
April 25, 2007 Name _____________________________

1

EECS 311 Data Structures

Midterm Exam
Don’t Panic!

1. (10 pts) In each box below, show the AVL trees that result from the successive

addition of the given elements. Show the nodes, links and balance factors. Draw

intermediate trees and clearly indicate rotations, if any, and in what direction.

1. After adding 35 to an empty tree.

2. After adding 87 to the previous tree.

3. After adding 64 to the previous tree

.

4. After adding 78 to the previous tree.

5. After adding 81 to the previous tree.

6. After adding 85 to the previous tree.

35

0 1

87

0 0

35

0 0

35

0 0

35

0 2

87

1 0

64

0 0

35

0 2

87

10
65

00

11
64

87

00

35

0 0

21
64

87

01

35

00

78

00

31
64

87

02

35

00

78

10

81

0 0

31
64

87

02

35

00

81
01

78

0 0

21
64

87

0

35

00

81
11

78

0 0

85

00

31
64

87

01

35

00

81
21

78

0 0

35

00

22
81

78

00

64

11

87

01

85

0 0

Comment [CKR1]: Common

mistakes:

• neither balance factors nor heights

• balance factors not ±

• one balance factor for entire tree

Comment [CKR2]: Common
mistakes:

• not indicating rotations clearly

• suggesting a single rotation when
double rotations required

April 25, 2007 Name _____________________________

2

2. (10 pts) In each box below, show the red-black trees that result from the successive

additions of the given elements. Use doubled lines for red links Draw intermediate trees

and clearly indicate recolorings and rotations, if any, and in what direction.

1. After adding 35 to an empty tree.

2. After adding 87 to the previous tree.

3. After adding 64 to the previous tree.

4. After adding 78 to the previous tree.

5. After adding 81 to the previous tree.

6. After adding 85 to the previous tree.

35 35

87

35

87

64

35

87

64

35

64

87

35

64

87

78

81

35

64

87

81

78

35

64

81

78 87

35

64

87

78

recolor

35

64

81

78 87

85

recolor

Comment [CKR3]: Common
mistakes:

• not clearly indicating rotations

• suggesting single rotation when double
rotations needed

• not indicating recolorings

• recoloring too soon (no points lost)

• doing an AVL rotation in step 6 instead
of a red-black rotation

• building an invalid red-black tree

(unbalanced black links)

April 25, 2007 Name _____________________________

3

3. (10 pts) Draw the B-trees that result when adding the following values in succession,

starting with an empty tree. Assume each node can only hold 2 keys. To save drawing

time, you can choose to only draw a new tree when a split occurs, but make it clear which

value caused the split.

Values: 35, 87, 64, 78, 81, 85, 22, 31

4. (5 pts) Give the Big-Oh complexity and a reasoned argument for the following

algorithm (in pseudo C++) for finding the position in s1 of a longest common substring

of two strings s1 and s2, of lengths M and N, respectively. string::compare() returns

0 for equality, like C’s strcmp().

for i from 0 to M

 for len from 1 to M – i

 for j from 0 to N - len

 if s1.compare(i, len, s2, j, len) == 0

 if len > result_len

 result = i

 result_len = len

There are three nested loops There are three nested loops There are three nested loops There are three nested loops with boundswith boundswith boundswith bounds O(M), O(M) an O(M), O(M) an O(M), O(M) an O(M), O(M) and O(N) d O(N) d O(N) d O(N)
respectively. The comparisonrespectively. The comparisonrespectively. The comparisonrespectively. The comparison will be up to O(M) characters will be up to O(M) characters will be up to O(M) characters will be up to O(M) characters, or more , or more , or more , or more
accurately, O(min(M, N))accurately, O(min(M, N))accurately, O(min(M, N))accurately, O(min(M, N)). The assi. The assi. The assi. The assignments inside the IF are O(1). gnments inside the IF are O(1). gnments inside the IF are O(1). gnments inside the IF are O(1).
Therefore the worst case running time is O(MTherefore the worst case running time is O(MTherefore the worst case running time is O(MTherefore the worst case running time is O(M3333NNNN).).).).

