle image O j that
was ideally reconstructed from the sample stream used to
produce R j . O j will be approximated by first eliminating any
samples in the deep buffer that are more than a distance of
εo (e.g. 10) in the perceptual color space Lab from the near-
est pixel in I j , leaving only those samples that haven’t be-
come “stale” due to occlusions, lighting changes, etc. These
samples then become input for a sparse sample reconstruc-
tor, whose output is the O j approximation. A sample of this
evaluation is shown in 7.

6. Ongoing and Future Work

6.1. Sampling

As does any closed loop controller, our sampler will re-
quire extensive tuning. Several parameters are currently
set based on empirical estimates from inadequate testing.
Among these are the parameter k above, which controls the

relative importance of the proportional and derivative terms
in guiding sampling bias. Results indicate that the deriva-
tive term is useful when the sampling rate is low, and the
scene fairly static. It may also prove useful to introduce an
asymmetry in gain control that favors color change across
space, or over time. This might take the form of a factor
w in [0,1]: dC/dsS = wdC/dtT . Adjustments to the spatial
hierarchy do not occur after every sample, but rather after
every c samples (these c samples form a chunk). Currently c
has rather arbitrarily been set at 100. Other parameters that
must be tuned include the coefficients of the function used to
assign weights to samples used in calculating variance, the
minimum variance possible in each tile (variance never falls
to zero, so tiles are always monitored for change), and the
temporal depth of the deep buffer. We plan to study the opti-
mal values for and interactions between these parameters by
systematically varying them, recording the images that each
parameter configuration produces both with and without re-

c© Northwestern University NWU-CS-04-47. 7



A. Dayal & C. Woolley & D. Luebke & B. Watson / Temporally Adaptive Frameless Rendering

(a) (b) (c)

(d) (e) (f)

Figure 7: Sample oracle evaluation of reconstruction. (a) The “oracle image” is generated with zero delay and very high
supersampling to simulate the image that would be created by a hypothetical perfect sampler in response to instantaneous
input. (b) shows an actual sample stream, drawn here with traditional reconstruction. (c) shows in green those samples that are
invalid if compared to the oracle image (we compared to a threshold dE∗ = 20 in the CIELab color space, which is intended
to provide a perceptually linear color distance metric). Most of these invalid pixels are due to temporal edges from the moving
car. An ideal reconstructor would not include these samples at all. In practice, of course, our reconstructor does does not have
access to the oracle image at run-time and thus does include these samples. The resulting image is shown in (d). In (e) we see
the higher quality that an ideal reconstructor would be able to achieve by not including the samples. We believe that we should
be able to approach the quality of (e) by employing more sophisticated reconstruction strategies, for example using edge-finding
techniques based on the trilateral filtering approach of [5]. For example, (f) shows a preliminary implementation of bilateral
filtering using the Lorentz filter [6].

construction, and then evaluating each configuration using
gold standard validation.

The methods we use to build the spatial hierarchy are cur-
rently quite simple, and could certainly be improved. Tiles
are split with planes oriented not according to deep buffer
content, but according to the level of the K-D tree (against
X at one level, against Y at the next). Planes might instead
be oriented against the prevailing direction of color change,
found using methods adapted from image processing. Not
only orientation but position of the splitting planes might
be controlled to minimize variation in each child tile us-
ing the quadric techniques described by [8]. We might even
use knowledge about scene geometry as it currently projects

into the deep buffer to guide splitting. Any improvements
these techniques bring in splitting would have to be bal-
anced against the competing demands of algorithmic sim-
plicity and efficiency: simpler algorithms are much easier to
embed into hardware, while efficient algorithms introduce
less delay (often an overriding concern) into the control sys-
tem.

