\qquad

EECS 311 Data Structures
 Final Exam Don't Panic!

1. [10 pts] In the boxes below, show the result of adding the given numbers to a heap, using $<$ as the predicate. Circle items that had to move at each entry.

1. After adding 10 to an empty heap. 10	2. After adding 12 to the previous heap.
3. After adding 1 to the previous heap. $\begin{aligned} & 12 \\ & 10 \quad 1 \end{aligned}$	4. After adding 14 to the previous heap. (14) (12) 1 (10)
5. After adding 6 to the previous heap. $\begin{array}{rrr} & 14 \\ 12 & 1 \\ 10 & 6 & \\ 10 \end{array}$	6. After adding 5 to the previous heap. $\begin{array}{cc} & 14 \\ 12 & \\ 10 \quad 6 & (5) \end{array}$
7. After adding 8 to the previous heap. $\begin{array}{cccc} & & \\ & & & 8 \\ 12 & & 8 & 5 \\ 10 & 6 & 14 & 5 \end{array}$	8. After adding 15 to the previous heap. (15) (14) 8 (12) $6 \quad 1 \quad 5$ (10)
9. After adding 3 to the previous heap.	10. After adding 9 to the previous heap.

Average: 9.57. Median: 10.
\qquad
2. [10 pts] Show how Quicksort with median-of-three would sort the array below. Be very clear about what happens in each partitioning phase, e.g., for each phase, write something like:

$$
\begin{aligned}
& \text { Partition _ to - choose pivot _ from } \\
& \text { Swap _ with - _ with - _ with - ... } \\
& \text { Resulting Array = }
\end{aligned}
$$

Be sure to include swaps done with the pivot at the beginning and end of a partitioning phase. Circle the items that are done and not involved in later phases. If a partition is 3 or fewer elements, just indicate the swaps needed, if any, to directly sort it.

0	1	2	3	4	5	6	7	8	9	10
$\mathbf{3}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{2}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{- 1}$	$\mathbf{5}$

$$
\begin{aligned}
& \text { Partition o to } 10 \text {, choose pivot } 5 \text { from } 3,9,5 \\
& \text { swap } 8 \text { with }-1,9 \text { with } 2,9 \text { with } 5 \\
& \text { Resulting Array }=3140-1256789 \\
& \text { Partition o to } 5 \text {, choose pivot } 3 \text { from } 3,4,2 \\
& \text { swap } 3 \text { with } 2,4 \text { with }-1,3 \text { with } 4 \\
& \text { Resulting Array }=21-103456789 \\
& \text { Partition o to } 3 \text {, choose pivot } 1 \text { from } 2,1,0 \\
& \text { swap } 1 \text { with } 0,2 \text { with }-1,2 \text { with } 1 \\
& \text { Resulting Array }=-10123456789 \\
& \text { Partition o to } 1 \text { only } 2 \text { elements, no swaps needed } \\
& \text { Partition } Z \text { to } 10 \text {, choose pivot } z \text { from } 6,7,9 \\
& \text { swap } Z \text { with } 2, ~ w i t h ~ \\
& \text { Resulting Array }=-10123456789 \\
& \text { Remaining partitions less than } 3 \text { elements, no swaps needed. }
\end{aligned}
$$

Comment [CKR1]: Median of 3 means use median value of first, middle and last locations as pivot
Comment [CKR2]: No need to move pivot first.
Comment [CKR3]: Restore pivot
Comment [CKR4]: 4, not 0, because division by 2 rounds down to get middle
Comment [CKR5]: Move pivot to end
Comment [CKR6]: Restore pivot
Comment [CKR7]: Move pivot
Comment [CKR8]: Restore pivot

Average: 8.14. Median: 9
Most common mistakes: not moving the pivot out and back, not sorting the righthand partition, swapping the pivot during the partitioning phase
\qquad
3. [10 pts] Fill in the table below to show how Kruskal's algorithm would find a minimum spanning tree for the graph below. Draw a line on each edge of the graph used in the final MST. Is the MST unique? Justify your answer.

Edge	Weight	Action
E-1	1	Accept
C-G	1	Accept
F-G	2	Accept
B-E	2	Accept
E-H	2	Accept
B-F	3	Accept
A-B	3	Accept
F-1	3	Reject
A-E	4	Reject
A-D	4	Accept
H-1	5	Reject
D-E	6	Reject
C-F	6	Reject
D-H	7	Accept
I-		
DOne		
A-		

Comment [CKR12]: Because it forms an edge. This is the ONLY place where order in which the edges are checked mattered.

Average: 9.07. Median: 9

There are two possible MSTs. The other occurs if you see and accept F-I and reject $B-F$.

