
Cache Memories

Topics
 Generic cache memory organization
 Direct mapped caches
 Set associative caches
 Impact of caches on performance

Next time
 Linking

Chris Riesbeck, Spring 2010
Original: Fabian Bustamante

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

2

Cache memories

Cache memories are small, fast SRAM-based
memories managed automatically in hardware.
– Hold frequently accessed blocks of main memory

CPU looks first for data in L1, then in L2, then in main
memory.
Typical bus structure:

main
memory

I/O
bridgebus interfaceL2 cache

ALU

register file
CPU chip

cache bus system bus memory bus

L1
cache

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

3

Measuring Cache Effects

Memory mountain test code
– Measures read throughput as a function of spatial

and temporal locality.
– Read throughput (read bandwidth) = Number of

bytes read from memory per second (MB/s)
– Graph throughput over changes in stride and

working set size (number of repeatedly referenced
locations)

– Compact way to characterize memory system
performance.

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

4

Memory mountain main routine

/* mountain.c - Generate the memory mountain. */
#define MINBYTES (1 << 10) /* Working set size ranges from 1 KB */
#define MAXBYTES (1 << 23) /* ... up to 8 MB */
#define MAXSTRIDE 16 /* Strides range from 1 to 16 */
#define MAXELEMS MAXBYTES/sizeof(int)

int data[MAXELEMS]; /* The array we'll be traversing */

int main()
{
 int size; /* Working set size (in bytes) */
 int stride; /* Stride (in array elements) */
 double Mhz; /* Clock frequency */

 init_data(data, MAXELEMS); /* Initialize each element in data to 1 */
 Mhz = mhz(0); /* Estimate the clock frequency */
 for (size = MAXBYTES; size >= MINBYTES; size >>= 1) {
 for (stride = 1; stride <= MAXSTRIDE; stride++)
 printf("%.1f\t", run(size, stride, Mhz));
 printf("\n");
 }
 exit(0);
}

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

5

Memory mountain test function

/* The test function */
void test(int elems, int stride) {
 int i, result = 0;
 volatile int sink;

 for (i = 0; i < elems; i += stride)
 result += data[i];
 sink = result; /* So compiler doesn't optimize away the loop */
}

/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)
{
 double cycles;
 int elems = size / sizeof(int);

 test(elems, stride); /* warm up the cache */
 cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */
 return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */
}

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

6

The memory mountain

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

7

Ridges of temporal locality

Slice through the memory mountain with stride=1
– illuminates read throughputs of different caches and memory

0

275.0

550.0

825.0

1100.0
8m 4m 2m

10
24

k

51
2k

25
6k

12
8k 64

k

32
k

16
k 8k 4k 2k 1k

re
ad

 th
ro

ug
pu

t (
M

B
/s

)

working set size (bytes)

L1 L2 main

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

8

A slope of spatial locality

Slice through memory mountain with size=256KB
– shows cache block size.

0

200.0

400.0

600.0

800.0

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16

re
ad

 th
ro

ug
hp

ut
 (M

B
/s

)

stride (words)

one access per

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

9

Direct-mapped cache

Simplest kind of cache
Cache divided in S sets of N-byte blocks
– N = 2b, S = 2s

– Typically, N = 32 or 64 (our examples use 4 bytes)
– Blocks capture spatial locality

Valid bit = 1 if data in stored in set i
Tag field identifies which address is currently stored

valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:

cache block

cache block

cache block

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

10

Accessing direct-mapped caches

Low b bits determine block offset
Middle s bits of address determine index set
Store remaining t bits in tag

valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:
t bits s bits

0 0 0 0 1
0m-1

b bits

tag set index block offset

selected set

cache block

cache block

cache block

Monday, November 7, 2011

1011001101 011 101

EECS 213 Introduction to Computer Systems
Northwestern University

10

Accessing direct-mapped caches

Example: 16 bit addresses, 8
sets, 8 byte block in each set

tag=10 s=3 b=3
xxxxxxxxxx xxx xxx

1011 0011 0101 1101

000

001
010
011
100
101
110
111

011

011

101

1011001101

1011001101

To store

1

Monday, November 7, 2011

Checkpoint

Monday, November 7, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/11-CacheMem-Direct-quiz.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/11-CacheMem-Direct-quiz.key

EECS 213 Introduction to Computer Systems
Northwestern University

11

Why use middle bits as index?

