Y Tools: A Package of Portable Enhancementsto
Common Lisp
Version 1.3

Drew McDermott

June 25, 2004

Copyright (C) 1976-2004

Drew McDermott and Yale University. All rights reserved.
This software is released under the terms of the Modified BSD License.
See file COPYING for details.

Contents
1 Introduction

2 Binding Local Functions (And Iterating While You’re At It)
21 let-fun: Improvedversionof labels v i i it
22 repeat:ACleanLoopFacility

3 Facilities for setting and matching
31 The!=macro e
3.2 Quarsandthematchgmacro i i i i e e e e e e e e
33 Applicationsof thematcher

4 An Improved Formatted 1/O Facility
41 Theout MaCro o
42 TheinMaCro. o o e e

5 Signaling Conditions
6 Classes and Structures

7 Miscellaneous Features
7.1 TheBQBackquoteFacility
7.2 TheMappers e e e
7.3 DatadrivenProgramming e e e
7.4 Other FunctionsandMacros i i e e e

8 Downloading the Software and Getting it Running

9 The YTools File Manager (YTFM)

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

Loadingfiles: fload o o
YToolsLogical Pathnames e
File Dependencies. depends-0on v v v v i i e e e e e
Compilingand Slurping Files.
TIMeSpPecSinNdepends-0on v v v i it e e e e e
Long-rangeFileDependencies
YToolsModules. e

A Some Notational Conventions
Al UpperandLowerCase i i i i i e e e e
A.2 Specid Characters e e
A3 Codingstyle.

B Alternative Names for Lisp Constructs

1 Introduction

| have been using Lisp for along time, and have built several toolsfor doing things that Common Lisp doesn’t
do, or, in my opinion, doesn’t do right. This manual describesthem.
Each tool isintroduced by alinein the following form

Toolname Category Location: where-to-find-it

The Category is either Macro or Function. The Location specifies where the tool is to be found. This
information is explained in section 9. It tells you how to tell the file manager to load the tool. If you're
reading this manual just to get acquainted with what Y Tools offers, you can ignore the location information.

There are various lexical conventions used in Y Tools, which are explained in section A.2. One that is
pervasive is that underscore (“_") may be used as the name for a function parameter that is to be ignored. |
will point out the contexts where this convention is allowed, but basically it is used wherever it would make
sense (in the parameters of a defun, but not the bound variables of a1et, for instance).

Another terminological convention is that | avoid referenceto t and nil, especially nil. (See “NIL
Considered Harmful”
http://csfwww.cs.yale.edu/homes/dvm/nil.htmlJ
Instead | refer wherever possible to “ True” for the denotation of t and “False” or “empty list” for the deno-
tation of nil.

The Y Tools package has been devel oped for many years at Yale, and many people have made a contribu-
tion to it, especially Eugene Charniak, Denys Duchier, Jim Firby, Steve Hanks, Jim Meehan, Chris Riesbeck,
and Larry Wright.

2 Binding Local Functions (And Iterating While You’re At It)

Some people like to put subroutine definitions before the definitions of their callers, some people after. Al-
though Lisp allows either order at the top level, inthe 1abels construct all the definitions must come before
the body. It can make code much more readable if we alow them to come &fter, flagged by the keyword

:where.

2.1 1let-fun: Improved version of labels
let-fun Macro Location: YTools, binders

Thebasic ideais embodied in the 1et - fun macro:

(let-fun (---local-defs-1---)
---body---
[:where ---local-defs-2---1)

Each local-def isin the same format asfor 1abels, except that an optional :def is alowed before each
definition. Example:

(defun apply-to-leaves (fn tree)
(let-fun ((walk-tree (tr)
(cond ((atom tr)
(leaf-handle tr))
(t
(mapcar #’'walk-tree tr)))))
(walk-tree tree)

:where

(:def leaf-handle (x) (funcall fn x))))

The : def ispurely optional; its presenceis mainly to help search for local functionsin text editors.
Theonly other notational variation from 1abels isthat “ ” may be used instead of a parameter in any of
thelocal function definitions. The“ " indicates a parameter whose value isignored. So

(let-fun ()
#’' foo
:where
(:def foo (a _ ¢)
.))

is equivalent to

(let-fun ()
#’' foo
:where
(:def foo (a b ¢)
(declare (ignore b))

-))

Actualy, you can just write (ignore b) instead of (declare (ignore b)).

Theexistence of : where makes possible aliberalization of the usual rulesfor indenting Lisp code. If the
very last thing in afunction definition is a : where followed by some local function definitions and closing
parentheses, then | sometimes allow myself to move those definitions to the left of the column containing the
left paren before 1et - fun. So | might write the definition above thus:

(defun apply-to-leaves (fn tree)
(let-fun ((:def leaf-handle (x) (funcall fn x)))
(walk-tree tree)

:where

(:def walk-tree (tr)
(cond ((atom tr)
(leaf-handle tr))
(t
(mapcar #’'walk-tree tr))))))

Of course, this device is wasted on small examples, but for large proceduresit can save one from dividing a
program into arbitrary globally defined chunksjust to avoid “ Vietnamization.”
Thereis an analogousfacility called 1et -var:

(let-var (---local-vars---)
---body---
[:where ---local-vars---])

Each local-var isin the standard form used in 1et.

2.2 repeat: A Clean Loop Facility

The complex 1oop macro of Common Lisp is, in my opinion, an aberration. Its syntax is un-Lisp-like and
its semantics are obscure. However, it does supply certain facilities that are useful, especially the ability to
collect valuesin alist in the order they are generated.

1The tendency of Lisp code to wander off to the right, then eventually back to the left, until it resembles the map of Vietnam.

repeat Macro Location: Ytools, repeat

The YTools repeat facility duplicates the useful parts of the built-in version, adds some other useful
features, and looks more Lisp-like:

(repeat [:for (---varspecs---
[[:collectors | :collector] ---vars---1)]
---repeat-clauses---
[:where ---local-fundefs])
where
varspec ::= var | (var val)
| (var = start [:by inc] [:to thresh])

(
| (var = start :then subsequent)
| (var = start :then :again)
|«

var :in list [:tail varl])

repeat-clause ::= exp+

| :when test

| [:collect | :nconc | :append] collect-spec

| :within expression

| [:while | :until] test

| :result exp
collect-spec ::= exp | (:into var exp)

The keyword : for signals that we are binding variables for the scope of the repeat. There are two
classes of variable: collector variablesand all the other kinds. The collectors are declared after all the others,
preceded by the keyword :collectors (Or :collector, if it looks better). Each collector variable is
initialized to an empty collector.

The abstract datatype collector isessentialy aqueue. Most of the time the operations on collectorsare
implicit in various repeat constructs, but there are times when you need to manipulate collectors directly.
You create acollector by evaluating (empty-Collector). The objectsthe collector ¢ contains are obtained
by evaluating (Collector-elements c). A new element z is added to the end of the elements by eval-
uating (one-collect ¢ z). Anentirelist canbeadded by (1ist-collect ¢ I). list-collect does
not copy its list argument, so that subsequent collection operations may destructively alter that argument. To
reset a collector c to its empty state, execute(collector-clear c).

repeat provides several constructs for binding, initializing, and stepping non-collector variables (where
v means asymbol used as avariable):

e v: Bind v for the duration of the repeat.
e (v e): Bindvtoe; it may beresetinsidethe repeat.

e (v = e ...):Bindsvtoeinitially. What happens on subsequent iterations varies among subcases:

- (v = e): Equivalentto (v e).

— (v = e [:by i] [:to r]): On each iteration, add ¢ (default 1) to v. Stop when v passes
threshold r (default: don't stop). The phrase “ passes threshold” means “is greater than” unless
1 IS a negative constant, when it means “is less than.” The expressions i and r are evaluated just
once, before the iteration begins and any of the variables are bound.

— (v = e :then s): Oneachiteration after thefirst, v is set to the value of s, which isreevaluated
on each iteration, with all the repeat variablesin scope.

— (v = e :then :again): Equivalentto (v = e :then e).

(v :in I [:tail v]): v isbound to successive elements of . Iteration stops when the elements
areexhausted. If :tail v, ispresent, v, isasymbol that is bound to the tail of | starting with v. It is
okay to reset v, in the body of the repeat, thus changing the rate at which the loop advances; setting
itto () causesthe loop to terminate before the next iteration. If you care about the value of v ¢, but not
about the value of v, you can replace v with . Thisisthe only valid use of _in the bound variables of
arepeat.

Hereis how the repeat is executed:

1
2.
3.

Auxiliary values (such asthe : to expressionein (v = ...:to e)) areevaluated.
All variables are bound simultaneously.

All the local-fundefs are created, just asfor 1et - fun. These functionscan “see” al the bindings of the
variables.

. Every test implied by the variable-binding constructs is performed. That is, for every binding of the

form (v :in I ...),itischecked whether | has any (remaining) elements. For every binding of the
form (v = e ...:to 1), itischecked whether v is < [. Iteration stopsif atest fails.

. Repeat clauses are executed in order. An ordinary expression is evaluated. A test of theform :while

eOr :until e causese to beevaluated; iteration stopsif atest fails. A test of theform : when e causes
e to be evaluated; if e is False, the rest of the repeat clauses are skipped and control advances to the
next iteration.

. A clauseof theform :collect ¢, :nconc ¢, Of :append c, Wherecisof theform (:into v e),is

handled by evaluating e and adding to the elements of v, which must be one of the collectors declared
after :collectors. If cisjust e, withno : into, thefirst collector isimplied. The difference between
the different clause formsis that

e :collect causesone element to be added to the end of the collector elements.

e :nconc causesalist of elementsto be added (as 1ist-collect would).

e :append isthesameas :nconc except that the list is copied before being added.

. A clauseof theform :within eisequivalentto e by itself, except that anywherewithin e may appear:

(:continue —repeat-clauses—)

These clauses are evaluated within the lexical context established by e, but are otherwise interpreted as
if they appeared at the top level of the repeat. (See example below.)

. If control reaches the end of the repeat body (because a : when test came up False or the last clause

was performed), all the variables with changes indicated by the binding constructs are changed simul-
taneoudly, like the variablesin a do. Then control branches back to the implied tests at the beginning
of the clauses.

. Whenever a test indicates that iteration ends, the first :result e following the test is found, e is

evaluated in the scope of the variables, and the result is returned. However, a :result inside a
:continue is not counted as “following” tests outside that : continue. That is, when a test indi-
cates that the repeat is to end, the operative : result is the one found by searching through the
current : continue, then the immediate enclosing : continue, and so on, up to the top level of the
repeat.

Important note: In a result clause, the value of a collector variable is the list of values accumulated.
Everywhere else, including inside local functions called by aresult clause, the valueis the actual Collector.

If thereare no testsin the repeat, implied or explicit, the macro expander will issue a warning message.
Sometimes not having any tests is actually correct, because the repeat is going to exit some nonstandard
way (say, by throwing avalue). (repeat establishes ablock named nil, SO return can be used to exit it
as well.) To make the warning go away, put in a :while or :until whose test is a string. This will be
discarded and the warning suppressed.

Any atom in the repeat body isignored unlessit is one of the keywords specified above (or one allowed by
the abbreviation convention below). So you can write :else :result if it makesthe control flow clearer.

The syntax of repeat is often considerably simplified by the use of the following abbreviations:

e If N0 :collectors are declared, but there are : into-less clauses of the form :collect e, then a
default collector d is created, and the collect clauseisinterpreted as : collect (:into d e).

o If thereis an (explicit or implied) termination test with no : result after it, the result of the repeat
is the contents of the first or default collector, if any; if there are no collectors, the repeat has no
predictable result, and is presumably executed just for its effects.

e |f there is just one variable binding, whose second element is : in or =, then the parens around the
variable bindings can be omitted. That is, you can write (repeat :for (x :in 1) ...) instead
of (repeat :for ((x :in 1)) ...).

These rules have the consequencethat if thereis just one collector var, then you may usually omit al its
occurrences. SO (repeat :for (... :collector c) :collect (:into ¢ e) :result c) can
bewritten (repeat :for (...) :collect e).

Asan example of repeat, ado loop

(do ((vl el bil)

(v2 e2 b2))
((test vl v2) (res v2 vl))
(format srm "“g7%" (foo vl v2)))

can be written as

(repeat :for ((vl = el :then bl)
(v2 = e2 :then b2))
:until (test vl v2)

(format srm "“g7%" (foo vl v2))
:result (res v2 vl))

The :within-:continue construct can be used to wrap variable binders and conditional tests around
repeat clauses. Example:

(repeat :for ((x :in 1)
:collector c)
:within
(let ((y (expen x)))
(cond ((proper vy)
(:continue
:collect vy
:until (final x)))))
:result c¢)

(We could omit all explicit mentions of the collector ¢, but the result would probably be more obscure.)

3 Facilities for setting and matching

Y Tools defines various facilities for setting variables.

