
Fabián E. Bustamante, Spring 2007Chris Riesbeck, Fall 2007

Virtual Memory

Today
 Motivations for VM
 Address translation
 Accelerating translation with TLBs

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

A system with physical memory only

Addresses generated by the CPU correspond directly to
bytes in physical memory

EECS 213 Introduction to Computer Systems
Northwestern University

2

CPU

0:
1:

N-1:

Memory

Physical
Addresses

E.g. most Cray
machines, early
PCs, nearly all
embedded
systems, etc.

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

A system with virtual memory

Modern processors use virtual addresses
Hardware converts virtual addresses to physical

addresses via OS-managed page table

EECS 213 Introduction to Computer Systems
Northwestern University

3

CPU

0:
1:

N-1:

Memory

0:
1:

P-1:

Page Table

Disk

Virtual
Addresses Physical

Addresses

E.g. workstations,
servers, modern
PCs, etc.

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

EECS 213 Introduction to Computer Systems
Northwestern University

4

Motivations for virtual memory

Use physical DRAM as a cache for the disk
– Address space of a process can exceed physical memory size
– Sum of address spaces of multiple processes can exceed

physical memory
Simplify memory management
– Multiple processes resident in main memory.

• Each process with its own address space
– Only “active” code and data is actually in memory

• Allocate more memory to process as needed.

Provide protection
– One process can’t interfere with another.

• because they operate in different address spaces.
– User process cannot access privileged information

• different sections of address spaces have different permissions.

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

EECS 213 Introduction to Computer Systems
Northwestern University

5

Motivation #1: DRAM a “cache” for disk

Full address space is quite large:
– 32-bit addresses: ~4,000,000,000 (4 billion) bytes
– 64-bit addresses: ~16,000,000,000,000,000,000 (16

quintillion) bytes
Disk storage is ~300X cheaper than DRAM storage
– 80 GB of DRAM: ~ $33,000
– 80 GB of disk: ~ $110

To access large amounts of data in a cost-effective
manner, the bulk of the data must be stored on disk

1GB: ~$200 80 GB: ~$110

4 MB: ~$500

DiskDRAMSRAM

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

EECS 213 Introduction to Computer Systems
Northwestern University

6

Levels in memory hierarchy

CPU
regs

C
a
c
h
e

Memory disk

size:
speed:
$/Mbyte:
line size:

32 B
1 ns

8 B

Register Cache Memory Disk Memory
32KB-4MB
2 ns
$125/MB
32 B

1024 MB
30 ns
$0.20/MB
4 KB

100 GB
8 ms
$0.001/MB

larger, slower, cheaper

8 B 32 B 4 KB

cache virtual memory

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

DRAM vs. SRAM as a “cache”

DRAM vs. disk is more extreme than SRAM vs. DRAM
– Access latencies:

• DRAM ~10X slower than SRAM
• Disk ~100,000X slower than DRAM

– Importance of exploiting spatial locality:
• First byte is ~100,000X slower than successive bytes on disk

– vs. ~4X improvement for page-mode vs. regular accesses to DRAM

– Bottom line:
• Design decisions made for DRAM caches driven by enormous

cost of misses

EECS 213 Introduction to Computer Systems
Northwestern University

7

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Impact of properties on design

If DRAM was to be organized similar to an SRAM
cache, how would we set the following design
parameters?
– Line size? Large, since disk better at transferring large blocks
– Associativity? High, to minimize miss rate
– Write through or write back?

• Write back, since can’t afford to perform small writes to disk

What would the impact of these choices be on:
– Miss rate: Extremely low. << 1%
– Hit time: Must match cache/DRAM performance
– Miss latency: Very high. ~20ms
– Tag storage overhead: Low, relative to block size

EECS 213 Introduction to Computer Systems
Northwestern University

8

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Locating an object in a “Cache”

SRAM Cache
– Tag stored with cache line
– Maps from cache block to memory blocks

• From cached to uncached form
• Save a few bits by only storing tag

– No tag for block not in cache
– Hardware retrieves information

• Can quickly match against multiple tags

EECS 213 Introduction to Computer Systems
Northwestern University

9

X
Object Name

Tag Data
D 243
X 17

J 105

•••
•••

0:
1:

N-1:

= X?