6.2. Reconstruction

While our results with reconstruction of temporally deep
buffers are encouraging, and certainly improve over the tra-
ditional frameless reconstruction strategy of simply replac-
ing pixels as new samples arrive, many avenues of further
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research remain. To begin with, we plan to acclerate the re-
construction algorithm using programmable graphics hard-
ware. More fundamentally, we need to continue to improve
the automatic adaptation of filter shape to the underlying sig-
nal. We have begun investigating applying concepts from bi-
lateral and trilateral filtering [6] [5]. These techniques per-
form nonlinear filtering by weighting samples according to
their distance in luminance as well as in space. The bilat-
eral filtering approach, which is related to anisotropic diffu-
sion, tends to preserve edges; this behavior is enhanced by
only considering samples within a certain “window”, pos-
sibly asymmetric, about the reconstructed pixel. A number
of parameters control the selection of this window and the
size of the spatial and luminance filters. Trilateral filtering
effectively supplies these parameters automatically by us-
ing another bilateral filtering step in the gradient domain.
Incorporating these ideas into our reconstruction algorithm
is non-trivial: we must extending the bilateral/trilateral fil-
tering concept to include a third temporal dimension and
to operate on a nonuniformly sampled domain. In particu-
lar, the core concept of bilateral filtering at a pixel P is to
compare the luminance of the sample at P to neighboring
samples; however when reconstructing an image from the
deep buffer, there may be no recent sample at that pixel. In
our experiments to date we use instead the nearest sample in
(x,y, t) for comparison; Figure 7 illustrates our preliminary
results.

Bilateral/trilateral filtering can be thought of as filtering
an image in a way that surmises the location of edges, using
differences in luminance and the gradientWe domain, and
avoids filtering samples across edges. Bala and co-workers
have demonstrated the dramatic improvement possible in
reconstruction of sparse samples by incorporating a priori
knowledge of image discontinuities, such as object silhou-
ettes and shadow boundaries [1]. We also plan to explore
how we can exploit such a priori information in our appli-
cation. Of course, we are concerned not only with spatial
edges but also with temporal edges, such as occlusion events.
When an occlusion event occurs in a region of the image,
all samples in that region from prior to the occlusion are no
longer valid and should be discarded. We will investigate
ways to detect or surmise this sort of situation, in the re-
constructor alone or with the assistance of the sampler. For
example, if the geometry of the scene is known occlusion
events might be detected a priori (computational geometers
know this to be a difficult problem in its full generality, but
we can perhaps simplify it for our purposes). A less demand-
ing approach would simply have the sampler track object IDs
at each pixel and flag samples where the underlying object
appears to have changed; the trick is to avoid confounding
spatial variation sampled over time with temporal variation.
Given some knowledge or estimates of edges, we must en-
code this information so as to enable efficient reconstruction,
perhaps extending concepts such as the edge-point-image
(EPI) of Bala et al. to include temporal edges.

Finally, we plan to explore how our purely image-based
reconstruction approach interacts with sample reprojection
techniques such as the Render Cache [28] [27] and the Shad-
ing Cache [22]. These techniques employ three-dimensional
knowledge of the scene to reuse samples from previous
frames as the viewpoint moves, reprojecting samples to the
appropriate screen-space location for the new viewpoint.
While sample reprojection comes with its own costs and is
not always appropriate (for example, for deforming or highly
specular objects), it is an attractive strategy that dovetails
well with frameless sampling. However, we need to con-
sider how reprojection meshes with our temporal weighting
scheme: are properly reprojected samples less “stale” than
non-projected samples? Should their weighting be a function
of material properties (e.g. specularity) as well as age? Do
all samples need to be reprojected for each reconstruction,
or would it suffice to reproject only some samples? What is
the right way to combine static and reprojected samples?

6.3. Global illumination

One important research avenue we plan to explore is how
to extend our temporally aware sampling and reconstruc-
tion ideas beyond simple ray tracing to more sophisticated
global illumination algorithms. For example, our scheme
would seem to apply naturally to path tracing: each path
traced simply becomes another sample, and the reconstruc-
tion from our temporally deep buffer accumulates the ef-
fects of many paths to produce the appropriate color at every
pixel. However, this straightforward extension suffers from
an ambiguity: different samples (paths traced) at the same
image location may have very different color and bright-
ness. How can we disambiguate differences due to stochas-
tic sampling of BRDF and light field from differences due
to temporal edges? One possibility might involve re-tracing
some previous paths to detect temporal discontinuities. We
also expect path tracing to emphasize the importance of sam-
ple reprojection. Finally, we plan to investigate more fun-
damental ways of restructuring global illumination compu-
tations for interactive rendering using our ideas. For exam-
ple, we envision a frameless version of Jensen’s photon map
structure [11] for efficient computation and representation of
indirect illumination. Such a frameless photon map would
be updated continuously and stochastically with photons
shot from the light sources using spatially and temporally
adaptive sampling strategies, and would be temporally deep,
with a reconstruction that produces low-resolution illumina-
tion emphasizing recent photons where the scene or lighting
is changing, and high-resolution illumination including old
photons in static regions.