3.1 The !'=macro
1= Macro Location: Ytools, setter

(1= place newval) isagenerdization of set £, providing these extrafeatures:

1. If place isasequenceof theform< vy ...v, >, then (1= < v1 ...v, > newval) isequivalentto
(multiple-value-setqg (v1 ...v,) newval). Thisistheonly case where != has more than two
arguments. The spaces before and after the brackets are necessary. You can write _for any valuethat is
not used., asin (1= < a _ ¢ > (foo c d)), which usesonly thefirst and third values returned by
foo.

2. (!= (< v1 ...vp >) newval) setsv; to the i'th element of newval, which must be alist of at least
n elements. Again, the spaces separating the brackets from the v’s are necessary; and the _notation
may be used to skip elements of newval.

3. If neither of these cases applies, then newval may contain occurrencesof * - *, which standsfor the con-
tents of place before the assignment. For example, (1= (car (get foo ‘tally)) (+ *-* 3))
augments (car (get foo ‘tally)) by 3. The 1= macro uses setf-expandersto avoid recomputing
the left-hand side to the extent possible. The example above might expand to

(let* ((#:911726 (get foo ’tally))
(¥*-* (car #:911726))
(#:911725 (+ *-* 3)))

(rplace #:911726 #:911725)
#:911725)

Just like set £, ! = always returnsits second argument, the new value.

3.2 Qvars and the matchg macro

The question mark character is reserved by Y Tools for use in writing “match variables” or gvaroids. A
special case of the gvaroid is the gvar, which is written (and readable) as 2sym. A qvaroid is an abstract
object consisting of four slots:

1. sym: A symbol

2. notes: A list of stuff, used for various purposes
3. atsign: A boolean

4. comma: A boolean

A qvaroid can be constructed using make-Qvaroid: (make-Qvaroid a ¢ s I) makes a gqvaroid with
atsign=a, comma=c, sym=s, and notes=l. To retrieve a field of a qvaroid ¢, write (Qvaroid-atsign
q), (Qvaroid-sym gq), and so forth.

The external representation of a qvaroid is ? [@]1 [,]1 (s .). E.g. aqvaroid with atsign=False,
comma=True, sym=foo, and notes= (ab) is?, (foo a b). Thisrepresentationis also readable. (When read,
the comma and atsign may appear in either order.) If the “notes’ field is the empty list, the parens may be
dropped.

A gvar isagvaroid with at sign=comma=False and notes=empty list. Itisread and printed asin > foo. Its
congtructor is (make-Qvar sym notes) . (Okay, SO make-Qvar Will make aqvaroidif its second argument
iS non-empty.)

These datatypes may be used for any purpose you see fit, including especialy writing unification algo-
rithms and the like. Thereis also a built-in list matcher:

matchg Macro Location: Ytools, setter

(matchqg pattern datum), wherethe pattern and datum are list structures, tries to match the pattern against
the datum. If it succeeds, it returns True, else False. It has as side effect that the variables in some of the
gvaroidsin the pattern get new values drawn from the parts of the datum that they match.

A simpleexampleis (matchg (P ?x ?y) d). Thematch succeedsif d isalist of exactly 3 elements,
of which thefirst is p. The variable x is set to the second element and v to the third.

It isimportant to realize that matchg is expanded at compile time, so that the pattern does not need to be
scanned at run time. The example above expands to something like this:

(let ((ttt d))
(and (consp ttt)
(eq (car ttt) 'P)
(let ((ttt (cdr ttt)))
(and (consp ttt)
(progn (!= x (car ttt)) true)
(let ((ttt (cdr ttt)))
(and (consp ttt)
(progn (!= y (car ttt)) true)
(null (cdr ttt))))))))

Assignments are done immediately as pieces of the datum are matched. So even if the match fails, some of
the variables in the pattern could be set. Matching is done left-to-right, so if a program can detect which
variable got set and which didn’t, it can infer where the match failed, or at least a set of places where it might
have failed.

If a qvaroid has the comma flag set, then it matches the current value of its sym. SO (matchg (P 2x
?,y) d) succeeds (and setsx) if d isof theform (p anything v), wherewv isthevalueof y. And (matchg
(P ?x ?,x) d) succeedsif disof theform (P a a), Setting x to a.

If a gvaroid has the atsign flag set, then it matches a segment of values in the datum. A segment is a
seguence of zero or more values. |f aqvaroid matches a segment, its variableis assigned to alist of the values
in the segment. For example, (matchg (P ?ex z) d) succeedsif d isalist beginning with p and ending
with z. The variable x is bound to all the values betweenthem; if d = (P ying yang z), then x getsvalue
(ving yang);if d = (P z),then x getsvalue (). Important restriction: there can be at most one segment
(atsigned) variablein agivenlist (i.e., agiven sublist of alist structure). Thisrestriction is required to ensure
that the matcher doesn’t have to backtrack.

If both the atsign and comma flags are set, then the gvaroid matches a sequence of values equal to the
current value of its sym.

If the notes field of a qvaroid is non-empty, then the qvaroid is a special match construct, one of the fol-
lowing. (I use the word “datum” hereto mean “the piece of the datum being matched against this construct.”)

e 2(:& p1 ... pn): machesthedatum if each of the p; does.

e 2(:\| p1 ... pn [:& pgl): matchesthe datum if one of the p,; does. If the fragment “: & pg”
is present, then the datum must also match pg,, which is useful for binding a variable to a datum
that matches one of several patterns. For instance, the pattern (a 2 (:\| huey dewey louie :&
?name)) matchesany of thedata (a huey), (a dewey),and (a louie), Setting name to the cadr
of the datum. Another way of putting it is that the example pattern is equivalentto (a ? (:& ?name
?(:\| huey dewey louie))), but moreconcise.

e 2(:+ pr ... m) matchesthe datum if p matchesit, and it satisfies al the predicates r;. Each
predicate is the name of afunction; write fun instead of #’ fun.

In these gvaroids, the atsign flag may be used, but not the comma flag. When the atsign flag is present, the
piece of the datum matched is a segment of the original datum.
Examples:

(matchg (P ?(:& ?x (foo ?,y)))
d)

succeedsif d isof theform (p (foo v)), wherewv isthevaueof y. Inaddition, it setsx to (foo v).

(matchg (P ?@(:+ ?1 (\\ (x) (is-list-of x #’'is-Integer))))
da)

succeedsif disof theform (p n1 ... mng),whereeachn; isaninteger. In addition, it sets 1 to thelist of
al then;.

If you care about the structure of the datum, but don’t want to assign a variable, you can use the _
convention. So the pattern (p ?_ ?@.) matches any list of length at least two starting with a p, without
setting anything.

3.3 Applications of the matcher

match-cond Macro Location: Ytools, setter

The matcher is used to implement the mat ch - cond macro:

(match-cond datum
[declarations]
---clauses---)

The datum is evaluated, and then the clauses are handled the same as in cond, except for clauses that are
gvaroids. Any clause of the form

(:? pat
---body---)

is handled by matching the pattern pat against the datum. If the match succeeds, the body is executed, and no
further clauses are examined.

All the (comma-free) variables in the patterns of a match-cond are bound with scope equal to the
match-cond. In addition, the variable mat ch-datum is bound to the datum being matched.

Example:

(match-cond (get x ’‘dat)
(:?2 (P ?u ?v)
(list P u v))
(:? ((lambda (?v) (Q ?,v)) 2@)
(list ’lambda v))
(t "nomatch))

is equivalent to

(let ((match-datum (get x ’‘dat)))
(let (u v)
(cond ((matchg (P ?u ?v) match-datum)
(list 'P u v))
((matchg ((lambda (?v) (Q ?,v))
match-datum)))
(t "nomatch))))

10

match-let Macro Location: YTools, setter

Thematch-1let macroisused asa“destructuring binder”:

(match-let pattern datum
---body---)

The pattern must match datum; assuming it does, the body is executed. If the match fails, an error is signaled.

4 An Improved Formatted 1/O Facility
4.1 The out Macro

out Macro Location: YTools, outin

The out macro is an alternative to the awful format facility
http://www.cs.yale.edu/homes/dvm/format-stinks.html.
Unlike format, which separates a “control string” from the data to be output, the out macro interleaves
them. For instance, the format in the do example of the previous section

(format srm "“s7%" (foo vl v2))
can be written
(out (:to srm) (foo vl v2) :%)

Notethat the “out directive” : % hasaname similar to the corresponding format directive™s.
As a dightly more complex example, to output %, y, and their sum, with appropriate annotations: one
could write

°

(out "x = " x ", y ="y :%3 "x+y =" (+ xy) :%)
If xis10andy is 13, then this would cause the following output:

x =10, y = 13
X+y = 23

The“3" means “insert 3 spaces.”
The general form of out is

(out [(:to stream)] ---out-directives---)

If (:to stream) ispresent, output goesto thevalue of the expression stream, otherwiseto *standard-output *.
If stream is the symbal : string, then output goes to a new string which is eventually returned as the value
of the out form. Each out-directive is one of those shown in table 1.

For example, here is how you might output alist dt 1 of defective objects of type Tribbly:

(out (:to *error-output¥*)
"The following tribblies have problems:"
:% (:e (repeat :for ((dt :in dtl)))
(:0 (Tribbly-name dt) :%

"Problems:")

(repeat :for ((tt :in (Tribbly-troubles dt)))
(:0 tt :%))

(:0 :%)))

If wewant each tribbly to be indented, and each problem to be indented under its tribbly, and also to avoid
plural nouns when grammeatically inappropriate, we could get fancier:

11

An integer n

o°

string
:a e)
:t n)
:_€)

~ e — 2 -

(:i> 6)

(:i< e)
(:q ---clauses---)

(:e [(:stream v)]
---exps---)

(:pp-block
[(:pre p)l
d...
[(:suf s)1)

(:pp-ind [:block
| :current]

n)
(:pp-nl [:linear

| :£ill

| :miser

| :mandatory])
(:f ¢ ---args---)

(:v e)

Anything else

If n > 0, insert this many spaces into the output. If n < 0, insert —n
newlines into the output. If n = 0, insert a newline unless aready at the
beginning of aline.

Insert anewline.

princ the string.

Evalute the expression e and princ the result.

Tab to column n (which is not evaluated).

Evaluate expression e, producinganinteger. Treat it asthoughit occurred
as an out-directive (i.e., print spaces or newlines).

Evaluate e, getting an integer n; indent all further lines by n spacesfrom
the left margin. This indentation carries over to all calls of out on the
same stream until the current out form finishes.

Like :i=, except that new indentation is relative to the current indenta-
tion.

Equivalentto (:i> (- e)).

Eachclause isof theform (test ---out-directives---).Resume
processing out-directives with the list from the first test that evaluates to
anon-nil value.

Evaluate each exp and discard the results. Any subexpression of exp of
theform (:0 d...) is, every timeit is executed, treated asthough d . . .
had occurred among the top-level out-directives. If the (:stream v)
part is present, then the variable v is bound to the stream being printed to
for the duration of the e form. See text for explanation.

Print alogical block, with the given optional prefix and suffix. d. .. isa
sequence of out-directives.

Indent subsequent lines in the current logical block by the value of n.
Indentation is relative to the block or the current indentation depending
onwhether :block or : current isthefirst argument.

Possibly insert anewlineinto alogical block. See the documentation for
pprint-newline.

Output the args under the control of the format control string c. Still
the best way of printing floating-point numbers.

Evaluate e and save its value(s). The value(s) of e become the value of
the out-form.

Evaluateit and print theresult (just likethe“"s” format directive, which
requires no counterpart in out).

Table 1: out -directives

12

(out (:to *error-output¥*)
(:g ((null dtl)
"All tribblies are okay" :%)
(t
"The following tribbl™"
(:g ((> (length dtl) 1) "ies have")
(t "y has"))
" problems: "
(:e (repeat :for ((dt :in dtl) num)
(setg num (length (Tribbly-troubles dt)))
(:0 (Tribbly-name dt)
(:i> 3) :%
"Problem"
(:qg ((not (= num 1)) "s"))
"o " (:i> 3) :%
(:e (repeat :for ((tt :in (Tribbly-troubles dt)))
(:0 tt :%)))
(:i< 6) :%))))))

Theout macro fiddleswithits output stream behind the scenes, in much theway pprint-logical-block
does. (The two manipulations are entirely orthogonal, and you can freely intermingle calls to one with calls
to the other.) Hence the result of writing to the same stream outside the out regime is undefined. Thisis
the reason for the : stream field in the : e out-directive. It causes the specified variable to be bound to the
modified stream object being output to. It is safe to pass this object to calls to out from within subroutines
called inside an : e directive. For example, suppose we want to create a subroutine that behaves similarly to
the "p directivein aformat control string (except it takes alist or anumber as input):

(defun pluralize (n srm &optional (alt-endings ‘' ("" "s")))
(cond ((not (is-Number n))
(setg n (length n))))
(out (:to srm)
(:g ((=n 1) (:a (car alt-endings)))
(t (:a (cadr alt-endings))))))

Now we can write our example as

(out (:to *error-output¥*)
(:e (:stream errsrm)
(:0 (:q ((null dtl)
"All tribblies are okay" :%)

(t
"The following tribbl™"

(:e (pluralize dtl errsrm ' ("y has" "ies have")))
" problems: "

(:e (repeat :for ((dt :in dtl) num)
(setg num (length (Tribbly-troubles dt)))
(:o0 (Tribbly-name dt)

(:1i> 3) :%

"Problem"

(:e (pluralize num errsrm))

e (:i> 3) :%

(:e (repeat :for ((tt :in (Tribbly-troubles dt)))
(:0 tt :%)))

(:i< 6) :%))))))))

13

The stream passed to pluralize isessentialy the sameas *error-output *, but safe to writeto using
inner callsto out.