High-order bit indexing
– Adjacent memory lines would

map to same cache entry
– Spatially local code would

have more cache conflicts
Middle-order bit indexing
– Consecutive memory lines

map to different cache lines
– Can hold C-byte region of

address space in cache at one
time

4-line Cache High-Order
Bit Indexing

Middle-Order
Bit Indexing

00
01
10
11

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

13

Set associative caches

Characterized by more than one line per set

valid tag
set 0: E=2 lines per set

set 1:

set S-1:

• • •

cache block

valid tag cache block

valid tag cache block

valid tag cache block

valid tag cache block

valid tag cache block

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

14

Accessing direct-mapped caches

Line matching and word selection
– Line matching: Find a valid line in the selected set

with a matching tag
– Word selection: Then extract the word

1

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

selected set (i):

(3) If (1) and (2), then
cache hit,

and block offset
selects

starting byte.

=1? (1) The valid bit must be set

= ?
(2) The tag bits in the cache

line must match the
tag bits in the address

0110 w3w0 w1 w2

30 1 2 74 5 6

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

15

General org of a cache memory

• • • B–110

• • • B–110

valid

valid

tag

tag
set 0:

B = 2b bytes
per cache block

E lines
per set

S = 2s sets

t tag bits
per line

1 valid bit
per line

Cache size:
C = S x E x B
data bytes

• • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set 1: • • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set S-1: • • •

• • •

Cache is an array
of sets.

Each set contains
one or more lines.

Each line holds a
block of data.

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

16

Accessing set associative caches

Set selection
– identical to direct-mapped cache

valid

valid

tag

tag
set 0:

valid

valid

tag

tag
set 1:

valid

valid

tag

tag
set S-1:

• • •

t bits s bits
0 0 0 0 1

0m-1

b bits

tag set index block offset

Selected set

cache block

cache block

cache block

cache block

cache block

cache block

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

17

Accessing set associative caches

Line matching and word selection
– must compare the tag in each valid line in the

selected set.

1 0110 w3w0 w1 w2

1 1001

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

selected set (i):

=1? (1) The valid bit must be set.

= ?
(2) The tag bits in one

of the cache lines must
match the tag bits in

the address

(3) If (1) and (2), then
cache hit, and

 block offset selects
starting byte.

30 1 2 74 5 6

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

18

Addressing caches

t bits s bits b bits

0m-1

<tag> <set index> <block offset>

Address A:

• • • B–110

• • • B–110

v

v

tag

tag
set 0: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set 1: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set S-1: • • •

• • •
The word at address A is in the cache if
the tag bits in one of the <valid> lines in
set <set index> match <tag>.

The word contents begin at offset
<block offset> bytes from the beginning
of the block.

Monday, November 7, 2011

Cache Parameters

S = 2s: number of sets
E: number of lines / set (E = 1 direct-mapped)
B = 2b: block size in bytes
m = log2(M): number of address bits
t = m – (s + b): number of tag bits
C = B x E x S: cache size in bytes (blocks only,
not valid and tag bits)

Monday, November 7, 2011

Checkpoint

Monday, November 7, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/11-CacheMem-Size-quiz.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/11-CacheMem-Size-quiz.key

EECS 213 Introduction to Computer Systems
Northwestern University

21

Multi-level caches

Options: separate data and instruction caches,
or a unified cache

size:
speed:
$/Mbyte:
line size:

200 B
3 ns

8 B

8-64 KB
3 ns

32 B

128 MB DRAM
60 ns
$1.50/MB
8 KB

30 GB
8 ms
$0.05/MB

larger, slower, cheaper

Memory

L1
d-cache

Regs
Unified

L2
Cache

Processor

1-4MB SRAM
6 ns
$100/MB
32 B

L1
i-cache

disk

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

22

Processor Chip

Intel Pentium Cache Hierarchy

L1 Data
1 cycle latency

16 KB
4-way assoc

Write-through
32B lines

L1 Instruction
16 KB, 4-way

32B lines

Regs. L2 Unified
128KB--2 MB
4-way assoc
Write-back

Write allocate
32B lines

Main
Memory

Up to 4GB

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

23

Cache performance metrics

Miss Rate
– Fraction of memory references not found in cache (misses/

references)
– Typical numbers:

• 3-10% for L1
• can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time
– Time to deliver a line in the cache to the processor (includes

time to determine whether the line is in the cache)
– Typical numbers:

• 1 clock cycle for L1
• 3-8 clock cycles for L2

Miss Penalty
– Additional time required because of a miss

• Typically 25-100 cycles for main memory

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

24

Writing cache friendly code

Repeated references to variables are good (temporal
locality)
Stride-1 reference patterns are good (spatial locality)
Examples:
– assume cold cache, 4-byte words, 4-word cache blocks

int sumarrayrows(int a[M][N])
{
 int i, j, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];
 return sum;
}

int sumarraycols(int a[M][N])
{
 int i, j, sum = 0;

 for (j = 0; j < N; j++)
 for (i = 0; i < M; i++)
 sum += a[i][j];
 return sum;
}

Miss rate = Miss rate = 1/4 = 25% 100%

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

25

Matrix multiplication example

Major cache effects to consider
– Total cache size

• Exploit temporal locality and keep the working set small (e.g., by
using blocking)

– Block size
• Exploit spatial locality

Description:
– Multiply N x N matrices
– O(N3) total operations
– Accesses

• N reads per source element
• N values summed per destination

– but may be able to hold in register

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

Variable sum
held in register

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

26

Miss rate analysis for matrix multiply

Assume:
– Line size = 32B (big enough for 4 64-bit words)
– Matrix dimension (N) is very large

• Approximate 1/N as 0.0
– Cache is not even big enough to hold multiple rows

Analysis method:
– Look at access pattern of inner loop

CA

k

i

B

k

j

i

j

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

27

Layout of C arrays in memory (review)

C arrays allocated in row-major order
– each row in contiguous memory locations

Stepping through columns in one row:
– for (i = 0; i < N; i++)

sum += A[0][i];

– accesses successive elements
– if block size (B) > 4 bytes, exploit spatial locality

• compulsory miss rate = 4 bytes / B

Stepping through rows in one column:
– for (i = 0; i < n; i++)

sum += A[i][0];

– accesses distant elements
– no spatial locality!

• compulsory miss rate = 1 (i.e. 100%)

Monday, November 7, 2011

Conflict misses in Direct-Mapped Caches

float dotprod(float x[8], float y[8])

{

 float sum = 0.0; int i;

 for (i = 0; i < 8; i++)

 sum += x[i] * y[i];

 return sum;

}

Assume for simplicity
– 4-byte floats
– x[] loaded at address 0, y[] at address 32
– 16 byte cache block (4 floats)
– 2 sets (cache size = 32 bytes)

x[0] – x[3] and y[0] – y[3] map to set 0
x[4] – x[7] and y[4] – y[7] map to set 1
Almost every array reference clobbers the same cache set
This is called thrashing. Can make code 2 or 3 times slower.
Fix by padding arrays to avoid powers of 2, e.g., x[12] and y[12].

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

29

Matrix multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += A[i][k] * B[k][j];
 C[i][j] = sum;
 }
}

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Misses per inner loop iteration:
 A B C
 0.25 1.0 0.0

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

30

Matrix multiplication (jik)

/* jik */
for (j=0; j<n; j++) {
 for (i=0; i<n; i++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += A[i][k] * B[k][j];
 C[i][j] = sum
 }
}

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per inner loop iteration:
 A B C
 0.25 1.0 0.0

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

31

Matrix multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = B[k][j];
 for (i=0; i<n; i++)
 C[i][j] += A[i][k] * r;
 }
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

Column -
wise

Column-
wise

Fixed

Misses per inner loop iteration:
 A B C
 1.0 0.0 1.0

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

32

Matrix multiplication (kji)

/* kji */
for (k=0; k<n; k++) {
 for (j=0; j<n; j++) {
 r = B[k][j];
 for (i=0; i<n; i++)
 C[i][j] += A[i][k] * r;
 }
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per inner loop iteration:
 A B C
 1.0 0.0 1.0

