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Virtual Memory

Today
 Motivations for VM 
 Address translation
 Accelerating translation with TLBs
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A system with physical memory only

Addresses generated by the CPU correspond directly to 
bytes in physical memory
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A system with virtual memory

Modern processors use virtual addresses
Hardware converts virtual addresses to physical 

addresses via OS-managed page table
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Motivations for virtual memory

Use physical DRAM as a cache for the disk
– Address space of a process can exceed physical memory size
– Sum of address spaces of multiple processes can exceed 

physical memory
Simplify memory management
– Multiple processes resident in main memory.

• Each process with its own address space
– Only “active” code and data is actually in memory

• Allocate more memory to process as needed.

Provide protection
– One process can’t interfere with another.

• because they operate in different address spaces.
– User process cannot access privileged information

• different sections of address spaces have different permissions.
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Motivation #1: DRAM a “cache” for disk

Full address space is quite large:
– 32-bit addresses: ~4,000,000,000 (4 billion) bytes
– 64-bit addresses: ~16,000,000,000,000,000,000 (16 

quintillion) bytes
Disk storage is ~300X cheaper than DRAM storage
– 80 GB of DRAM: ~ $33,000
– 80 GB of disk: ~  $110

To access large amounts of data in a cost-effective 
manner, the bulk of the data must be stored on disk

1GB: ~$200 80 GB: ~$110

4 MB: ~$500

DiskDRAMSRAM
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DRAM vs. SRAM as a “cache”

DRAM vs. disk is more extreme than SRAM vs. DRAM
– Access latencies:

• DRAM ~10X slower than SRAM
• Disk ~100,000X slower than DRAM

– Importance of exploiting spatial locality:
• First byte is ~100,000X slower than successive bytes on disk

– vs. ~4X improvement for page-mode vs. regular accesses to DRAM

– Bottom line: 
• Design decisions made for DRAM caches driven by enormous 

cost of misses
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Impact of properties on design

If DRAM was to be organized similar to an SRAM 
cache, how would we set the following design 
parameters?
– Line size? Large, since disk better at transferring large blocks
– Associativity? High, to minimize miss rate
– Write through or write back?

• Write back, since can’t afford to perform small writes to disk

What would the impact of these choices be on:
– Miss rate: Extremely low.  << 1%
– Hit time: Must match cache/DRAM performance
– Miss latency: Very high.  ~20ms
– Tag storage overhead: Low, relative to block size
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Locating an object in a “Cache”

SRAM Cache
– Tag stored with cache line
– Maps from cache block to memory blocks

• From cached to uncached form
• Save a few bits by only storing tag

– No tag for block not in cache
– Hardware retrieves information

• Can quickly match against multiple tags
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Locating an object in “Cache” (cont.)

DRAM Cache
– Each allocated page of virtual memory has entry in page table
– Mapping from virtual pages to physical pages

• From uncached form to cached form
– Page table entry even if page not in memory

• Specifies disk address
• Only way to indicate where to find page

– OS retrieves information

EECS 213 Introduction to Computer Systems
Northwestern University

10

Data
243
 17

105

•••

0:
1:

N-1:

X
Object Name

Location

•••

D:
J:

X: 1

0
On Disk

“Cache”Page Table

Monday, November 14, 2011



EECS 213 Introduction to Computer Systems
Northwestern University

Page faults (like “cache misses”) 

What if an object is on disk rather than in memory?
– Page table entry indicates virtual address not in memory
– OS exception handler invoked to move data from disk into 

memory
• current process suspends, others can resume
• OS has full control over placement, etc.

EECS 213 Introduction to Computer Systems
Northwestern University

11

CPU

Memory

Page Table

Disk

Virtual
Addresses Physical

Addresses

CPU

Memory

Page Table
Virtual

Addresses Physical
Addresses

Before fault After fault

Disk

Monday, November 14, 2011



EECS 213 Introduction to Computer Systems
Northwestern University

Servicing a page fault

Processor signals controller
– Read block of length P 

starting at disk address X and 
store starting at memory 
address Y

Read occurs
– Direct Memory Access (DMA)
– Under control of I/O controller

I / O controller signals 
completion
– Interrupt processor
– OS resumes suspended 

process 
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Motivation #2: Memory management

Multiple processes can reside in physical memory.
How do we resolve address conflicts?
– what if two processes access something at the same 

address?
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Solution: Separate virtual addr. spaces

Virtual and physical address spaces divided into 
equal-sized blocks
–  blocks are called “pages” (both virtual and physical)

Each process has its own virtual address space
– operating system controls how virtual pages as assigned to 

physical memory
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Motivation #3: Protection
Page table entry contains access rights information.
Hardware enforces this protection. Trap into OS if violation occurs.
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VM address translation

Virtual Address Space
– V = {0, 1, …, N–1}

Physical Address Space
– P = {0, 1, …, M–1}
– M < N

Address Translation
– MAP:  V →  P  U  {∅}
– For virtual address a:

• MAP(a)  =  a’  if data at virtual address a is at physical address 
a’ in P

• MAP(a)  = ∅ if data at virtual address a is not in physical memory
– Either invalid or stored on disk
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VM address translation: Miss
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VM address translation