Theindentation level used by out can be atered by using the macro out - indent instead of the : i >,: i<
directives.

(out-indent SIM n
--body---)

bindsthe indentation level of the stream srm to its current value + n and executesthe body. (out-indent s
n (out ...) e) isroughly equivalentto (out :to s (:i> m) ... (:v e)) but can beless obscure
and more efficient. For example,

(out-indent *error-output* 3
(recurse))

may well end up being equivalent to astraightforward call to recurse, if nothingisprintedto *error-output *.
In the same circumstance, (out (:to *error-output*) (:i> 3) (:v (recurse))) must make a
list of the values returned by recurse and turn it back into a row of values when out returns. Whether or
not this efficiency loss isimportant can be debated, but, because the out-form doesn’t actually seem to print
anything, it looks puzzling.

The dbg-out macro isoften handy. (dbg-out gate-var —out-directives—) is equivalent to

(cond (Qate-var
(out (:to *error-output*) ---out-directives---)))

except that if the out-directives don't end with : %, a newline is inserted into the stream after everything is
printed.
4.2 The in Macro

in Macro Location: YTools, outin

For input, Y Tools suppliesasimple facility called in. The formis similar to that of out:
(in [(:from stream)] ---in-directives---)

This reads in a number of objects and returns them as multiple values. If an end of file occurs, no error is
signaled, but instead the value eof * isreturned instead of the object sought. More precisely, if the in would
normally return N values, and only M < N can be read, then values 1,..., M are the objects read, and
vauesM +1,M +2,...,N areeof*.?

Therepertoire of in directivesis considerably smaller than the set of out directives:

e :0bj — A Lispobject is read from the input stream.
e :char — A single character is read from the input stream.
e :peek — A character is peeked at and returned (but | eft in the input stream).

e :string— A whitespace-delimited string isread. If an end-of-fileis encountered, eof * isreturned if
the string is so far empty. Otherwise, the eof * behaveslike awhitespace, and simply ends the string.

e :linestring— A lineisread and returned, asif by read-1line.

2|t isaproperty of the in macro that the number of objects returned can be ascertained at compile time.

14

e :linelist —Alineisreadandreturnedasalist of Lisp objects. If anobjectisalist,the : 1inelist
reader may well have to go on to other lines to read the whole thing. So a more precise definition of
linelist is. Return the shortest list of Lisp objects (b1 ... b,) such that (a) readable repre-
sentations of b1, bo, ..., b, aethefirst n thingsin the input; and (b) only whitespace remains on the
line where the readabl e representation of b,, ends.

e :keyword— A stringisread (as : st ring would), and the result isinterned as the name of a symbol
in the keyword package.

5 Signaling Conditions

In Common Lisp, error, cerror, signal, and other constructs take “ condition designators’ as arguments.
These can include (ugh) format arguments, so we replace all of these with macros that allow out instead.
Themain macrois:

signal-problem Macro Location: YTools, signal

(signal-problem [place-spec]
[condition-spec]
[proceed-spec])

place-spec ::= [:place] p | :noplace
condition-spec ::= (:condition c)
| (:class condition-class ---args---)
| ---outargs---
proceed-spec ::= :fatal | :proceed
| (:proceed ---restart-description---)
| (:prompt-for ---object-description-- default)

Themainthing signal-problemdoesis create a condition object and signal it. There are three waysto
describe the object to be created:

1. (:condition c¢): ¢ evaluatesto the condition.

2. (:class ¢ ---args---): Theconditionis obtained by evaluating
(make-condition ‘¢ ---args---).

3. Anything else: isinterpreted as describing a vanilla condition that prints as though the condition-spec
were argumentsto out.

As with the standard Lisp condition signalers, if the condition is handled, then control transfers to the
handler. Otherwise, the debugger is entered, which is where the place-spec and proceed-spec comein. The
debugger prints a message such as

Error: p broken

where p isthe object specified by the place-spec; p is usually asymbol, but can be anything; it isn’'t evaluated.
The guide symbol :place can be omitted if p isasymbol. This convention can lead to bugs; if you write
(signal-problem x " < 0"),the debugger will print:

Error: x broken
< 0

15

which is probably not your intention. You can avoid x being taken for the place name by writing :noplace
where the place designation goes. If x hasvalue —5, you can write (signal-problem :noplace x " <
o") to get

Error: BREAK
-5 < 0

When the debugger is entered, the proceed-spec influences the displayed restarts. If it's : fatal (the
default), there is no way to continue from the error. If it's :proceed, there will be a restart with a bland
message such as "I will try to proceed.” You can tailor the message by writing (:proceed form), where
form eval uates to the string you want associated with that restart.®

If the proceed-spec is of the form (:prompt-for string default), then the message associated
with the “ continue” restart is

You will be prompted for: string

If you take that continuation, you will be given the choice of typing : ok or of typing : return e. Inthe
former case : signal -problem returnsthe value of default; in the latter, of e.
Somerelatives of signal-problem:

signal-condition Macro Location: YTools, signal

(signal-condition condition-spec) signals the condition described by condition-spec (see above).
If itisnot handled, signal-condition returnsnil.

breakpoint Macro Location: YTools, signal

(breakpoint —out-directives—) is just like break, except that out is used to print its arguments
instead of format.

6 Classes and Structures

One of the cool things about Common Lisp is that you can specialize a generic function on any or al argu-
ments, and any or all datatypes. It is just as easy to speciaize on an Integer as on some hairy CLOS class.
Because thisis so, the distinction between classes and structuresis quite blurry. Structures are in some sense
“light-weight” classes. But the macros used to define them, defstruct and defclass, haverather different
syntax and several unnecessary differencesin effect. It would be nice to have a way of defining an abstract
data type that deemphasized whether it was a class or a struct. That way, you could flip easily between
implementing it as a class or as a struct, without having to change lots of code.

def-class Macro Location: YTools, object

Thedef-class macro does exactly that. In addition, it focuses attention on a subset of object-oriented
programming, which happens to be the subset | use. The result is a somewhat more concise language for
describing the usual cases. If you love realy hairy OOP, then this tool is not for you. On the other hand, if
you don't even want to know whether an abstract datatypeis a structure or aclass, giveit awhirl.

The full syntax is thus:

30lder versions of YToolsused : continue instead of : proceed, and it isstill allowed, but deprecated because using it inside
arepeat—:within can cause confusion.

16

(def-class name
---glot-defns----

[(:handler
---meth-defns---)1]
[(:options [(:include ---components---)]
[(:medium [:list | :vector
| :structure | :object]
[:named]

[:already-defined])]
[:keyl)])

A given call to def-class defines either a structure or a class type. For conciseness, | will use the term
classoid to refer to the datatype defined by agiven call to def-class.
Each slot-defn is either a symbol naming aslot, or alist of the form

(slotname initform [:type typel)

Each meth-defn in the “handler” is of the form required by defmethod (section 6), without the explicit
defmethod. (The :handler field and the : options field can bein either order, and can appear anywhere
inthe body of the def-class, eveninthedot list.)

The : include field specifies the components of the classoid, i.e., the superclasses or included structures.

The :medium option gives the choice of four “media’: :1ist, :vector, :structure, and :object.
The first three cause def -class to expand into adefstruct, thelast, into adefclass. If the :medium
option is omitted, then the def-class defines a class (that is, it expands into a defclass) if and only if
thereis more than one component classoid, or the only component is aclass. (Of course, if thereis more than
one component, they must all be classes or an error will be signaled.) If the mediumis :vector or :list,
the new objects defined by thisdef -class will beimplemented as ordinary vectorsand lists. If the : named
flag is present, the first slot of such a vector or list will be reserved for the name of the class; otherwise, it
will just be an anonymousvector or list. The :named flag is redundant for all other media.

The :already-defined flag means that someone el se defined the classoid, and thiscall to def-class
isjust for the purpose of declaringit. If :already-defined is present, the classoid can have slots but not a
handler or any components.

Unlikedefstruct anddefclass, def-class by default creates apositional constructor, always called
make-classname. The order of the argumentsis determined as follows: Find the class(oid) precedence list
for al the components and reverse it; now enumerate all the slots of each component in that list; for each
classoid, the slots areincluded in the order they were declared in.

Here's an example of acouple of def -classesthat expand into acouple of defstructs:

(def-class Animal
blood-temp numlegs)
(def-class Mammal
(:options (:include Animal))
(lays-eggs false :type boolean))

The constructor make -Mammal for Mammal takesthree arguments, blood-temp, numlegs, and lays-eggs,
in that order.

Non-key constructors are useful for simple classoids (which most of mine are), but become unwieldy
for classoids with many slots or components. To declare a key constructor instead, add the :key op-
tion. If you don't, you can still use a key-constructor, because def-class defines an extra constructor
make -classname-key that uses skey arguments.

The def-class macro will warnyou if you defined a classoid with a non-key constructor that has more
than 10 slots or 2 classes. In addition, if the class being defined has a component with akey constructor, then
the macro will give this one akey constructor, too. [[Thereis currently no way to override this behavior.]]

17

make-inst Macro Location: YTools, object

initialize Generic Function Location: YTools, object

Finaly, if the classoid is a class, one can make an instance by writing (make-inst classname —Kkey-
args—) . make-inst isjust like make-instance, except that the first argument is not evaluated. It's the
name of the class, not something that evaluates to that name.

Once an object is created, by any of the methods above, the generic function initialize isapplied to
it. The methods that are called as a result can perform tasks such as filling slots that still don't have values
after using their initforms. The following are helpful for this task:

e (slot-is-filled ob slot) tests whether the given slot is bound in ob. (Both ob and slot are eval-
uated.) One difference between class and structure instancesis that the former can have truly unbound
dots, whereas structure sots are always filled, traditionally with ni1. In YTools, a structure slot has
default value +unbound-slot-val+, aconstant boundto aunigqueobject. SO slot-is-filledtests
whether adlot istruly unbound or has value +unbound-slot-val+.

e (slot-defaults ob s; v1 ... s, v,) fillsunfilled dots of ob. If dot s; is unfilled, vy is
evaluated and used tofill it. Thenif s5 isunfilled, v, is evaluated and use to fill s5. The slothames are
not evaluated. The order of evaluation and dot filling is left-to-right, so later values may use earlier
Ones.

The handler of a classoid defines methods in the usual way. If for some reason you want to use the
:print-function Or :print-object optionsof adefstruct, you write a handler clause with the cor-
responding keyword where the generic function name should be, asin this example:

(def-class Sec-method
public-key private-key
(:handler
(:print-function (sec-meth srm lev)
(out (:to srm) "#<Security method, public key = "
(:g ((> lev *print-level=*)
(Sec-method-public-key sec-meth))
(t "H####"))
">"))
(cough-it-up (sec-meth)
(Sec-method-private-key sec-meth))))

Note that the first argument of the second method definition doesn’t ook right. It should be of the form
(sec-meth Sec-method). def-class Will fix up such discrepancies, but only for the first argument. The
discrepancies go both ways: the : print - function option for defstruct doesnot expect a specializer on
itsfirst argument, and if you include one it will be removed.

Classes and structures have another difference that def-class smooths over. Suppose in my mam-
mal example we have an instance of mammal stored in v1. We can refer to its numlegs slot by writing
(Mammal-numlegs v1) OF (Animal-numlegs v1). But suppose we now switch to implementing them
as objects, thus:

(def-class Animal (:options (:medium :object))
blood-temp numlegs)
(def-class Mammal
(:options (:include Animal) (:medium :object))
(lays-eggs false :type boolean))

18

Do thecallsto Mammal-numlegs still work? The answer is Yes. Y Tools defines all the functionsrequired to
make defclass behavelike defstruct inthisregard. Thisspares usfrom having to changeall occurrences
of Mammal-numlegs t0 Animal-numlegs, Or from having to define the auxiliary functions by hand.

