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Cache memories

Cache memories are small, fast SRAM-based 
memories managed automatically in hardware. 
– Hold frequently accessed blocks of main memory

CPU looks first for data in L1, then in L2, then in main 
memory.
Typical bus structure:

main
memory

I/O
bridgebus interfaceL2 cache

ALU

register file
CPU chip

cache bus system bus memory bus

L1 
cache
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Measuring Cache Effects

Memory mountain test code
– Measures read throughput as a function of spatial 

and temporal locality.
– Read throughput (read bandwidth) = Number of 

bytes read from memory per second (MB/s)
– Graph throughput over changes in stride and 

working set size (number of repeatedly referenced 
locations)

– Compact way to characterize memory system 
performance. 
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Memory mountain main routine

/* mountain.c - Generate the memory mountain. */
#define MINBYTES (1 << 10)  /* Working set size ranges from 1 KB */
#define MAXBYTES (1 << 23)  /* ... up to 8 MB */
#define MAXSTRIDE 16        /* Strides range from 1 to 16 */
#define MAXELEMS MAXBYTES/sizeof(int) 

int data[MAXELEMS];         /* The array we'll be traversing */

int main()
{
    int size;        /* Working set size (in bytes) */
    int stride;      /* Stride (in array elements) */
    double Mhz;      /* Clock frequency */

    init_data(data, MAXELEMS); /* Initialize each element in data to 1 */
    Mhz = mhz(0);              /* Estimate the clock frequency */
    for (size = MAXBYTES; size >= MINBYTES; size >>= 1) {
 for (stride = 1; stride <= MAXSTRIDE; stride++) 
     printf("%.1f\t", run(size, stride, Mhz)); 
 printf("\n");
    }
    exit(0);
}
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Memory mountain test function

/* The test function */
void test(int elems, int stride) {
    int i, result = 0; 
    volatile int sink; 

    for (i = 0; i < elems; i += stride)
 result += data[i];
    sink = result; /* So compiler doesn't optimize away the loop */
}

/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)
{
    double cycles;
    int elems = size / sizeof(int); 

    test(elems, stride);                     /* warm up the cache */
    cycles = fcyc2(test, elems, stride, 0);  /* call test(elems,stride) */
    return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */
}
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The memory mountain
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Ridges of temporal locality

Slice through the memory mountain with stride=1
– illuminates read throughputs of different caches and memory
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A slope of spatial locality

Slice through memory mountain with size=256KB
– shows cache block size.
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Direct-mapped cache

Simplest kind of cache
Cache divided in S sets of N-byte blocks
– N = 2b, S = 2s

– Typically, N = 32 or 64 (our examples use 4 bytes)
– Blocks capture spatial locality

Valid bit = 1 if data in stored in set i
Tag field identifies which address is currently stored

valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:

cache block

cache block

cache block
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Accessing direct-mapped caches

Low b bits determine block offset
Middle s bits of address determine index set
Store remaining t bits in tag

valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:
t bits s bits

0 0  0 0 1
0m-1

b bits

tag set index block offset

selected set

cache block

cache block

cache block
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Accessing direct-mapped caches

Example: 16 bit addresses, 8 
sets, 8 byte block in each set

tag=10 s=3 b=3
xxxxxxxxxx xxx xxx

1011 0011 0101 1101

000

001
010
011
100
101
110
111

011

011

101

1011001101

1011001101

To store

1
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Why use middle bits as index?

High-order bit indexing
– Adjacent memory lines would 

map to same cache entry
– Spatially local code would 

have more cache conflicts
Middle-order bit indexing
– Consecutive memory lines 

map to different cache lines
– Can hold C-byte region of 

address space in cache at one 
time

4-line Cache High-Order
Bit Indexing

Middle-Order
Bit Indexing

00
01
10
11

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
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Set associative caches

Characterized by more than one line per set

valid tag
set 0: E=2  lines per set

set 1:

set S-1:

• • •

cache block

valid tag cache block

valid tag cache block

valid tag cache block

valid tag cache block

valid tag cache block
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Accessing direct-mapped caches

Line matching and word selection
– Line matching: Find a valid line in the selected set 

with a matching tag
– Word selection: Then extract the word

1

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

selected set (i):

(3) If (1) and (2), then 
cache hit,

and block offset 
selects

starting byte. 