“Cache”

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Locating an object in “Cache” (cont.)

DRAM Cache
– Each allocated page of virtual memory has entry in page table
– Mapping from virtual pages to physical pages

• From uncached form to cached form
– Page table entry even if page not in memory

• Specifies disk address
• Only way to indicate where to find page

– OS retrieves information

EECS 213 Introduction to Computer Systems
Northwestern University

10

Data
243
 17

105

•••

0:
1:

N-1:

X
Object Name

Location

•••

D:
J:

X: 1

0
On Disk

“Cache”Page Table

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Page faults (like “cache misses”)

What if an object is on disk rather than in memory?
– Page table entry indicates virtual address not in memory
– OS exception handler invoked to move data from disk into

memory
• current process suspends, others can resume
• OS has full control over placement, etc.

EECS 213 Introduction to Computer Systems
Northwestern University

11

CPU

Memory

Page Table

Disk

Virtual
Addresses Physical

Addresses

CPU

Memory

Page Table
Virtual

Addresses Physical
Addresses

Before fault After fault

Disk

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Servicing a page fault

Processor signals controller
– Read block of length P

starting at disk address X and
store starting at memory
address Y

Read occurs
– Direct Memory Access (DMA)
– Under control of I/O controller

I / O controller signals
completion
– Interrupt processor
– OS resumes suspended

process

EECS 213 Introduction to Computer Systems
Northwestern University

12

diskDiskdiskDisk

Memory-I/O bus

Processor

Cache

Memory
I/O

controller

Reg

(2) DMA
Transfer

(1) Initiate Block Read

(3) Read
Done

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Motivation #2: Memory management

Multiple processes can reside in physical memory.
How do we resolve address conflicts?
– what if two processes access something at the same

address?

EECS 213 Introduction to Computer Systems
Northwestern University

13

kernel virtual memory

Memory mapped region
forshared libraries

runtime heap (via malloc)

program text (.text)
initialized data (.data)

uninitialized data (.bss)

stack

forbidden
0

%esp

memory invisible to
 user code

the “brk” ptr

Linux/x86
process
memory
image

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Solution: Separate virtual addr. spaces

Virtual and physical address spaces divided into
equal-sized blocks
– blocks are called “pages” (both virtual and physical)

Each process has its own virtual address space
– operating system controls how virtual pages as assigned to

physical memory

EECS 213 Introduction to Computer Systems
Northwestern University

14

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

VP 1
VP 2

PP 2
Address Translation0

0

N-1

0

N-1
M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read/only
library code)

...

...

Virtual
Address
Space for
Process 2:

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Motivation #3: Protection
Page table entry contains access rights information.
Hardware enforces this protection. Trap into OS if violation occurs.

EECS 213 Introduction to Computer Systems
Northwestern University

15

Page Tables

Process i:

Physical AddrRead? Write?
 PP 9Yes No

 PP 4Yes Yes

XXXXXXX No No

VP 0:

VP 1:

VP 2:
•••

•••
•••

Process j:

0:
1:

N-1:

Memory

Physical AddrRead? Write?
 PP 6Yes Yes

 PP 9Yes No

XXXXXXX No No
•••

•••
•••

VP 0:

VP 1:

VP 2:

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

EECS 213 Introduction to Computer Systems
Northwestern University

16

VM address translation

Virtual Address Space
– V = {0, 1, …, N–1}

Physical Address Space
– P = {0, 1, …, M–1}
– M < N

Address Translation
– MAP: V → P U {∅}
– For virtual address a:

• MAP(a) = a’ if data at virtual address a is at physical address
a’ in P

• MAP(a) = ∅ if data at virtual address a is not in physical memory
– Either invalid or stored on disk

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

EECS 213 Introduction to Computer Systems
Northwestern University

17

Processor

Hardware
Addr Trans
Mechanism

Main
Memorya a'

physical addressvirtual address part of the
on-chip

memory mgmt
unit (MMU)