[[One feature missing from def -class iS conc-name. It could be included without too much effort]]

7 Miscellaneous Features

7.1 The BQ Backquote Facility

Backquote is an indispensabl e feature of Lisp. Yet the standard spec for it leaves something to be desired. |
have two main complaints:

1. There are three things to implement when implementing a facility like backquote: a reader, a macro-
expander, and awriter. The reader converts a character sequence such as * (foo ,x) into an internal
form such as (backquote (foo (bg-comma x))). (Thisiswhat Allegro readsit as.) The macro-
expander then turns calls to backquote into constructor formssuch as (1ist ' foo x). Thewriter
prints (backquote (foo (bg-comma x))) 8 (foo ,x).

Unfortunately, the Common Lisp spec does not specify what the macros are. They are, therefore,
implementation-dependent. Compare the situation with ordinary “ quote,” where thereis awell-defined
internal form (quote z), and therefore a well-defined transformation from the external form * z. The
problem with leaving it unspecified is that there is no way to write a portable code walker that does
something specia with backquoted expressions. In fact, an implementation is not required even to have
an internal representation for backquotes. The reader and the macro-expander can be merged, so that
“(f ,x)isreadas (list ‘£ x). Then the backquotewriter's behavior is not well defined, because
it isimpossibleto tell wheter alist-constructing form came from a backquote or not.

2. The rule for interpreting nested backquotes is that a comma is paired with the innermost backquote
surrounding (and “raises’ its argument out of that context, so that the next comma matches up with the
next backquote, and so forth).

| think this is wrong, or at least wrong in some cases. | read backquotes |eft-to-right, and hence see
the outermost backquote first. One would like it to be the case that from that backquote's point of
view, everything inside it is “inert” (quoted), except stuff marked with a comma. This s true for all
expressions that might occur inside it, except another backquote. So if you are editing a complex
backquote expression:

‘' (foo (bazaroo '’ (fcn a ,x)))

the inner quote doesn’t “shield” x from evaluation. But if you convert the inner quote to a backquote,
that's exactly what happens. You have to convert it to this:

‘' (foo (bazaroo ‘(,fcn a ,’,x)))

The ,’, construct is just plain ugly. Its sole purpose is to raise its argument out of the innermost
backquote; you can't say , , x, because that would mean “Evaluate x when the outer backquote is
expanded, getting e, and then evaluate e when the innermost backquote is expanded.” Notice how the
order of evaluation is outside-in, while the nested-backquote ruleis inside-out. Very, very confusing.

These are not huge defects; 99.9% of al backguotes are not nested, and almost no one cares what the
internal representation of a backquote is. But if you're interested, the file bg. 1isp provides an aternative
implementation. It defines a portable macro, ytools: : bg-backquote, for a backquote to expand into.

19

ytools: :bg-backquote Macro Location: bg

ytools: :bg-comma Macro Location: bg

The revised backquote is available as “! ”; the original backquote is not disturbed by loading bg. You
can use the new backquote just likethe old: ! (£ ,x) evaluatesto the samevalueas * (£ ,x). Themain
innovation is that after the backquote and comma characters can come a single digit (between 1 and 9) that
shows directly how to match up the backquotes with the commas. Compare the following two forms:

1'1(foo (let ((x (k 3))) !‘2(baz ,1x ',2y)))
"1 (foo (let ((x (k 3))) !*2(baz ,2x ’,1y)))

which, in an environment withx = (car y) andy = ((d e £) b c), evaluate, respectively, to

(foo (let ((x (k 3))
(foo (let ((x (k 3))

) 1'2(baz (car y) ',2y)))

) !''‘2(baz ,2x '((d e f) b c))))

Actually, to improve readability, the digit after a commamay be followed by a“#" character, and the back-
guote pretty-printer puts the character in when the expression following the comma-digit is an atom. So the
two examples above actually print as

(foo (let ((x (k 3))) !'2(baz (car y) ’,2#y)))
(foo (let ((x (k 3))) !'‘2(baz ,2#x "((d e £f) b c))))

The digits after comma and backquote are optional, and default to 1. Obviously, you can’t nest a 1-labeled
backquote inside another 1-1abeled backquote, so as soon as you nest them you must use at least one explicit
label. The digits needn’t come in any order, so the inner backquote can be labeled 1 and the outer 2, or vice
versa. Inthe*, @” construct, the digit comes between the commaand the atsign.

Suppose you want to get an expression e to be evaluated when the outer backquote is expanded, and
that value to be evaluated when the inner one is expanded. You must write them in this order: !1 (
Ir2(... ,2,1e)).The", 2" istreated as constant when the outer backquoteis expanded, but its argument
is evaluated and substituted, yielding (...!"2(... ,2v)),wherev isthevalueof e.

Thetypical use for nested backquotes is where you have a macro that expandsinto the definitions of one
or more macros. For example, you might have arecursive data structure that is processed in several different
ways. A processor of this data structure is a data-driven function that delegates most of the work at a node
to a procedure that depends on the identifier of the node, that is, a symbol stored in the node that says what
kind of nodeit is. For concreteness, picture the data structure as the parse tree of a sentence, with identifiers
such asnoun-phrase, word, sentence, and so forth. One processor of the parse tree might generate voice
output for a sentence. Another processor might check the parse tree for errors. Another might verify that the
treeisalegal parse of agiven sentence. For the voice-output task you create a macro

(def-voice-handler n ...)
where n isthe identifier for anode. Then you use the macro as in these examples:

(def-voice-handler noun-phrase ...)
(def-voice-handler verb-phrase ...)

Within the body of each macro, the variables node and subnodes should correspond to the node being
processed and its subnodes.
For the parse-test task you create a macro

(def-parse-check-handler (n) ...)

In this macro, we can refer to node and subnodes as before, but also to £rag, which is bound to the part of
the sentence we are trying to verify.
A typical macro definition would look like the onefor def -voice-handler:

20

(defmacro def-voice-handler (name &body body)
1Y (= (gethash ’,#name voice-handler-tab*)
(\\ (node subnodes) ,@body)))

Theideais that the voice-output processor finds the identifier for the node, looks up the handler in the hash
table, then callsit, passing it the node and subnodes.

The definition of def -parse-check-handler would look almost identical, except that we would use
parse-check-handler-tab* instead of the voice-handler-tab*, and would add the frag argument
to the lambda expression.

If there are many different processors, one might want to write a general-purpose macro to define these
macros automatically. Hereiswhat it would look like:

(defmacro define-process-handler-macro (processor args)
(let ((macro-name (build-symbol def- (< processor) -handler))
(handler-table-name (build-symbol (< processor) -handler-tab*)))
1'2 (defmacro ,2#macro-name (name &body body)
1Y (I= (gethash ’,name ,2#handler-table-name)
(\\ (node subnodes ,2®@args) ,body))))

Now we can just write

(define-process-handler-macro (voice ()))
(define-process-handler-macro (parse-check (frag)))

The second one expands into

(defmacro def-parse-check-handler (name &body body)
1V (1= (gethash ’,name parse-check-handler-tab¥*)
(\\ (node subnodes frag) ,body)))

which is exactly what we would have written by hand. Note that it was nearly effortless to turn constant parts
of the original macro into evaluable expressions matching the outer backquote. (For an explanation of the
build-symbol macro, see section 7.4.)

7.2 The Mappers

<# Macro Location: YTools, mapper
<! Macro Location: YTools, mapper
<$ Macro Location: YTools, mapper
<& Macro Location: YTools, mapper
<V Macro Location: YTools, mapper
<< Macro Location: YTools, mapper
</ Macro Location: YTools, mapper
<? Macro Location: YTools, mapper
neg Location: YTools, mapper

These are dl versions of the usual mapping functions, such as mapcar and mapcan, with a few twists
thrownin. For instance, (<# f —lists—) meansthe same as (mapcar f —lists—), except that f istreated
asthough it werein functional position. You canwrite (mapcar #’foo 1) as (<# foo 1). Thefollowing
table gives the correspondences between the Y Tools mappers and the built-in facilities:

21

<# = mapcar

<! =mapcan

<$ = mappend (see below)

<& = every

<V = some

<< = apply

</ =mapreduce (see below)

<? = remove-1if, with predicate negated

The last line requires a bit of elaboration. (<> pred list) returnsanew list consisting of all the elements
list that satisfy pred.

If the symbol neg appears before the function designator in one of these mapping constructs, then it
applies not to the value of the function. Thisis most useful in conjunction with the mappers <&, <v, and <2,
but will work with any of them. Example: (<? neg atom 1) returnsalist of al the elementsof 1 that are
not atomic.

7.3 Data-driven Programming

Many Lisp procedures“walk” through S-expressions recursively, performing some operation on each subex-
pression and collecting the results in some way. In most of these procedures, some subexpressions have to
be treated in an idiosyncratic way. For instance, if a procedureis walking through a Lisp program perform-
ing an operation that is sensitive to variable bindings, 1et and 1ambda expressions must be handled by a
subprocedure that notes the new variables that are bound inside these expressions. One way to handle these
specia subexpressionsis by using a cond to check for each case. This method becomes unwieldy and hard
to maintain if there are many special cases. At that point it's appropriate to use the object-oriented approach,
and “ask” the S-expression how it “wants’ to be handled. Less poetically, we associate a table with the tree-
walking procedure, and every time the tree walker comes to an expression E whose car isthe symbol f, it
looksin the table for ahandler for expressionswhose car is f, and if it findsone, callsit to handle E. Thisis
called data-driven programming.

The datafun facility isasimple set of tools for implementing this technique. Obviously, there are three
things you have to do to apply data-driven programming to a particular task:

1. Decidewherethe handler for f will be stored. The obvious choicesare in an association list, in ahash
table, or on the property list of f.

2. Write a snippet of code to store a handler.
3. Write handlersfor all the fsof interest.
Thelast bit is handled by the datafun macro.

datafun Macro Location: YTFM

(datafun taskid f
(defun :" (--args---)
)

defines a function named f -taskid. The taskid is an arbitrary symbol you choose to represent the task. For
instance, if your S-expression walker is counting free variables, you might giveit thetaskid freevar-count.
Then

(datafun freevar-count let
(defun :”~ (e env)

.2))

22

This defines afunction 1et - freevar-count which isto be called (with two arguments e and env) by the
freevar counter.

Let's supposeyou decideto storein ahash table freevar-count -handlers*. You retrieve the handler
for an S-expression beginning (f...) by doing (gethash f freevar-count-handlers*).

Theonly remaining bit isto tell the datafun macro whereto store the handlers. In general the way to do
thisis by using the same design idea at a“ meta-level,” supplying a“datafun attacher” handler:

(datafun attach-datafun freevar-count
(defun :” (id sym fname)
Code to attach function named fname to symbol sym
under taskid id))

So we could write

(datafun attach-datafun freevar-count
(defun :~ (_ sym fname)
(1= (href freevar-count-handlers* sym) (symbol-function fname))))

Hash tables and association lists are used so often for data-driven programming that these two cases can be
abbreviated. Just write (datafun-table table-var taskid &key (size 100)) toalocateahashtable
for thegiventaskid withthegivensize. Thatis, wecouldjust write (datafun-table freevar-count-handlers*
freevar-count 10).

Similarly, (datafun-alist alist-var taskid) to declare aglobal dist. In the previous example, if we
had written (datafun-alist freevar-count-handlers* freevar-count), thenthegloba variable
freevar-count-handlers* would be allocated (with initial value ()), and declaring a new handler for
symbol sym will change the entry for sym in freevar-count-handlers* to be that handler; of course, if
thereis no entry, one will be added to the front of the alist.

There are two shorter forms of datafun:

e (datafun taskid sym sym’) makesthe handler for sym be the same as the handler for sym’.

e (datafun taskid sym #’fcn) makesfunction fcn the handler for sym.

7.4 Other Functions and Macros

In this section | summarize various “small” functions and macros, in mostly alphabetical order.

alref Macro Location: YTFM
alref. Macro Location: YTFM

(alref a = [d]) islike (cadr (assg = a)),butif thereisno entry for x inthealist a, d (orif d is
missing, False) isreturned. Note that the order of argumentsto alref islikethat of aref — tablefirst, then
key. (Cf. href, below.) alref. islike alref except that cdr of the pair is returned instead of the cadr.
Both of these macrosare set £-able.

bind Macro Location: YTFM

bind issynonymouswith let, except that it declares al the variablesthat it binds special.

assq Function Location: YTFM

assqgisasynonymfor assoc with test eq.

build-symbol Macro Location: YTFM

23

(build-symbol [(:package p)] —pieces—) createsasymbol. The package argument p is evalu-
ated to yield the package where the symbol will reside. If the package argument is missing, the symbol will
be in the packagethat is the value of *package*. If p evaluatesto False, the symbol will be uninterned.