35 35 87

35 87

64

35 78 87

64

35 87

64 81

78

35 85 87

64 81

78 22 35 85 87

64 81

78 22 35 85 87

64 81

78

22 85 87

31

64

35

81

78

Comment [CKR4]: I accepted either
true B-trees, or B+trees (the book has

B+trees mislabeled as B-trees – footnote

p 161)

Comment [CKR5]: Common
mistakes:

• more than 2 values in leaves

• nodes with # children <= # keys; should
always be #keys + 1

• keys moving downwards

• completely empty nodes

• splits creating full nodes full, instead of
half-full

• leaves at different depths

Comment [CKR6]: Most common

mistake: treating compare() as O(1). It
clearly depends on len, which is O(M), or

O(min(M,N)) assuming it stops with the

shorter string.

April 25, 2007 Name _____________________________

4

5. (10 pts total) a) Assume a 10-element hashtable, with hash(x) = x mod 10 and linear

probing. Show what locations would be probed, in order, for each value in the table, and

put the value in its final resting place, if any, in the array:

Value Locations probed

4371 1

1323 3

6173 3, 4

4199 9

4344 4, 5

9679 9, 0

1989 9, 0, 1, 2

Array:

b) Repeat, with the same hash(), but using double hashing with hash2(x) = 7 – (x mod 7).

4371 mod 7 = 3 1323 mod 7 = 0 6173 mod 7 = 6 4199 mod 7 = 6
4344 mod 7 = 4 9679 mod 7 = 5 1989 mod 7 = 1

Value Locations probed

4371 1

1323 3

6173 3, 4 (because 7 – 6173mod7 = 1)

4199 9

4344 4, 7 (because 7 – 4344mod7 = 3)

9679 9, 1, 3, 5 (because 7 –9679mod7 = 2)

1989 9, 5, 1, 7, 3, 9 (because 7 – 6173mod7 = 1) – no space found

Array:

4371 1989 1323 6173 4344 41999679

0 1 2 3 4 5 6 7 8 9

4371 1323 6173 9679 4344 4199

0 1 2 3 4 5 6 7 8 9

Comment [CKR7]: FYI: this is
Exercise 1 in Chapter 5.

Comment [CKR8]: Most common
mistakes:

• Not using hash(x) + i * hash2(x)

• Using x mod 7, not 7 – (x mod 7)

• Linear probing (x, x + 1, x + 2, …)
instead of x, x + hash2(x), x + 2 hash2(x),

…

I only counted each mistake once, if other
wrong answers were at least consistent.

April 25, 2007 Name _____________________________

5

6. (10 pts) Using the (space-wasting) C++ tree and node classes below, implement

rotateRight() so that node.rotateRight() rotates node clockwise (rightward)

through its parent. Each node has a pointer to its parent and a flag indicating if it’s a right

child of the parent. Drawing a picture first is not required but strongly recommended. Be

sure to update all affected fields of all affected nodes.

template <typename T> class Tree {

 private:

 struct Node {

 Node *parent, *left, *right;
 bool isRight;

 T data;

 void rotateRight();

 …};

 Node * root;

…};

template <typename T> void Tree::Node::rotateRight()

{

 Node * temp = right;

 right = parent; // link 5

 parent = right->parent; // link 6

 right->parent = right->left; // link 2

 if (isRight) parent->right = right->left; // link 1

 else parent->left = right->left; // link 1

 right->left = temp; // link 3

 if (right->left) {

 right->left->parent = right; // link 4

 right->left->isRight = false; // 2 isRight flag

 }

 isRight = right->isRight; // B isRight flag

 right->isRight = true; // A isRight flag

}

A

B

1 2

3

B

1

2 3

A

1

2

3

4

5

6

Comment [CKR9]: Lots of ways to do

this. Most common mistakes:

• Updating only 3 links, missing the 3

backlinks

• Not updating the pointers to/from the

top node

• Not updating the boolean isRight flags

(there are 3)

• Testing isRight rather than parent-
>isRight; isRight for the nodecan only be

false if it’s going to be rotated right

• Not checking for null before updating

link from node 2

Comment [CKR10]: No IF statement
needed to do this.