Comment [CKR13]: Stop as soon as
9 edges are accepted.
\qquad
4. [10 pts] Use the table below to show how Dijkstra's algorithm would find the shortest path from A to D. In the Distance column put the various distance values assigned to each vertex. In the When Finalized column put 1 for the first vertex that is finished, 2 for the $2^{\text {nd }}$ vertex finished, etc.

When Finalized	Vertex	Distance
1	A	0
3	B	5
2	C	3
7	D	109
5	E	1087
6	F	8
4	G	6

Average: 9.11. Median: 10
Most common mistakes: wrong order of finalization, not adding distances.
\qquad
5. [15 pts total] a). Given an array of N elements of three different types: Cold, Warm, and Hot, design and describe clearly an $\mathrm{O}(\mathrm{N})$ in-place algorithm to put all the cold elements, on the left, followed by all the warm elements, followed by all the hot elements on the right. Your algorithm can use only a small constant amount of extra space.

```
-- Put all cold items on the left
Let }\imath=0
ForJ from 0 to N-1
    if a['] is cold, swap a[i] and a[j] and increment i.
-- Put all hot items on the right
Let le = N-1.
Forj from ke down to 1
    if a[j] is hot, swap a[k] and a[j] and decrement ke.
```

b) Show how your algorithm would operate on this array:

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \mathbf{C} | \mathbf{W} | \mathbf{H} | \mathbf{C} | \mathbf{W} | \mathbf{W} | \mathbf{C} | \mathbf{H} | \mathbf{C} | \mathbf{W} | \mathbf{C} |

$1=0 . j=0 . a[j]$ is c. Swap $a[i]$ and $a[j]$, becomes 1 .
When j is 3, swap, I becomes 2, $a=c C H W W W C H C W C$
When j is 6, swap, 1 becomes 3, $a=c C C W W W H H C W C$
Whenj is 8, swap, 1 becomes 4, $a=c c c c W W H H W W C$
When j is 10, swap, I becomes 5, a = cccccWWHHWW
$k=10, j$ Is 10 .
When j is 8 , swap, te becomes $9, a=c c c c c W W W H W H$
When j is 7 , swap, le becomes $8, a=c c c c c W W W W H H$
c) Give as formal an argument as you can for why your algorithm is $\mathrm{O}(\mathrm{N})$ and correct for all possible arrays, even those with only a single kind of element.
complexity $=O(N)$ because there are two sequential FOR loops with at most N
iterations of O (1) operations.
correctness by invariants: In first loop, invariant is "a[n]=c for all $n<1, a[n] \neq$ c for all $1 \leq n<j$." Trivially true when 1 and j are 0 . Each iteration maintains this invariant, ergo, when $j=n$, all C's and only C's must be left of i. The same argument applies to the second loop, with the invariant "a[n] $=H$ for all $n>k$, $a[n] \neq H$ for all $j<n \leq k$."

Average: 11.46. Median 12
Most common mistakes: no correctness argument, very unclear algorithm description, sorting which is $N \log N$, copying into another array or list, which is not $\mathrm{O}(1)$ extra space, too many vague terms in proof, assuming the elements are identical to C, W and H .
\qquad
6. [10 pts] Use dynamic programming to find the optimal solution to the sequence alignment problem below. A match scores 2 points, a mismatch scores -1 , and a gap in either sequence scores -2 .

Sequence 1: G A A T T C A GTTA
Sequence 2: G G A T C G A

		G	A	A	T	T	C	A	G	T	T	A
	0	-2	-4	-6	-8	-10	-12	-14	-16	-18	-20	-22
G	-2	2	0	-2	-4	-6	-8	-10	-12	-14	-16	-18
G	-4	0	1	-1	-3	-5	-7	-9	-8	-10	-12	-14
A	-6	-2	2	3	1	-1	-3	-5	-7	-9	-11	-10
T	-8	-4	0	1	5	3	1	-1	-3	-5	-7	-9
C	-10	-6	-2	-1	3	4	5	3	1	-1	-3	-5
G	-12	-8	-4	-3	1	2	3	4	5	3	1	-1
A	-14	-10	-6	-2	-1	0	1	5	3	4	2	3

Draw a line indicating a solution path in the table above, and show the actual alignment for that path below, using - to indicate any gaps. Is there more than one solution? Justify your answer.

Two solutions, depending on which green cell is picked.
one solution: G A ATTC A GTTA
$G G A T-C-G_{1}-\cdots A$
One other: $\quad G_{1} A-T C \cdots G_{1} . . . A$

Average: 8.54. Median: 9.
Most common mistakes: missing the second path, calculation errors (most common: missing a match)