The“pieces’ of thebuild-symbol form specify pieces of the name of the symbol. Each “piece” speci-
fication x yields a string according to the type of x:

Symbol The name of the symbol

String z; but if 2 contains a phabetic characters you will get awarning (see below)
any other atom The string obtained by princ-ing =

alist (:< e) Thestring obtained by princ-ing the value of e

alist (:++ v) Thestring obtained by princ-ingthevalueof (incf wv)

The warning for strings containing al phabetic charactersis generated because the characters will be used
to produce the name of a symbol, and it is hard to do thisin a portable way. In ANSI CL, the string should
be uppercase, but in Allegro’s Modern CL, it should be lowercase. Using symbols solves the problem.

Example of build-symbol:

(build-symbol :foo ":" (++ foonum*))
=> |FOO:7| in ANSI CL
|foo:7| Modern CL

assuming foonum* is 6 beforethe call to build-symbol; foonum* hasvalue 7 afterward.

car-eq Function Location: YTFM
(car-eq z y) istrueif z isaparwhosecariseqy.

classify Function Location: YTFM

(classify I p),wherelisalist and p is apredicate, returns two values: alist of all elements of [that
satisfy p, and alist of all the elements that don’t.

debuggable Macro Location: YTFM

(debuggable K), where K is either -1, 0, or 1, expands into a declaration of compiler-optimization
guantities such as speed and debug. (The exact settings depend on implementation.) The expansion also
sets the variable debuggability=* to K, thus allowing your own macros to expand differently depending
on the declared debuggability level. (None of thiswould be necessary if there were a portable way to find out
the current settings of speed, debug, and company.)

drop Function Location: YTFM

(drop n 1), where n is an integer and [is a list, returns a new list consisting of all but the first n
elements of [, or the last —n elementsif n < 0. If n > 0, (drop n 1) isequivaentto (take n’ 1), where
n’ =n —length(l). If n < 0, (drop n () isequivalentto (take n’ 1), wheren’ = n + length(l).

eof * Constant Location: YTools, outin

The in macro (section 4) returnsthis constant if it encountersthe end of the stream being read from.

false Constant Location: YTFM

24

false denotesFalse,i.e, nil.

funktion Macro Location: YTFM

(funktion s),which may bewritten ! ' sisequivalentto (function s) if sisalambda-expressionor
debuggability* is< 0. If sisasymbol and debuggability* is> 0, it'sequivalentto (quote s). The
latter islogically less clean, but allows you to redefine s without finding and fixing every place containing a
pointer to its old definition.

href Macro Location: YTFM

(href h k [d]) islike (gethash k h), except for the argument-order change (see alref, above),
and the fact that if thereisno entry for & in h, d (default False) isreturned. href returnsexactly onevaluein
either case. href iSsetf-able.

include-if Macro Location: YTFM

In a backquote , @ (include-if s e) expands to the value of e if s evaluates to True, otherwise to
nothing. E.g., * (foo ,y ,@(include-if (p x) x)) expandslike * (foo ,y ,x) if (p x) evaluates
to True, andto * (foo ,y) otherwise.
is-list-of Function Location: YTFM

(is-list-of z p),returnsTrue if z isalist of objectsthat al satisfy predicate p.
is-whitespace Function Location: YTFM

(is-whitespace c) isTrue if and only if character ¢ is whitespace.
lastelt Function Location: YTFM

(lastelt [) isequivaentto (car (last 1)).
len Function Location: YTFM

len isequivalent to length, except that it works only on lists, not arbitrary sequences.
make-Printable Function Location: YTFM

(make-Printable f creates an object whose printed representation on stream s is (f s). Such an

object may sound useless, but it is convenient for defining special “marker” objects that indicate that some
conditionistrue. For example, alanguage interpreter might return an error flag defined as

(defconstant +err-flag+
(make-Printable (\\ (srm) (out (:to srm) "#<Error during evaluation>"))))

The constant eof * is a Printable.

memqg Function Location: YTFM
memg IS asynonym for member with test eq.

multi-let Macro Location: Ytools, multilet

25

(multi-let clauses —bhody—) isacrossbetweenmultiple-value-bindand let. Eachclause is
of theform

(varspec exp)

but each varspec iseither asinglevariablename, asin 1et, or alist of variablesasinmultiple-value-bind.
Example:

(multi-let ((x (foo))
((y z)
(baz u v 3)))
(* (+ xvy) 2))

x isbound to the single value of (foo), and y and z are bound to the two valuesof (baz u v 3).

Thereisacrucia difference between multi-let andmultiple-value-bind. The latter doesn’t care
whether the number of variables being bound is the same as the number of values returned; it discards values
or introduces nil values to make everything match. Many hard-to-track-down bugs are produced by this
behavior. If debuggability* (seebelow)is> 0, multi-1let will signal an error if the two don’'t match up.
If debuggability* < 0, multi-let will expandinto more efficient code that doesn’t check for alignment
of the variables and values.

nodup Function Location: YTFM

(nodup ! [:test p]l) returnsacopy of list [with duplicates removed. The equality test is p, default
eql.

occurs-in Function Location: YTFM

(occurs-in z r) iSstrueif x occurs asasubtree or leaf (egl-tested) of S-expression .

->pathname Function Location: YTFM

(->pathname z) converts z to a pathname, if necessary and possible. It converts strings in the usual
way, and converts symbols by converting their names, with case suitably adjusted. Once it has a string, it
expands Y Tools logical pathnames, so that the result is aregular Common Lisp pathname.

pathname-get Function Location: YTFM

(pathname-get p s) isthevalue of property s of pathname p. It can be changed using setf.

printable-as-string Function Location: YTFM

(printable-as-string s) createsanobjectthat printsasthestring s. Equivalentto (make-Printable
(\\ (srm) (out (:to srm) (:a s)))).

series Function Location: YTFM

(series [I] h [i)) isthelist of numbers (1, I+, 1 +2i, ..., [+ [, Ifiisabsent, it

defaultsto 1. If in addition [is absent, it defaultsto 1. Examples: Z

(series 10 20 3) = (10 13 16 19)

(series 10 22 3) = (10 13 16 19 22)

(series 10 20) = (10 11 12 13 14 15 16 17 18 19 20)
(series 10) = (1 23 4546 7 8 9 10)

26

shorter Function Location: YTFM

(shorter I n), wherel isalist and n is an integer, returns the length of [if that length is < n, and
False if itisn't.

symno* Variable Location: YTFM

A global variableuseful asacounter in constructionssuch as (build-symbol foo- (:++ symno*)).
Of course, you can use your own countersif it yields moreintelligible symbols.

take Function Location: YTFM

(take n 1), wheren isaninteger and/ isalist, returnsanew list consisting of the first n elementsof [,
or thelast —n elementsif n < 0.

true Constant Location: YTFM

true isaconstant denoting True, i.e., t.

8 Downloading the Software and Getting it Running

The Y Tools package is available at my website

http://www.cs.yale.edu/homes/dvm.

You download atar file that creates two subdirectories. Let's suppose you expand it in adirectory ~/prog;
you'll get™/prog/ytload/and”/prog/ytools/. Theformer directory containsbasic codefor loading
Y Ttools (and other systems, which don’t concern us here). Then put the following in your Lisp initialization
file(eg., .clinit.cl in Allegro Common Lisp):

(load "ytload-dir/ytload.lisp")
(setqg ytools::config-directory* "~/")
(setqg ytools::ytload-directory* " /prog/ytload/")

The config-directory* should be your home directory if you are using your own private copy of
YTools. If you'reinstalling it for use at a site, use some other appropriate directory. I’m assuming that your
Lisp can accept “ /" as adirectory delimiter; if not, change the pathnames to something legal .

yt-install Function Location: YTFM
yt-load Function Location: YTFM

Once these lines have been executed, you can install a system by executing (yt-install :sysname);
the Y Tools package itself is loaded by executing (yt-install :ytools). You can aso load subsets and
supersets of the package, as described in section 9.9. The only two systems discussed here are : ytools and
:yt £m, but others can be downloaded from my website.

All the installation process does is prompt you for the values of various global variables, which are then
stored in afile named ytconfig.1isp in the configuration directory. . You can edit the values in the file
whenever and however you want. You cannot, however, easily introduce new variablesinto thefile. After the
systemis installed, you load it on all subsequent occasionsby typing (yt-load :sysname). Actuadly, it
is unnecessary to call yt-install explicitly; if youtry to load an uninstalled system, yt -1o0ad will install
it first, after asking if that's what you want to do. yt-install and yt-1load are defined inthe :c1-user
package, and exported from the : ytools package.

The : ytools packageisanalogoustothe : c1-user package. You can do all your work there, but for se-
rious projects you will define one or more packagesthat “use” the : ytools package, and you will encounter
thefollowingissue: Thebasic macrosdefun, defmacro, and eval -when are shadowedin : ytools (S0 that

27

theignorablevariable _can be handled properly, and so that eval -when understandsthe : slurp-toplevel
symbol; see section 9.4). So, if your package uses both :ytools and : common-1isp, asit certainly will,
therewill be a conflict between the two versions of each of these symbols. You may resolveit either way you
like, but if you take the standard versions (from : c1-user), you will not be ableto use“ ”; why would you
want to do that? Instead, write

(defpackage :mypkg
(:use :common-lisp :ytools)
(:shadowing-import-from :ytools
ytools::defun ytools::defmacro ytools::eval-when)

-)

Of coursg, if you want the standard versions of these facilities, import them from : c1-user instead.

9 The YTools File Manager (YTFM)

Y Tools provides utilities, collectively called theY Tools File Manager,” or Y TFM, for loading and compiling
files. In particular, it keeps track of whether afile needs to be recompiled before it is loaded, and what files
depend on what other files. Most CL implementations provide extensions to the built-in 10ad function,
plus some variant of defsystem, to accomplish these tasks. defsystem, like make in Unix, puts all the
information about a group of related filesin one place.

YTFM takes a somewhat different approach, in which each file starts with a record of what other files
it depends on. There are still modules, but a module is simply a name for an expression that loads a group
of files. If you find this approach misguided or unnecessary, you may want to skip to section 9.9. However,
one thing to be aware of isthe meaning of the “Location” information in the presentation of Y Tools features.
Instead of loading the entire : ytools system, one can load just the Y TFM, plus the pieces of Y Tools that
you want.

If the “Location” specified for a YTools tool is “YTFM”, then the macro is loaded as soon as you do
(yt-load :ytfm).

If the location includes a file name F' (in typewriter font), then the function or macro is to be found
in the file sytools/F.1lisp. If you want just a few tools, evaluate (yt-load :ytfm), then (fload
sytools/ F), for each file F' you want. Of course, if the file depends on other files, they will be loaded,
too. The details of what £1o0ad does are described in the next section.

Most tools have “YTools” in their “Location” information, which means the tool is loaded when you
execute (yt-load :ytools). Some have just afile name, meaning that in addition to loading :ytools,
you have to £1oad thefilein question.

9.1 Loading files: f1cad
fload Macro Location: YTFM

TomaketheY TFM work, onemust usethe f1oad/fcompl facility instead of theusual 10ad, compile-file,
and such. Theformat of f1cadis:

(fload [fload-flag] * ---filespecs---)
where filespecs isalist of directories and files. Example;

(fload "/home/smith/prog/" macros support
$utils/ mailhack)

when thisfile is being compiled, loads files

28

/home/smith/prog/macros.fasl
/home/smith/prog/support.fasl
Sutils/mailhack.fasl

(assuming that fas1 isthe appropriate extension for an object filein the host Lisp system; see section 8). If a
file has already been loaded (and not changed subsequently), it is skipped, unless this behavior is overridden
by the - £ or -c flags. If an object file doesn’t exist, or is not up to date, the Y Tool s system decides whether to
(re)compileits source file, or use an old binary if thereis one. It usually asks the user, but its exact behavior
depends on the global variable f10ad-compile* (see below).

After the support file has been loaded, fload loads sutils/mailhack.fasl. However,sutils/
is not really the name of a directory. The % in front of it indicates that it is a YTools logical pathname,
which normally expands into a directory, as specified by def-ytools-logical-pathname, described in
section 9.2,

If the filespecs are omitted, then the ones used on the previous call to £1oad are re-used. The values set
by the flags (see below) are recovered as well.

Thisgeneral behavior is modified by variousflag argumentsto f1oad, and aglobal variable, f1oad-compile*.
The variable takes on one of these values:

e :compile: Always compile, without asking the user.
e :source. Never compile. Load the sourcefileif it is newer than the object file.
e :object: Never compile. Load the object file even if it is older than the source.

e :ask (the default): Ask the user whether a file should be recompiled. The user has four possible
responses:
1. y: Yes, compileit
2. n: No, don't. Y Toolswill follow up by asking whether to load object or source, and whether that
decision should be permanently associated with thefile.
3. +: Yes, and set fload-compile* t0O : compile from now on.

4. -: No, and set fload-compile* to : object from now on.