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

33

Matrix multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = A[i][k];
 for (j=0; j<n; j++)
 C[i][j] += r * B[k][j];
 }
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
 A B C
 0.0 0.25 0.25

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

34

Matrix multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {
 for (k=0; k<n; k++) {
 r = A[i][k];
 for (j=0; j<n; j++)
 C[i][j] += r * B[k][j];
 }
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
 A B C
 0.0 0.25 0.25

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

35

Summary of matrix multiplication

 for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += A[i][k] * B[k][j];

 C[i][j] = sum;

 }

}

ijk & jik:
• 2 loads, 0 stores
• misses/iter = 1.25

for (k=0; k<n; k++) {

 for (i=0; i<n; i++) {

 r = A[i][k];

 for (j=0; j<n; j++)

 C[i][j] += r * B[k][j];

 }

}

for (j=0; j<n; j++) {

 for (k=0; k<n; k++) {

 r = B[k][j];

 for (i=0; i<n; i++)

 C[i][j] += A[i][k] * r;

 }

}

kij & ikj:
• 2 loads, 1 store
• misses/iter = 0.5

jki & kji:
• 2 loads, 1 store
• misses/iter = 2.0

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

36

Pentium matrix multiply performance
Miss rates are helpful but not perfect predictors.

• Code scheduling matters, too.

0

15.00

30.00

45.00

60.00

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400

C
yc

le
s/

ite
ra

tio
n

Array size (n)

kji
jki
kij
ikj
jik
ijk

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

37

Improving temporal locality by blocking

Example: Blocked matrix multiplication
– “block” (in this context) does not mean “cache block”.
– Instead, it mean a sub-block within the matrix.
– Example: N = 8; sub-block size = 4

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

A11 A12

A21 A22

B11 B12

B21 B22

X =
C11 C12

C21 C22

Key idea: Sub-blocks (i.e., Axy) can be treated just like scalars.

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

38

Blocked matrix multiply (bijk)

for (jj=0; jj<n; jj+=bsize) {
 for (i=0; i<n; i++)
 for (j=jj; j < min(jj+bsize,n); j++)
 c[i][j] = 0.0;
 for (kk=0; kk<n; kk+=bsize) {
 for (i=0; i<n; i++) {
 for (j=jj; j < min(jj+bsize,n); j++) {
 sum = 0.0
 for (k=kk; k < min(kk+bsize,n); k++) {
 sum += a[i][k] * b[k][j];
 }
 c[i][j] += sum;
 }
 }
 }
}

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

39

Blocked matrix multiply analysis
Innermost loop pair multiplies a 1 X bsize sliver of A by a bsize X
bsize block of B and accumulates into 1 X bsize sliver of C
Loop over i steps through n row slivers of A & C, using same B

A B C

block reused n
times in succession

row sliver accessed
bsize times

Update successive
elements of sliver

i i
kk

kk jjjj

for (i=0; i<n; i++) {
 for (j=jj; j < min(jj+bsize,n); j++) {
 sum = 0.0
 for (k=kk; k < min(kk+bsize,n); k++) {
 sum += a[i][k] * b[k][j];
 }
 c[i][j] += sum;
 }Innermost

Loop Pair

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

40

Pentium blocked matrix mult performance

Blocking (bijk and bikj) improves performance by a
factor of two over unblocked versions (ijk and jik)
– relatively insensitive to array size.

0

15.00

30.00

45.00

60.00

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400

C
yc

le
s/

ite
ra

tio
n

kji
jki
kij
ikj
jik
ijk
bijk (bsize = 25)
bikj (bsize = 25)

Monday, November 7, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

41

Concluding observations

Programmer can optimize for cache performance
– How data structures are organized
– How data are accessed

• Nested loop structure
• Blocking is a general technique

All systems favor “cache friendly code”
– Getting absolute optimum performance is very platform

specific
• Cache sizes, line sizes, associativities, etc.

– Can get most of the advantage with generic code
• Keep working set reasonably small (temporal locality)
• Use small strides (spatial locality)

Monday, November 7, 2011