Parameters
– P = 2p = page size (bytes).  
– N = 2n = Virtual address limit
– M = 2m = Physical address limit
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virtual page number page offset virtual address

physical page number page offset physical address
0p–1

address translation

pm–1

n–1 0p–1p

Page offset bits donʼt change as a result of translation
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Page tables
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Address translation via page table
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virtual page number (VPN) page offset VPO
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physical page number (PPN) page offset PPO
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Page table operation

Translation
– Separate (set of) page table(s) per process
– VPN forms index into page table (points to a page table entry)
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Page table operation

Computing physical address
– Page Table Entry (PTE) provides info about page

• if (valid bit = 1) then the page is in memory.
– Use physical page number (PPN) to construct address

• if (valid bit = 0) then the page is on disk - page fault
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Page table operation

Checking protection
– Access rights field indicate allowable access

• e.g., read-only, read-write, execute-only
• typically support multiple protection modes

– Protection violation fault if user doesn’t have necessary 
permission
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Multi-level page tables

Given:
– 4KB (212) page size
– 32-bit address space
– 4-byte PTE 

Problem:
– Would need a 4 MB page table!

• 220 *4 bytes

Common solution
– multi-level page tables
– e.g., 2-level table (P6)

• Level 1 table: 1024 entries, each of 
which points to a Level 2 page table.

• Level 2 table:  1024 entries, each of 
which points to a page
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Integrating VM and cache
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CPU
Trans-
lation Cache Main

Memory

VA PA miss

hit
data

Most caches accessed by physical addresses
– Allows multiple processes to have blocks in cache at a time
– Allows multiple processes to share pages
– Cache doesn’t need to be concerned with protection issues

–Access rights checked as part of address translation
Perform address translation before cache lookup
– But this could involve a memory access itself (of the PTE)
– Of course, page table entries can also become cached.
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Speeding up translation with a TLB

• “Translation Lookaside Buffer” (TLB)
– Small hardware cache with high associativity in MMU
– Maps virtual page numbers to  physical page numbers
– Contains complete page table entries for small number of 

pages
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Address translation with a TLB
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Taken stock – main themes

Programmer’s view
– Large “flat” address space

• Can allocate large blocks of contiguous addresses
– Processor “owns” machine

• Has private address space
• Unaffected by behavior of other processes

System view
– Virtual address space created by mapping to set of pages

• Need not be contiguous
• Allocated dynamically
• Enforce protection during address translation

– OS manages many processes simultaneously
• Continually switching among processes
• Especially when one must wait for resource

– E.g., disk I/O to handle page fault
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Simple memory system

Memory is byte addressable
Access are to 1-byte words
14-bit virtual addresses, 12-bit physical address

• Page size = 64 bytes (26)
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Simple memory system page table

Only show first 16 entries
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VPN PPN Valid VPN PPN Valid

00 28 1 08 13 1
01 – 0 09 17 1
02 33 1 0A 09 1
03 02 1 0B – 0
04 – 0 0C – 0
05 16 1 0D 2D 1
06 – 0 0E 11 1
07 – 0 0F 0D 1
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Simple memory system TLB

TLB
– 16 entries
– 4-way associative
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13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

Set Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid
0 03 – 0 09 0D 1 00 – 0 07 02 1
1 03 2D 1 02 – 0 04 – 0 0A – 0
2 02 – 0 08 – 0 06 – 0 03 – 0
3 07 – 0 03 0D 1 0A 34 1 02 – 0
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Set Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid
0 03 – 0 09 0D 1 00 – 0 07 02 1
1 03 2D 1 02 – 0 04 – 0 0A – 0
2 02 – 0 08 – 0 06 – 0 03 – 0
3 07 – 0 03 0D 1 0A 34 1 02 – 0

Idx Tag Valid B0 B1 B2 B3 Idx Tag Valid B0 B1 B2 B3

0 19 1 99 11 23 11 8 24 1 3A 00 51 89

1 15 0 – – – – 9 2D 0 – – – –

2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B

3 36 0 – – – – B 0B 0 – – – –

4 32 1 43 6D 8F 09 C 12 0 – – – –

5 0D 1 36 72 F0 1D D 16 1 04 96 34 15

6 31 0 – – – – E 13 1 83 77 1B D3

7 16 1 11 C2 DF 03 F 14 0 – – – –
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Simple memory system cache

Cache
– 16 lines
– 4-byte line size
– Direct mapped
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0 19 1 99 11 23 11 8 24 1 3A 00 51 89

1 15 0 – – – – 9 2D 0 – – – –

2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B

3 36 0 – – – – B 0B 0 – – – –

4 32 1 43 6D 8F 09 C 12 0 – – – –

5 0D 1 36 72 F0 1D D 16 1 04 96 34 15

6 31 0 – – – – E 13 1 83 77 1B D3

7 16 1 11 C2 DF 03 F 14 0 – – – –
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Harsh reality

Memory matters
Memory is not unbounded
– It must be allocated and managed
– Many applications are memory dominated

• Especially those based on complex, graph algorithms

Memory referencing bugs especially pernicious
– Effects are distant in both time and space

Memory performance is not uniform
– Cache and virtual memory effects can greatly affect program 

performance
– Adapting program to characteristics of memory system can 

lead to major speed improvements

Monday, November 14, 2011