VM address translation: Miss

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

VM address translation: Miss

EECS 213 Introduction to Computer Systems
Northwestern University

18

Processor

Hardware
Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
memory

∅

page fault

OS performs
this transfer
(only if miss)

a a'

physical addressvirtual address part of the
on-chip

memory mgmt
unit (MMU)

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

VM address translation

Parameters
– P = 2p = page size (bytes).
– N = 2n = Virtual address limit
– M = 2m = Physical address limit

EECS 213 Introduction to Computer Systems
Northwestern University

19

virtual page number page offset virtual address

physical page number page offset physical address
0p–1

address translation

pm–1

n–1 0p–1p

Page offset bits donʼt change as a result of translation

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Page tables

EECS 213 Introduction to Computer Systems
Northwestern University

20

Memory resident
page table

(physical page
 or disk address) Physical Memory

Disk Storage
(swap file or
regular file system file)

Valid

1
1

1
1
1

1

1
0

0

0

Virtual Page
Number

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Address translation via page table

EECS 213 Introduction to Computer Systems
Northwestern University

21

virtual page number (VPN) page offset VPO

virtual address

physical page number (PPN) page offset PPO

physical address

0p–1pm–1

n–1 0p–1p
page table base register

if valid=0
then page
not in memory

valid physical page number (PPN)access

VPN acts
as
table index

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Page table operation

Translation
– Separate (set of) page table(s) per process
– VPN forms index into page table (points to a page table entry)

EECS 213 Introduction to Computer Systems
Northwestern University

22

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Page table operation

Computing physical address
– Page Table Entry (PTE) provides info about page

• if (valid bit = 1) then the page is in memory.
– Use physical page number (PPN) to construct address

• if (valid bit = 0) then the page is on disk - page fault

EECS 213 Introduction to Computer Systems
Northwestern University

23

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Page table operation

Checking protection
– Access rights field indicate allowable access

• e.g., read-only, read-write, execute-only
• typically support multiple protection modes

– Protection violation fault if user doesn’t have necessary
permission

EECS 213 Introduction to Computer Systems
Northwestern University

24

Monday, November 14, 2011

Checkpoint

Monday, November 14, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/15-VirtualMemory-translation-quiz.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/15-VirtualMemory-translation-quiz.key

EECS 213 Introduction to Computer Systems
Northwestern University

Multi-level page tables

Given:
– 4KB (212) page size
– 32-bit address space
– 4-byte PTE

Problem:
– Would need a 4 MB page table!

• 220 *4 bytes

Common solution
– multi-level page tables
– e.g., 2-level table (P6)

• Level 1 table: 1024 entries, each of
which points to a Level 2 page table.

• Level 2 table: 1024 entries, each of
which points to a page

EECS 213 Introduction to Computer Systems
Northwestern University

25

Level 1
Table

...

Level 2
Tables

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Integrating VM and cache

EECS 213 Introduction to Computer Systems
Northwestern University

26

CPU
Trans-
lation Cache Main

Memory

VA PA miss

hit
data

Most caches accessed by physical addresses
– Allows multiple processes to have blocks in cache at a time
– Allows multiple processes to share pages
– Cache doesn’t need to be concerned with protection issues

–Access rights checked as part of address translation
Perform address translation before cache lookup
– But this could involve a memory access itself (of the PTE)
– Of course, page table entries can also become cached.

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Speeding up translation with a TLB

• “Translation Lookaside Buffer” (TLB)
– Small hardware cache with high associativity in MMU
– Maps virtual page numbers to physical page numbers
– Contains complete page table entries for small number of

pages

EECS 213 Introduction to Computer Systems
Northwestern University

27

CPU
TLB

Lookup Cache Main
Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Address translation with a TLB

EECS 213 Introduction to Computer Systems
Northwestern University

28

virtual addressvirtual page number page offset

physical address

n–1 0p–1p

valid physical page numbertag

valid tag data

data
=

cache hit

tag byte offsetindex

=

TLB hit

TLB

Cache

. ..