=1? (1) The valid bit must be set

= ?
(2) The tag bits in the cache

line must match the
tag bits in the address

0110 w3w0 w1 w2

30 1 2 74 5 6
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General org of a cache memory

• • • B–110

• • • B–110

valid

valid

tag

tag
set 0:

B = 2b bytes
per cache block

E  lines 
per set

S = 2s sets

t tag bits
per line

1 valid bit
per line

Cache size:  
C = S x E x B 
data bytes

• • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set 1: • • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set S-1: • • •

• • •

Cache is an array
of sets.

Each set contains
one or more lines.

Each line holds a
block of data.
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Accessing set associative caches

Set selection
– identical to direct-mapped cache

valid

valid

tag

tag
set 0:

valid

valid

tag

tag
set 1:

valid

valid

tag

tag
set S-1:

• • •

t bits s bits
0 0  0 0 1

0m-1

b bits

tag set index block offset

Selected set

cache block

cache block

cache block

cache block

cache block

cache block
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Accessing set associative caches

Line matching and word selection
– must compare the tag in each valid line in the 

selected set.

1 0110 w3w0 w1 w2

1 1001

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

selected set (i):

=1? (1) The valid bit must be set.

= ?
(2) The tag bits in one  

of the cache lines must 
match the tag bits in

the address

(3) If (1) and (2), then 
cache hit, and

 block  offset selects 
starting byte.

30 1 2 74 5 6
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Addressing  caches

t bits s bits b bits

0m-1

<tag> <set index> <block offset>

Address A:

• • • B–110

• • • B–110

v

v

tag

tag
set 0: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set 1: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set S-1: • • •

• • •
The word at address A is in the cache if
the tag bits in one of the <valid> lines in 
set <set index> match <tag>.

The word contents begin at offset 
<block offset> bytes from the beginning 
of the block.   
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Cache Parameters

S = 2s: number of sets
E: number of lines / set (E = 1 direct-mapped)
B = 2b: block size in bytes
m = log2(M): number of address bits
t = m – (s + b): number of tag bits
C = B x E x S: cache size in bytes (blocks only, 
not valid and tag bits) 
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Multi-level caches

Options: separate data and instruction caches, 
or a unified cache

size:
speed:
$/Mbyte:
line size:

200 B
3 ns

8 B

8-64 KB
3  ns

32 B

128 MB DRAM
60 ns
$1.50/MB
8  KB

30 GB
8 ms
$0.05/MB

larger, slower, cheaper

Memory

L1 
d-cache

Regs
Unified

L2 
Cache

Processor

1-4MB SRAM
6 ns
$100/MB
32 B

L1 
i-cache

disk
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Processor Chip

Intel Pentium Cache Hierarchy

L1 Data
1 cycle latency

16 KB
4-way assoc

Write-through
32B lines

L1 Instruction
16 KB, 4-way

32B lines

Regs. L2 Unified
128KB--2 MB
4-way assoc
Write-back

Write allocate
32B lines

Main
Memory

Up to 4GB
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Cache performance metrics

Miss Rate
– Fraction of memory references not found in cache (misses/

references)
– Typical numbers:

• 3-10% for L1
• can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time
– Time to deliver a line in the cache to the processor (includes 

time to determine whether the line is in the cache)
– Typical numbers:

• 1 clock cycle for L1
• 3-8 clock cycles for L2

Miss Penalty
– Additional time required because of a miss

• Typically 25-100 cycles for main memory
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Writing cache friendly code