Exactly what happens when afile is compiled is discussed in section 9.4.
The possible flag argumentsfor £1oad are:

e Flag - £: Forcethefileto be loaded even if has been |oaded already and not changed since.

e Flag -c: Forcethefile to be recompiled and loaded even if £1oad normally would not do one or both
of these operations.

e Flag -: Clear -£ and -c flags. This operation makes sense because the - £ and - ¢ flags are remem-
bered as long as you keep evaluating £1oad calls with no explicit files arguments. So, &fter, e.g.,
(fload -c),which causesthe most recently £1oaded filesto be recompiled and reloaded, (fload)
will do the same thing; the -c is “sticky.” Writing (fload -) causes thefile to be reloaded without
mandatory recompilation.

e Flag -a: If the user has previously been asked whether to load the source or object version of thefile,
and in that dial ogue said to do the same thing from now on without asking, then discard that information
and ask again when necessary.

29

9.2 YTools Logical Pathnames

Thefilespecs in acall to fload are interspersed directories and file names. These can be strings or symbols. If
youtype (fload foo),thenin ANSI Common Lisp foo will actually beread as Foo, but Y Tools can figure
out that the intended file nameis "foo" from its knowledge of the usual case of file and symbol names.

The character * %’ has a special meaning in afilespec. It signals the beginning of a YTools logical path-
name. These have nothing to do with Common Lisp logical names, although they play asimilar (and comple-
mentary) role, allowing the physical location of afileto vary from implementation to implementati on without
changing referencestoit. A YToolslogical nameis defined by executing

(def-ytools-logical-pathname name pathname [object-code-loc])
After this, any referenceto $name isinterpreted as pathname. For instance, after
(def-ytools-logical-pathname ded "~ /prog/deduction/")

executing (fload $ded/ unify) will try to load "/prog/deduction/unify.lisp or its object file.
The optional object-code-loc argument specifies where to put object files compiled from source files in this
directory. If omitted, they are put inthe samedirectory. A relative pathnamesuchas . . /bin/ " isinterpreted
as follows: Suppose we are in a directory ending . . ./c/d/. We ascend one level, remembering d, then
descend one level (through bin), then one more, through d again, yielding . ../c/bin/d/. Anaogous
operations are performed if you have to ascend more than one level.

Note that the slashes at the end of pathname definitions are meaningful and required. A form such as
(def-ytools-logical-pathname foo "x.lisp") isokay, but simply defines foo as a synonym for
x.1lisp. If youwant foo to stand for a directory (the usua case), you haveto put the slash in.

The function filespecs->pathnames converts a filespecs list to a list of ordinary Lisp pathnames.
E.g., (filespecs->pathnames ' ($ytools/ hunoes fileutils)) mightreturn

(#P" /usr/local/ytools/hunoes" #P"/usr/local/ytools/fileutils")

The pathnames have no defaultsfilled in, and may or may not point to files that already exist.

Note on directory delimiters: Different OS's have different directory delimiters. In my experience, most
Lispsallow aforward slash even if the underlying OS uses some other character. Thank God. One of thefirst
queriesin the installation process for Y Tools s for the value of the “directory delimiter” on your computer.
Try typing ‘ /* and switch to the actual delimiter for your filesystem only if * /* doesn’t work out.

9.3 File Dependencies: depends-on
Y Tools expects that near the front of each file will appear an expression exemplified by the following
(depends-on (:at :run-time) %ded/ unify index)

Supposethisform occursinthefile thisfile. lisp. The depends-on facility tells Y Tools that when this
file is loaded, two other files should be loaded. They are both found in a directory identified by the Y Tools
logical name ded. So if you execute

(fload thisfile)

fload will check whether unify.1isp hasbeen loaded in an up-to-date form, and if not will compileit if
necessary and load it, and similarly for index.1isp.
The general form of depends-on is

(depends-on ---dep-groups---)

whereeach dep-group isof theform
[time-spec] ---filespecs---

30

and filespecs are as described for f1oad, above. depends-on declares that the given filespecs are needed
when the file containing the depends-on is processed. The time-specs state exactly when they are needed,
and will be discussed in detail below.

To understand the time-specs, | first need to review the Y Tools model of file dependency. Every fileis
divided into a header and abody. The header is the few lines at the top of the file that identify its package,
what symbols it exports, what files it depends on, and so forth. There is no need to indicate the end of the
header explicitly, but Y Tools assumes that the end occurs as soon asit finds a piece of code that doesn’t seem
to belong to the header (e.g., a function or datatype definition). That means all “headerish” material should
appear at the front of thefile.

Asalfile f; is f1oaded (whether compiled or not), if Y Toolsfinds (depends-on ... (:at :run-time)
. f2 ...)init thenit £1o0ads f> before resuming the load of f.
Similarly, if f; containsa (depends-on ... (:at :compile-time) ... f2 ...) form, then

when f; is compiled, f» will be loaded. Time-specs are described in complete detail in section 9.5.

9.4 Compiling and Slurping Files
fcompl Macro Location: YTFM

A file is compiled when f1oad sees that its object version is out of date (see section 9.1), or when the
following functionis called and the object is out of date:

(fcompl [fcompl-flag] * ---filespecs---)

Here filespecs have the same format as for f1oad.
Theflagsfor fcompl are:

e Hag -£: Forcethefileto be compiled even if its source has not been changed since the last time it was
compiled.

e Hag -: Asfor the same flag in conjunction with £1oad, this causes fcomp1l to “erase” the - £ flag.

After asuccessful compilation, £fcompl will normally try to load the new object file. Exactly what it does
depends on the value of the global variable fcompl -reload*:

o If it'sFalse, the new object file is never loaded.
e Ifit's :ask (the default), it will ask if you whether to load the object file.
e If it'sany other value, the new object file is always loaded.

The process of compiling afile, whether by f1oad or fcompl, differs from the standard Lisp model in
that the file and thefiles it depends on are examined in a preprocessing pass before the regular Lisp compiler
looks at them. This preprocessing is called slurping.* Most of the time, Slurping just examines the header
of afile to extract file dependencies. The header is the portion of the file at the beginning that describes the
relationship of thisfile (and its packages) to other files (and their packages). It isintended that users not have
to focus too hard on the definition of the header, because Lisp files will just naturally organize themselves
the right way, but here is the technical definition: the header is the segment at the beginning of the file
that consists entirely of headerish forms, those whaose function or specia-operator is one of depends-on,
in-package, defpackage, declaim, eval-when (SOmetimes), or slurp-whole-file. (The novelties
in this list are explained later in this section.) Of course, aform (prognes,...,e,) is counted as headerish
if each e; is, and amacro form is headerish if it expandsinto something headerish. The macros in-header
and end-header can be used to control the exact boundary of the header. See below.

For example, supposefile foo.11isp contains

41t's reminiscent of the Java process, except the the Java compiler examines class files, not source files.

31

(depends-on (:at :run-time) baz)

When foo.1lisp is compiled (say, by writing (fcompl foo)), the first thing that happensis that Y Tools
checks to see if any of the files foo.1isp depends on has changed since the last time it was loaded, by
slurping foo. lisp, baz.lisp, and al the other files supporting £oo. If it findsany, it consider recompiling
and reloading them, meaning it consults the variable f1oad-compile*, and may end up asking the user
whether to recompile, reload, or both.

This may take some getting used to. The Y Tools model of file dependency and compilation is not the
usual Lisp approach, which is roughly: To compile a set of files, load them all in as source files, then
compile them all, then load them all in as object files. (A well organized file set can be compiled by a
more incremental process, in which each file is loaded as source, compiled, then loaded as object.) Y Tools
separates compilation and loading in a more elegant way. When afile is compiled, normally the files it will
depend on at run time are only slurped. Then when it is loaded, those same files are loaded. In thisway, it is
possible to recompile a system without ever loading any of itsfiles.

The basic assumption of slurping is that during compilation of afile F', the only thing one needs from a
supporting file S isinformation about the supporting file's supporters. But there are afew other possibilities:

1. If file S contains a macro definition, it is usually the case that the macro should be available during the
compilation of F. If the macro calls functions defined in S, those should be available, too.

2. In the extreme case, S is nothing but a set of macros that are needed at compilation time, and not
needed at all when F' is actually loaded.

Thefirst case is handled by ensuring that when the header of afile is durped, so is the rest of the file.
Thisisaccomplished by alocal declaration, which can take two forms:

1. Puttheform (slurp-whole-file) anywherein the header.
2. Endthe header withtheform (end-header :continue-slurping).

The latter looks prettier, but the former is somewhat more flexible in practice. The file manager will print a
message “ slurping filename...” whenit startsto slurp the wholefile, and amessage“. .. Slurped filename”
when it finishes. No message is printed when the header aloneis slurped.

The only other flag that can come in an end-header formis :no-compile. Its presencetells YTools
that this file should never be compiled.

The macro end-header can be used to declare the end of the header of a file. This may clarify the
structure of somefiles, but is normally necessary only when it carries a special flag like :no-compile. The
header normally stops when a non-headerish form is encountered. This fact can lead to frustrating situations
where Y Tools thinks it has left the header before you think it has. To debug in such a case, set the variable
end-header-dbg* to True, and Y Tools will tell you when it thinks it has reached the end of each header it
examines.

To force a set of forms to be “headerish,” use (in-header ei,...,e,). It's equivalent to (progn
e1,.-.,en), When compiled, but when slurped it will not end the header, no matter what each e ; does.

In YToals, eval-when has been augmented with anew “situation,” : slurp-toplevel. Thatis,

(eval-when (... :slurp-toplevel)
---forms---)

causes the forms to be evaluated when the eval-when is encountered during the slurping of afile. An
eval-when formis“headerish” if and only if it includes : slurp-toplevel amongits situations.
Theform

(needed-by-macros ...)

needed-by-macros iS equivaent to

32

(eval-when (:compile-toplevel :load-toplevel :execute :slurp-toplevel)

L)

That is, the forms nested within needed-by-macros are evaluated whenever the needed-by-macros is
encountered, even during slurping. The reason for the name is that a typical use for this construct is in a
file that contains a macro definition, plus some subroutines used by the macro. Slurping the file normally
causes the macro definition to be taken but other function definitions to be ignored. Wrapping the subroutine
definitionswith (needed-by-macros ...) fixesthe problem.

When compiling, you will see messages announcing when files are being compiled and loaded. You will
al so see messages announcing when they are being slurped (although, as explained above, not when only their
headers are being examined). All the messages can be suppressed by setting f1oad-verbose* to False.

9.5 Time Specs in depends-on

The second case mentioned above is where file F' has a direct supporter S that consists entirely of macros,
constant definitions, and the like. In this case, you probably want S to be loaded when F' is compiled, but not
when the object version of F' isloaded.

A time-spec in adepends-on is of theform

(:at [:run-time] [:compile-time] [:slurp-time])
Suppose the form
(depends-on ... (:at t.1 ... ton) ---filespecs--- ...)

occursin file F. The time-specs ¢; specify when the files G denoted by filespecs are to be compiled and/or
loaded and/or slurped.

e :run-time Meansthat when F' is compiled, the G are to be durped; when F' isloaded, the G areto
be loaded; when F' is slurped, the G are to be slurped.

e :compile-time meansthat when F' iscompiled or slurped, the G areto beloaded; when F' isloaded,
nothing isto be donewiththe G. If youwrite (:at :run-time :compile-time),thenyou getthe
“union” of these effects: thefile isloaded at both run time and compile time. Note that all thisloading
isdoneby f1oad, so only thefirst of multiple callsto load it have any effect, unless the file changes.

e :slurp-time meansthat when F' is slurped, the G are to be loaded. Thisis hardly ever necessary,
unless F' uses read macrosthat are defined in G.

Theforms (:at :run-time) and (:at :compile-time) may be abbreviated :at-run-time and
:at-compile-time. If thetimespecisomitted, that’'sequivalentto (:at :run-time :compile-time).

9.6 Long-range File Dependencies

Suppose filel depends on file2, which depends on £ile3, both dependencies being :at-run-time.
Suppose file3 changes and the user f1oads filel. There are two possibilities to think about: file3
should probably be reloaded, and file1 and file2 may need to be recompiled if either of them used a
macrodefinedin £i1e3. YToolswill deal with all these possibilities. That is, when afileis £1oaded, YTools
rebuilds the tree of dependencies the file is the root of, and recompiles and reloads al the files between the
root and a changed file. Actually, it will normally query the user about each case; if this gets to be tedious,
just set fload-compile* t0 : compile (explicitly, or by responding “+” to aquery).

If you have just reloaded a file and are not sure what other files may now need to be changed, use
fload-recheck, defined in section 9.8.

33

9.7 YTools Modules

A module is, intuitively, a set of files that work together.
Thelogical pathname $module has a specia meaning. It expects to be followed by the names of entire
modules rather than file names. For example;

(fload %$module/ utilities graphplan)

loadsinthe moduleutilities followed by the module graphplan.
A YToolsmoduleis adevicefor giving a short nameto a set of files, but the actual definitionisabit more
complicated. The best way to think of amodule is as comprising two components:

1. Atiny virtual file, which normally contains depends -on Statements.

2. Anexpansion, a set of forms that behave as if they occurred in the file that depends on the module, at
the point where the dependency is declared.