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Taken stock – main themes

Programmer’s view
– Large “flat” address space

• Can allocate large blocks of contiguous addresses
– Processor “owns” machine

• Has private address space
• Unaffected by behavior of other processes

System view
– Virtual address space created by mapping to set of pages

• Need not be contiguous
• Allocated dynamically
• Enforce protection during address translation

– OS manages many processes simultaneously
• Continually switching among processes
• Especially when one must wait for resource

– E.g., disk I/O to handle page fault

EECS 213 Introduction to Computer Systems
Northwestern University

29

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Simple memory system

Memory is byte addressable
Access are to 1-byte words
14-bit virtual addresses, 12-bit physical address

• Page size = 64 bytes (26)

EECS 213 Introduction to Computer Systems
Northwestern University

30

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

(Virtual Page Number) (Virtual Page Offset)

(Physical Page Number) (Physical Page Offset)

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Simple memory system page table

Only show first 16 entries

EECS 213 Introduction to Computer Systems
Northwestern University

31

VPN PPN Valid VPN PPN Valid

00 28 1 08 13 1
01 – 0 09 17 1
02 33 1 0A 09 1
03 02 1 0B – 0
04 – 0 0C – 0
05 16 1 0D 2D 1
06 – 0 0E 11 1
07 – 0 0F 0D 1

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Simple memory system TLB

TLB
– 16 entries
– 4-way associative

EECS 213 Introduction to Computer Systems
Northwestern University

32

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

Set Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid
0 03 – 0 09 0D 1 00 – 0 07 02 1
1 03 2D 1 02 – 0 04 – 0 0A – 0
2 02 – 0 08 – 0 06 – 0 03 – 0
3 07 – 0 03 0D 1 0A 34 1 02 – 0

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

34

Set Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid
0 03 – 0 09 0D 1 00 – 0 07 02 1
1 03 2D 1 02 – 0 04 – 0 0A – 0
2 02 – 0 08 – 0 06 – 0 03 – 0
3 07 – 0 03 0D 1 0A 34 1 02 – 0

Idx Tag Valid B0 B1 B2 B3 Idx Tag Valid B0 B1 B2 B3

0 19 1 99 11 23 11 8 24 1 3A 00 51 89

1 15 0 – – – – 9 2D 0 – – – –

2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B

3 36 0 – – – – B 0B 0 – – – –

4 32 1 43 6D 8F 09 C 12 0 – – – –

5 0D 1 36 72 F0 1D D 16 1 04 96 34 15

6 31 0 – – – – E 13 1 83 77 1B D3

7 16 1 11 C2 DF 03 F 14 0 – – – –

Monday, November 14, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Simple memory system cache

Cache
– 16 lines
– 4-byte line size
– Direct mapped

EECS 213 Introduction to Computer Systems
Northwestern University

33

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

Idx Tag Valid B0 B1 B2 B3 Idx Tag Valid B0 B1 B2 B3

0 19 1 99 11 23 11 8 24 1 3A 00 51 89

1 15 0 – – – – 9 2D 0 – – – –

2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B

3 36 0 – – – – B 0B 0 – – – –

4 32 1 43 6D 8F 09 C 12 0 – – – –

5 0D 1 36 72 F0 1D D 16 1 04 96 34 15

6 31 0 – – – – E 13 1 83 77 1B D3

7 16 1 11 C2 DF 03 F 14 0 – – – –

Monday, November 14, 2011

Checkpoint

Monday, November 14, 2011

keynote:/Users/riesbeck/Courses/EECS%20213/slides/15-VirtualMemory-translation-quiz.key
keynote:/Users/riesbeck/Courses/EECS%20213/slides/15-VirtualMemory-translation-quiz.key

EECS 213 Introduction to Computer Systems
Northwestern University

Harsh reality

Memory matters
Memory is not unbounded
– It must be allocated and managed
– Many applications are memory dominated

• Especially those based on complex, graph algorithms

Memory referencing bugs especially pernicious
– Effects are distant in both time and space

Memory performance is not uniform
– Cache and virtual memory effects can greatly affect program

performance
– Adapting program to characteristics of memory system can

lead to major speed improvements

Monday, November 14, 2011