6.4. Perceptually driven rendering

With its ability to alter sampling and reconstruction across
both space and time, our adaptive frameless renderer is an
ideal platform for implementing and experimenting with
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perceptually driven rendering in interactive settings. There
are several obvious opportunities that might improve results.
First, we might incorporate the effects of early stages in vi-
sual processing using the contrast sensitivity function (CSF),
which describes threshold visual sensitivity to contrast at
various spatial frequencies. The CSF could modulate the er-
ror calculations that bias sampling, or shape reconstruction
filters. Sensitivity to fine detail drops as viewed objects in-
crease their retinal velocity, or move into the visual periph-
ery [13]. Our renderer could exploit these characteristics of
our visual system by decreasing spatial sampling density and
increasing spatial filter widths in our visual periphery, and
by emphasizing temporal over spatial sampling density and
narrowing temporal filter widths where objects are in mo-
tion. Finally, we might incorporate models of attention [31]
into our renderer, reducing sampling density and increasing
filter widths in regions of the scene that the model predicts
will be uninteresting to the viewer.

6.5. Display hardware

A long-term avenue for future research would be to de-
velop principles of new display hardware based on streams
of samples rather than on raster-order image frames. Cur-
rently, reconstruction takes place in the graphics hardware
at every display refresh, turning our frameless rendering
scheme into framed images to meet the needs of today’s dis-
play hardware. We would ideally like to move reconstruc-
tion into the display hardware itself, reducing the task of
the graphics hardware to producing samples (and perhaps
reprojecting old samples). One can imagine future displays
or “smart framebuffers” in which the pixels operate like a
sort of systolic array through which incoming samples dif-
fuse and compete. Such a concept may seem quite foreign,
accustomed as we are to notion of framebuffers that con-
tain a grid of pixels continuously scanned out to a moni-
tor in raster order; however, future display technology may
not be as tied (or suited) to the raster scan-out developed
for cathode ray tubes over fifty years ago. For example, or-
ganic LED technology lends itself to in-pixel circuitry such
as our hypothesized smart framebuffers; printable displays
(based on “electronic ink”) are poorly suited for continu-
ous raster update because of their slow refresh, and digital
micromirror device (DMD) projectors are microelectrome-
chanical systems (MEMS) which do not intrinsically depend
on scanning; in principle one can individually address each
of the microscopic vibrating mirrors that form the picture
elements. A frameless, asynchronous approach to rendering
could prove to be the key ingredient for realizing the poten-
tial of next-generation display technology.

The prospect of moving reconstruction into the display
highlights one benefit of our approach: it enables asyn-
chronous parallel graphics. Current parallel graphics archi-
tectures such as sort-first, sort-middle, and sort-last [15] are
built around the common constraint that the results from all

parallel rendering nodes must ultimately be combined into
a single frame. If the display performed temporally adaptive
reconstruction on incoming stream samples, the nodes could
simply be responsible for producing samples as fast as pos-
sible and sending those samples to the display. By breaking
the frame, we also break an underlying assumption and re-
strictive constraint in graphics architecture.

7. Conclusion

In conclusion, we advocate a new approach to interactive
rendering, based on temporally adaptive sampling and re-
construction, and enabled by recent advances in interactive
ray tracing. This approach improves traditional framed and
frameless rendering by focusing sampling on regions of spa-
tial and temporal change, and by performing adaptive re-
construction that emphasizes new samples when things are
changing quickly and incorporates older samples for high
spatial detail when things are static. Samples are streamed
through a temporally deep buffer from which displayed im-
ages are reconstructed. We use a “gold standard” compar-
ison to ideal renderings to argue that the resulting system
displays greater accuracy than framed and frameless render-
ing schemes at comparable sampling rates. Based on these
results, we believe that a temporally adaptive frameless ap-
proach shows great promise for future rendering algorithms
and display hardware.
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