To see the distinction, suppose that the file amazing. 1isp containsthis statement:
(depends-on (:at :run-time) %module/ specutils)
Now supposethat specutils containsthreeforms:

(depends-on (:at :run-time) %utildir/ foundation objorp whizbang)
(def-class C1 ...)
(defmacro buzz (...) ‘(car ,(Cl-b ...)))

The situation is (almost) as if thereis afile specutils.1lisp containing only these three forms. Think
of specutils asbeingavirtual file.

Now suppose that we want to includein specutils thedeclaration (slurp-whole-file) (Seesecref-
fcomplthe section on compiling files). Thereis an ambiguity, because the declaration may apply to the virtual
file specutils, or tothefile amazing. 1isp that dependson specutils

The ambiguity is resolved simply: To make it apply to amazing.1isp, put the declaration in the expan-
sion of the module, so that it will actually appear in thetop level of amazing.1isp. To makeit apply to the
moduleitself, put it in the contents of the module. You can, of course, do both.

To define amodule, write

(def-ytools-module name
[(:contents ---forms---)]
[(:expansion ---forms---)1)

For example, the specutils module might be defined thus:

(def-ytools-module specutils
(:contents
(depends-on (:at :run-time) %utildir/ foundation objorp whizbang)
(def-class C1 ...)
(defmacro buzz (...) ‘(car ,(Cl-b ...))))
(:expansion
(slurp-whole-file)))

indicating that thefileto slurp the entirety of isamazing. 1isp, or any other filethat dependson specutils.

Thereis one difference between specutils and afile with the same contents. In section 9.6, | said that
Y Tools searches the entire tree of file dependencies to find files changes in which might make it necessary to
recompilethe current file. Thereis one exception: it will not search through a module boundary. This feature
is based on the assumption that a module gets created after its components have been designed, debugged,
and redesigned. Furthermore, someone who just wants to use the module might have no idea what to make
of queries about its components.

If you really want a module to be completely transparent, move all the formsin its “contents’ field to its
“expansion” field, asin the following definition of the “specutils’ module:

34

(def-ytools-module specutils
(:expansion
(slurp-whole-file)
(depends-on (:at :run-time) %$utildir/ foundation objorp whizbang)
(def-class C1 ...)
(defmacro buzz (...) ‘(car ,(Cl-b ...)))))

NOwW (depends-on %$module/ specutils) behavesexactly like

slurp-whole-file)

depends-on (:at :run-time) %utildir/ foundation objorp whizbang)
def-class C1 ...)

defmacro buzz (...) ‘(car ,(Cl-b ...)))))

The only built-in moduleis named ytools. Any file that wantsto use al the Y Tools should have
(depends-on %$module/ ytools)

in its header. The Y Tools module does not include every facility described in this document. Optional
facilities occupy filesin the Y Tools directory, and you indicate a dependence on one of them by writing

(depends-on $ytools/ file)

| mention in passing my convention of using the name M . 1sy for afile that defines a module M, plus
ancillary facilities such as packages and logical pathnames. Generally speaking, to make a module loadable
you haveto first load its “.Isy” file.

9.8 Other file-management facilities

The following are not part of the Y Tools module, but may be found in the file fileutils in the YTools
directory. Either f1oad thefilewhenyouneedit ((fload $ytools/ fileutils))Or put (depends-on
:at-run-time %ytools/ fileutils) intheheader of any file that requires one of them.
fload-versions: If isoften the case during system debugging that you want to use an experimental version
of afile. If youwrite

(fload-versions directory/ (gps gps-experimental))

thenwherever directory/gps would normally beloaded (or slurped, or compiled), directory/gps-experimental
will be used inits place.
In general, the argumentsto fload-versions are just like those to f1oad, except that lists (of 1 or 2
elements) appear instead of the files. The first element of the list is aways the name of afile. The second
element (if present) determines the new version of that file. The possibilities for the second element are:

e A symbol (other than a keyword or “ -"): The symbol’s name, with case suitably modified, is the new
version.

e A string or a keyword: The new filename is the old with the string (or keyword symbol’s name)
appended.

e Absent: Treated as if the value of the global variable f1oad-version-suffix* occurred instead.
Thisvaueisinitialy : -new. It should always be a string or keyword.

e -: All versioning information for the fileis discarded. It revertsto its original self.

35

fload-recheck: Inthenormal course of loading afile, £1o0ad will check the entire dependency tree below
it. Soif it dependson afile F'2 that depends on afile £'3, and F'3 has changed, it will offer to recompile and
reload F'2.

If you want to be even more obsessive, execute (fload-recheck). Thiswill find every loaded file
that might have to be reloaded and/or recompiled, and ask you about them.

Note that both of these scenarios get to be boring quickly. You'll be asked about whether to recompile
dozens of files. Most probably don’t need to be recompiled, but it takes longer to figure that out than to
recompile them. So set f1oad-compile* to : compile. You can do that by typing + when asked whether
you want to compile afile. Remember to set it back to : ask when the recompilations are done, if that’s the
long-term behavior you want.

9.9 IsltPossibleto Avoid the YTools File Manager?

It may sound like a heavy investment of effort to use the Y Tools file manager, especially when it's taken you
years to learn some version of defsystem. Even worse, it may be that once you start down this slippery
slope, you'll end up having to make tiny editsin thousands of files.

Well, rest easy. All of thelittle extrasin Y Toolsfiles, such as end-header, depends-on, and such, are
defined as harmless macros. You may get awarning message or two about the £1o0ad environment not being
present, but al the files should load properly. If you want the whole system to just go away, set the global
variable depends -on-enabled* tonil.

If you decide that all you want from YTools is, say, repeat and out, just copy them and compile the
copies. Most compilers will tell you which functions are used in repeat . 1isp but not defined there. The
definitions can be found either in one of the core Y TFM files (base, datafun, pathname, module, slurp,
files, depend, al with extension .1isp), or in afile that repeat depends on. Just copy them to your
version of repeat and you're all set.

A Some Notational Conventions

A.1 Upper and Lower Case

I like running my codein Allegro’s“modern” mode, in which the case of symbolsis preserved when they are
read and printed. All my code is written in such away that it ports without change to an ANSI CL in which
symbols are converted to upper case when read.

Most of my codeislower case. | use upper case only as thefirst letter of a datatype name (and sometimes
subsequent lettersif the datatype name is an acronym), and only in functions defined as part of the datatype
definition. That is, | might write

(defstruct Foo a b c)

to define a datatype Foo. As a consequence, the constructor for this type is named make - Foo, the predicate
iSFoo-p, the dlot reader for slot a is Foo-a, and so forth. But if | have afunction that transmogrifies objects
of thistype, it'scalled foo-transmogrify. That is, the only functions that have the upper-case“F" are the
ones automatically defined by defstruct. Exception: If | need an alternative constructor for Foos, | might
nameit new-Foo Of create-Foo.
These conventions are close to those used by Java and Haskell. However, | do not use the “case foothills”

style such as fooCacheIfMarked, partly because Emacs can’t see the word boundaries, and partly because
in ANSI CL it isunreadable. Instead | use hyphens as exemplified above: foo-cache-if-marked.

36

A.2 Special Characters

Y Tools has its own readtable (ytools-readtablex*),® in which two macro characters are reserved: excla-
mation point and question mark. Exclamation point is used for several purposes (discussed as they come up
below).

Question mark is used only as the printed representation of gvars, which are used in applications of
pattern matching. The object »x is of type gvar. You test whether an object ob is of thistype by evaluating
(is-Qvar ob); you extract the symbal (i.e., x) by evaluating (Qvar-sym ob). To make one, evaluate
(make-Qvar ‘x ’ ()).All thedetailsare givenin section 3.

Exclamation point is reserved for use in packages built on top of YTools. YToolsitself usesit for two
puUrposes:

1. 1 (): Thisexpressionisread as (empty-1list),amacrothat expandsto ‘ (). The pretty-printer prints
(empty-list) as! (), thushoping to reduce somewhat the number of occurrences of the ambiguous
nil
http://www.cs.yale.edu/homes/dvm/nil.html
in the universe. Actualy, you can write ! (anything) ; | use (let ((1 ! (Symbol))) ...) tosug-

gest that 1 isalist of symboals, initially empty.

2. 1v. .. Thisis an ordinary string, except that any substring of the form ““newline whitespace” is
deleted. Helpful for long string constants that start at a column awkwardly far to the right.

3. 17s: Anabbreviationfor (funktion s),Q.V.

Unless stated otherwise, " 1 " behaves like an ordinary symbol constituent. In particular, " 1 =" isan ordinary
symbol with name " 1 =; see section 3.

In addition, there are a couple of other usages that may look like the invocation of macro characters, but
aren't:

e (\\...) isanabbreviationfor #’ (lambda ...).

“won

e “_" may beused in most contexts where a bound variableis expected; it denotes a variable whose value
isignored. These contexts are: \\, defun, and as indicated in the rest of this document. Example:
(defun foo (a - c¢) ...) isequivalentto (defun foo (a b c) (declare (ignore b))
...).Bytheway, you can just write (ignore b) instead of (declare (ignore b)).

e 3 asamarker for logical pathnamesin £1oad et a. Nothing funny happens at read time; macros that
expect filespecs just 1ook for symbols whose names begin with “%.”

A.3 Coding style

Here are afew of my hard-won prejudices on the subject of how to write good, intelligible code.

Function Names: Many functions can be considered to take an object of type Y, perform operation P
on it, and return an object of type Z. | tend to name such a function Y-P-Z. | prefer 1ist-copy to
copy-1list. Functionsthat “coerce’ an object to a different type have the operation - > in their names, asin
list->vector or - >pathname. Notethat in the last case the operation is not preceded by any type; that
indicates that it should work on any object.

My predicates tend to be distinguished by the occurrence of auxiliary verbs such as “is’ and “has,” as
in foo-is-empty OF bar-has-no-children; or by the use of an adjective instead of an operation, asin
foo-empty Of bar-greater-than. | hever end a predicate name with the letter p or a question mark.

5| have been marking global variables with a single asterisk since before the convention existed of putting an asterisk at both the bow
and the stern of a global-variable name. | prefer my convention. Using a single asterisk has the advantage of making it obvious which
global variables belong to Y Tools and which to Lisp itself. | do write constants as + NaMme+, because an isolated plus would look like
it had something to do with addition.

37

A “category tester” is apredicate that takes any object at al and returns True if it belongsin the category.
For instance, the function that tests whether an object is of type Bar iscaled is-Bar. Sometimes what you
requireinstead is afunction that tests whether an object in one category belongsto a subcategory aswell. The
name of such afunction might start with the wide category and end with the narrow one, asin foo-is-bar.
The clueis whether the verb has anything in front of it.

Dynamically bound (special) variables: Avoid them wherever possible. Here are afew unavoidable uses:
e Asrepositories of global debugging flags or other information.

e As variables that must be visible through a function you didn’t write. For example, if you want to
communicate with a macro during file compilation, you have to bind some specia variables for the
macro to read, because there is no other way to communicate through compile-file.

e Asplacesto hold global tables. However, you should think hard about what exactly needsto be global.

Let me amplify on that last point. Suppose you are writing a program to process natura language. It's
natural to defineaglobal variable grammar*, another onelexical-rules*, and soforth. The problemwith
this approach is that switching between grammars and such requires resetting all those variables. A better
approachisto have asingletable nl -regimes* that contains definitions of different languages. A language
definition consists of agrammar, somelexical rules, etc. Proceduresto parse a sentence or produce an answer
to a question can be passed as argumentsthe entire language definition or just the parts each procedure needs.
The one remaining special variable is now less central to the operation and less likely to be the place where
something goes haywire.

The idea of passing a few extra arguments sounds like it could get out of hand. One way to avoid an
explosion in the number of argumentsis to package afew of them together using a new datatype and pass the
package. Of course, this strategy makes sense only if the arguments belong together.

Use cond | don’t know why peoplelike if, when, and unless. | revise my code starting thirty seconds
after | first start writing it, and | find the revisions required to be particularly annoying for al conditionals
except cond. By supplying one extralevel of parens, it allows you to change your mind about which tests go
first or what happens when atest is true without a huge fuss.

John Foderaro, in his coding-style recommendation

http://www.franz.com/~jkf/coding.standards.html
states:

I'vefound that the key to readability in Lisp functionsis an obviousstructure or framework to the
code. With aglance you should be able to see where objects are bound, iteration is done and most
importantly where conditional branching is done. The conditionals are the most important since
this is where the program is deciding what to do next. Bugs often occur when the conditional
can't handle all possible cases. If you're planning on extending the function you need aclear idea
of the possible inputsit’s willing to accept and what you can assert to be true for each branch of
the conditional.

| agree entirely.
He then goes on to recommend using his own i £* macro.