Repeated references to variables are good (temporal 
locality)
Stride-1 reference patterns are good (spatial locality)
Examples:
– assume cold cache, 4-byte words, 4-word cache blocks

int sumarrayrows(int a[M][N])
{
    int i, j, sum = 0;

    for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            sum += a[i][j];
    return sum;
}

int sumarraycols(int a[M][N])
{
    int i, j, sum = 0;

    for (j = 0; j < N; j++)
        for (i = 0; i < M; i++)
            sum += a[i][j];
    return sum;
}

Miss rate = Miss rate = 1/4 = 25% 100%
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Matrix multiplication example

Major cache effects to consider
– Total cache size

• Exploit temporal locality and keep the working set small (e.g., by 
using blocking)

– Block size
• Exploit spatial locality

Description:
– Multiply N x N matrices
– O(N3) total operations
– Accesses

• N reads per source element
• N values summed per destination

– but may be able to hold in register

/* ijk */
for (i=0; i<n; i++)  {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++) 
      sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
} 

Variable sum
held in register
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Miss rate analysis for matrix multiply

Assume:
– Line size = 32B (big enough for 4 64-bit words)
– Matrix dimension (N) is very large

• Approximate 1/N as 0.0
– Cache is not even big enough to hold multiple rows

Analysis method:
– Look at access pattern of inner loop

CA

k

i

B

k

j

i

j
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Layout of C arrays in memory (review)

C arrays allocated in row-major order
– each row in contiguous memory locations

Stepping through columns in one row:
– for (i = 0; i < N; i++)

sum += A[0][i];

– accesses successive elements
– if block size (B) > 4 bytes, exploit spatial locality

• compulsory miss rate = 4 bytes / B

Stepping through rows in one column:
– for (i = 0; i < n; i++)

sum += A[i][0];

– accesses distant elements
– no spatial locality!

• compulsory miss rate = 1 (i.e. 100%)
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Conflict misses in Direct-Mapped Caches

float dotprod(float x[8], float y[8])

{

  float sum = 0.0; int i;

  for (i = 0; i < 8; i++) 

    sum += x[i] * y[i];

  return sum;

}

Assume for simplicity
–  4-byte floats
– x[] loaded at address 0, y[] at address 32
– 16 byte cache block (4 floats)
– 2 sets (cache size = 32 bytes)

x[0] – x[3] and y[0] – y[3] map to set 0
x[4] – x[7] and y[4] – y[7] map to set 1
Almost every array reference clobbers the same cache set
This is called thrashing. Can make code 2 or 3 times slower.
Fix by padding arrays to avoid powers of 2, e.g., x[12] and y[12].
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Matrix multiplication (ijk)

/* ijk */
for (i=0; i<n; i++)  {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++) 
      sum += A[i][k] * B[k][j];
    C[i][j] = sum;
  }
} 

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Misses per inner loop iteration:
  A B C
  0.25 1.0 0.0
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Matrix multiplication (jik)

/* jik */
for (j=0; j<n; j++) {
  for (i=0; i<n; i++) {
    sum = 0.0;
    for (k=0; k<n; k++)
      sum += A[i][k] * B[k][j];
    C[i][j] = sum
  }
}

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per inner loop iteration:
  A B C
  0.25 1.0 0.0
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Matrix multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = B[k][j];
    for (i=0; i<n; i++)
      C[i][j] += A[i][k] * r;
  }
} 

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

Column -
wise

Column-
wise

Fixed

Misses per inner loop iteration:
  A B C
  1.0 0.0 1.0

Monday, November 7, 2011



EECS 213 Introduction to Computer Systems
Northwestern University

32

Matrix multiplication (kji)

/* kji */
for (k=0; k<n; k++) {
  for (j=0; j<n; j++) {
    r = B[k][j];
    for (i=0; i<n; i++)
      C[i][j] += A[i][k] * r;
  }
} 