The if* macro along with proper indenting support in the editor makes glaringly apparent the
structure of conditionals. They stand out like a sore thumb. Furthermore one can easily extend
an if* conditional adding expressions to the then or else clauses or adding more predicates with
elseif. Thus once you've laid out the conditional you can easily extend it without changing the
expressionitself (contrast that to having to go fromwhento if to cond asyou grow the conditional
using the built-in Common Lisp conditional forms).

38

To each hisown. It seemsto methat cond has all the virtuesof i £*, but far beit from meto criticize afellow
macro-hacker! However, read on.

A Couple of Observations about Macros: Many macros have auxiliary symbols that play a crucial role
in “parsing” calls to the macro. To see examples, look at 1et-fun (section 2.1). It has two such symbols:
:where and : def.

A key question in designing amacro is how many of these symbols, which | call guide symbols, to use. At
one extreme we find a construct like do, which has no guide symbols at al, and distinguishes al its subparts
using parentheses. Many people (including me) find its syntax confusing at first, then merely ugly. At the
other extreme we find the “complex” form of 1oop, which has dozens of guide symbols, enough to form a
little subgrammar. This subgrammar has few parentheses, which raises issues about the precedence of the
guide symboals, the order in which subexpressions are executed, and ultimately of how the different features
combine semantically. In fact, | never use the complex version of 1oop; repeat doeseverything | want and
its semantics are quite clear.

The design of a good macro is determined in the end by aesthetic decisions, but | would propose a few
principles:

1. Keywords are used for two purposes in the built-in constructs of Lisp: as keyword arguments, and as
“clause markers.” It'sagood ideato limit them to these two purposes. That is, akeyword : gi zmo may
either come beforeits argument, asin

(fen ... :gizmo arg ...)

or asthefirst element of alist structure

(big-construct con-th
(:ying ...)
(:gizmo

(arg ...)
...lots of other stuff...)
L)

2. Guide symbols should be located in the keyword package. One reason is that they stand out visualy;
someone reading an occurrence of the macro can instantly see that this is a guide symbol, and that
is variable. Another is that putting them in the keyword package means one less package headache
for the macro user. If aguide symbol is not a keyword, and if the macro implementer used eq to test
for equality with a guide symbol being looked for, then the macro user will have to import the guide
symbol into the package at the point of use of the macro (or write imp1 -pkg: gi zmo, which isawful).
The macro implementors may want to advertise (as the creators of the complex 1o0op did) that their
guide symbols are compared by testing for string equality of the symbols' names, and hope that all
users are aware of the advertisement.

| can’t resist pointing out that the documentation for Foderaro’s i £ * macro
http://www.franz.com/support/documentation/6.0/doc/pages/operators/excl/if s.htm
describes four guide symbols (then, elseif, else and thenret), and fails to mention the equality test
used to test for occurrences of them. In fact, if you look at the code, the test is for string equality of their
names, so you don’t have to import them into your package.

Of course, many people dislike cond precisely because it uses no guide symbols and sticks in an extra
layer of parensto compensate. If you are one of them, go ahead and use i £ * (if you're not an Allegro user, |
believe you can just grab the implementation

39

http://www.franz.com/“jkf/ifstar. txt).
Then use keyword versions of the guide symbols. That is, write : then instead of then, and so forth. The
name of :then isthe same as that of then (afact that is easy to forget), so the equality tests will succeed
when they’re supposed to, and your code will be more readable.

Anocther principle of macro designis:

3. Don't duplicate lisp control structuresinside a macro. Instead weave the macro into the structures.

Let me give an example. In the development of the repeat macro, | noticed that | was often having to
use assignment when I'd rather use 1et. Here'swhat | was forced to write

(repeat :for (... x ...)
(1= x ...)

:until (member ‘foo x)

:result (remove 'foo x))

when | really wanted something like this:

(repeat :for (...)

(let ((x ...))
?2?7?)
?2?7?)

The problem is that the body of the 1et isinvisibleto the repeat macro. My first reaction was to think of
adding a new guide symbol, : 1et, which would allow the user to bind a variable over the remainder of this
iteration of repeat:

(repeat :for (...)

:let ((x ...))

:until (member ‘foo x)
:result (remove ’'foo x))

Thiswould not be hard to implement, but there are so many other patterns, such as

(repeat :for (... (x ...) ...)
(cond ((member ’'foo x)
... Some longish amount of code
(cond ((foo y)
??7? the equivalent of : return y))

o)

(t

??? More shenanigans))
)

One could add more guide symbols, but the net return would be a largish implementation of a substantial
subset of Lisp (with clumsy syntax). This is what the designers of 1o0op did, as well as the designers of
format, if you think about it.

A better ideais to introduce two new guide symbols, one (the diver) that says “We're going to dive into
some Lisp code now,” and ancther (the snorkeler) that says, “We've encountered a place in that Lisp code
where we should resume processing as if we'rein the body of the macro.” In the case of repeat, the diveris
:within and the snorkeler is : continue.

The same pattern occursinside out. Here : e isthe diver and : o is the snorkeler.

40

B Alternative Names for Lisp Constructs

There are certain built-in functions whose names are less than felicitous. Who can remember whether
multiple-value-1list returnsas multiple values the elements of alist, or whether that job is performed
by values-1ist? Isthe best convention for constructing the name of apredicateto tack a“p” on the end of
something?

For reasonslike these, but sometimesflimsier, Y Tools provides synonymsfor built-in Lisp functionsusing
namesthat | think are better. The synonymy is accomplished in the interpreter by setting symbol - function
of the synonym to symbol - function of the origina name; and in the compiler by making the synonym be
a compiler macro that expands into a cal to the original. So there should be no performance hit at al from
using the synonymes.

In some cases the synonym is the same as the original name except for the case of some of the lettersin
it. In ANSI CL, because it is case-insensitive, the synonym is already available, and trying to define it (as
itselfl) would cause infinite loops. Y Tools is careful to check for this situation and avoid actually defining
anything.

Anyway, here are the synonyms, in a phabetical order:

=< Function Location: YTFM

=< isasynonymfor <=, which looks like an arrow to me, not an inequality.

Array-dimension Function Location: YTFM
Array-dimensions Function Location: YTFM

Array-dimension and Array-dimensions are synonyms for the functions with the same names
downcased.

is-Type Function Location: YTFM

To maintain the convention that types are capitalized, Y Tools supplies alternative names for symbolp,
numberp, ..., Namely is-Symbol, is-Number, Another reason for this choice of namesis to help
eliminate the “trailing p” convention for predicatesin favor of simple declarative constructssuchas is-. . .
or ...-has-.... Onenonobviousdecision isto provide a substitute for consp named is-rair. Thereis,
however, no is-aAtom, because atom is not a Common Lisp type. You can use atom Of (not (is-Pair

).

Here is a complete list of al the type-testing synonyms defined by YTools. is-Array, is-Char,
is-Float, is-Integer, is-Keyword, is-Number, is-Pair, is-Pathname, is-Ratio, is-Stream,
is-String, and is-Symbol
list-copy Function Location: YTFM

list-copyisasynonymfor copy-list.
list->values Function Location: YTFM

list->valuesisasynonymfor values-1list.

make-Pathname Function Location: YTFM

make-Pathname iSasynonym for make-pathname.

make-Symbol Function Location: YTFM

41

make-Symbol iSasynonym for make-symbol.

off-list Macro Location: YTFM
on-list Macro Location: YTFM

These are synonymsfor pop and push, respectively, which look to me like operations on astack. They’re
rarely used for that purpose, because most uses of stacksin Lisp are handled by recursion, but I'd still prefer
different namesfor them.

pathname-equal Function Location: YTFM

pathname-equal isasynonymfor equal.

Pathname-host Function Location: YTFM
Pathname-device Function Location: YTFM
Pathname-directory Function Location: YTFM
Pathname-name Function Location: YTFM
Pathname-type Function Location: YTFM
Pathname-version Function Location: YTFM

These are al synonymsfor the corresponding functions with lowercase names.

pathname->string Function Location: YTFM

pathname->stringisasynonymfor namestring.

Symbol -name Function Location: YTFM
Symbol-plist Function Location: YTFM

Synonymsfor symbol -name and symbol-plist.
tuple Function Location: YTFM

tuple isasynonym for 1ist, intended for contexts where the list being built is thought of as having
afixed length, like arecord. Example: (1= x (list ‘a 3)) initidlizesx to alist of two S-expressions.
If the programmer wants to signal to the reader of his code that x will remain alist of two objects, he or
she should write (1= x (tuple ’a 3)) instead; this also suggests that the first element is going to be a
symbol and the second a number. The use of 1ist can then be used to signal that the list might grow or
shrink, and that its elements are some type that includes both symbols and humbers.

values->list Function Location: YTFM

values->list isasynonymformultiple-value-list.

42

Index

1, 37

175,25

1,37

1(),37

1=,8

:&,9

_,8
+unbound-slot-val+, 18
->pathname, 26
:+,10

: -new, 35

\],9
:already-defined, 17
:at,33
:at-compile-time, 33
:at-run-time, 33
:char, 14
:compile-time, 33
:def, 3

:key, 17
:keyword, 15
:linelist, 15
:linestring, 14
:list, 17
:medium, 17
:named, 17
:no-compile, 32
:obj, 14
:object, 17
:peek, 14
:print-function, 18
:print-object, 18
:proceed, 16
:prompt -for, 16
:run-time, 33
:slurp-time, 33
:slurp-toplevel, 32
:string, 14
:structure, 17
:vector, 17
:where, 3-5

<8

<l,21

<#,21

<$,21

<&,21

</, 21

<<, 21

<?,21

<v, 21

=<, 41

>, 8
,3,4,6,8,10, 28, 37
alref, 23
alref., 23

Array-dimension, 41
Array-dimensions, 41
assq, 23
attach-datafun, 23

Backquote(), 19-21
bind, 23
breakpoint, 16
build-symbol, 21, 24, 27

car-eq, 24
classify, 24

classoid, 17
Collector, 5
collector-clear,5
Collector-elements, 5

Data-driven programming, 22
datafun, 22-23
datafun-alist, 23
datafun-table, 23
dbg-out, 14
debuggability*, 24, 26
debuggable, 24
def-class, 16-19

def-ytools-logical-pathname, 30

def-ytools-module, 34
defclass, 17,19
defmacro, 27
defmethod, 17
defstruct, 17-19
defsystem, 28
defun, 27
depends-on, 30-31
time-specs, 33
depends-on-enabled*, 36
drop, 24

empty-Collector, b5
end-header, 31, 32
end-header-dbg*, 32

eof*, 14,24
eval-when, 27, 32
Exclamation point, 37

false, 25

fcompl, 31
fcompl-reload*, 31
Filespecs, 30
filespecs->pathnames, 30
fload, 28-29, 36
fload-compilex*, 29, 32, 33, 36
fload-recheck, 33, 36
fload-verbose*, 33
fload-version-suffix*, 35
fload-versions, 35
funktion, 25

Headerish forms, 31, 32
href, 23,25

ignore, 4, 37

in, 14-15
in-header, 31, 32
include-if, 25
initialize, 18
is-Array, 41
is-Char, 41
is-Float, 41
is-Integer, 4l
is-Keyword, 41
is-list-of, 25
is-Number, 41
is-Pair, 41
is-Pathname, 41
is-Ratio, 41
is-Stream, 41
is-String, 41
is-Symbol, 41
is-whitespace, 25

Lambda(\\), 37
lastelt, 25

len, 25
let-fun, 3
let-var, 4
list->values, 41
list-collect,5
list-copy, 4l
Location, 28
Locations, 3
Logical pathnames, 30

make-inst, 18
make-instance, 18
make-Pathname, 41
make-Printable, 25
make-Qvar, 9
make-Qvaroid, 8
make-Symbol, 42
match-cond, 10
match-datum, 10
match-let, 11
matchg, 8-10
memq, 25

Modules, 34-35
multi-let, 26

needed-by-macros, 32
neg, 21, 22
nodup, 26

occurs-in, 26
off-1list, 42
on-1list, 42
one-collect, b
out, 11-15
out-indent, 14

pathname->string, 42
pathname-equal, 42
pathname-get, 26
Pathname-slot, 42

pop, 42

printable-as-string, 26

push, 42

Qvaroids, 8
Qvars, 9, 37

repeat, 4—7

Segment matching, 9
series, 26

setf, 8

shorter, 27
signal-condition, 16
signal-problem, 15-16
Slurping files, 31

take, 27
true, 27
tuple, 42

values->list, 42

yt-install, 27
yt-load, 27

ytconfig, 27

YTFM (location), 28
ytools, 35

:ytools package, 27
ytools-readtable*, 37

45