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per inner loop iteration:
  A B C
  1.0 0.0 1.0
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Matrix multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = A[i][k];
    for (j=0; j<n; j++)
      C[i][j] += r * B[k][j];   
  }
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
  A B C
  0.0 0.25 0.25
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Matrix multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {
  for (k=0; k<n; k++) {
    r = A[i][k];
    for (j=0; j<n; j++)
      C[i][j] += r * B[k][j];
  }
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
  A B C
  0.0 0.25 0.25
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Summary of matrix multiplication

 for (i=0; i<n; i++)  {

    for (j=0; j<n; j++) {

        sum = 0.0;

        for (k=0; k<n; k++) 

            sum += A[i][k] * B[k][j];

        C[i][j] = sum;

    }

} 

ijk & jik: 
• 2 loads, 0 stores
• misses/iter = 1.25

for (k=0; k<n; k++) {

    for (i=0; i<n; i++) {

        r = A[i][k];

        for (j=0; j<n; j++)

            C[i][j] += r * B[k][j];   

    }

}

for (j=0; j<n; j++) {

    for (k=0; k<n; k++) {

        r = B[k][j];

        for (i=0; i<n; i++)

            C[i][j] += A[i][k] * r;

    }

} 

kij & ikj: 
• 2 loads, 1 store
• misses/iter = 0.5

jki & kji: 
• 2 loads, 1 store
• misses/iter = 2.0
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Pentium matrix multiply performance
Miss rates are helpful but not perfect predictors.

• Code scheduling matters, too.
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Improving temporal locality by blocking

Example: Blocked matrix multiplication
– “block” (in this context) does not mean “cache block”.
– Instead, it mean a sub-block within the matrix.
– Example: N = 8; sub-block size = 4

C11  =  A11B11 + A12B21           C12  =  A11B12 + A12B22

C21  =  A21B11 + A22B21           C22  =  A21B12 + A22B22

A11   A12

A21   A22

B11   B12

B21   B22

X = 
C11   C12

C21   C22

Key idea: Sub-blocks (i.e., Axy) can be treated just like scalars.
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Blocked matrix multiply (bijk)

for (jj=0; jj<n; jj+=bsize) {
  for (i=0; i<n; i++)
    for (j=jj; j < min(jj+bsize,n); j++)
      c[i][j] = 0.0;
  for (kk=0; kk<n; kk+=bsize) { 
    for (i=0; i<n; i++) {
      for (j=jj; j < min(jj+bsize,n); j++) { 
        sum = 0.0
        for (k=kk; k < min(kk+bsize,n); k++) {
          sum += a[i][k] * b[k][j];
        }
        c[i][j] += sum;
      }
    }
  }
}
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Blocked matrix multiply analysis
Innermost loop pair multiplies a 1 X bsize sliver of A by a bsize X 
bsize block of B and accumulates into 1 X bsize sliver of C
Loop over i steps through n row slivers of A & C, using same B

A B C

block reused n 
times in succession

row sliver accessed
bsize times

Update successive
elements of sliver

i i
kk

kk jjjj

for (i=0; i<n; i++) {
      for (j=jj; j < min(jj+bsize,n); j++) { 
        sum = 0.0
        for (k=kk; k < min(kk+bsize,n); k++) {
          sum += a[i][k] * b[k][j];
        }
        c[i][j] += sum;
      }Innermost

Loop Pair
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Pentium blocked matrix mult performance

Blocking (bijk and bikj) improves performance by a 
factor of two over unblocked versions (ijk and jik)
– relatively insensitive to array size.
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Concluding observations

Programmer can optimize for cache performance
– How data structures are organized
– How data are accessed

• Nested loop structure
• Blocking is a general technique

All systems favor “cache friendly code”
– Getting absolute optimum performance is very platform 

specific
• Cache sizes, line sizes, associativities, etc.

– Can get most of the advantage with generic code
• Keep working set reasonably small (temporal locality)
• Use small strides (spatial locality)
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