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Random-Access Memory (RAM)
Key features

– RAM is packaged as a chip.
– Basic storage unit is a cell (one bit per cell).
– Multiple RAM chips form a memory.

Static RAM (SRAM)
– Each cell stores bit with a six-transistor circuit.
– Retains value indefinitely, as long as it is kept powered.
– Relatively insensitive to disturbances such as electrical noise.
– Faster and more expensive than DRAM.

Dynamic RAM (DRAM)
– Each cell stores bit with a capacitor and transistor.
– Value must be refreshed every 10-100 ms.
– Sensitive to disturbances.
– Slower and cheaper than SRAM.

Tran. Per bit Access time Persist? Sensitive? Cost Applications

SRAM 6 1X Yes No 100X Cache mem.

DRAM 1 10X No Yes 1X Main mem., 
frame buffers
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Conventional DRAM organization

d x w DRAM:
– dw total bits organized as d supercells of size w bits

cols

rows

0 1 2 3

0

1
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3

internal row buffer

16 x 8 DRAM chip

addr

data

supercell
(2,1)

2 bits
/

8 bits
/

memory
controller

(to CPU)
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Reading DRAM supercell (2,1)

Step 1(a): Row access strobe (RAS) selects row 2.
Step 1(b): Row 2 copied from DRAM array to row 
buffer.

cols

rows

RAS = 2 0 1 2 3

0

1

2

internal row buffer

16 x 8 DRAM chip

3

addr
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2
/

8
/

memory
controller
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Reading DRAM supercell (2,1)

Step 2(a): Column access strobe (CAS) selects col 1.
Step 2(b): Supercell (2,1) copied from buffer to data 
lines, and eventually back to the CPU.

cols

rows

0 1 2 3
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3

internal row buffer

16 x 8 DRAM chip

CAS = 1

addr
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/
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Memory modules

: supercell (i,j)

64 MB  
memory module
consisting of
eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory
controller

DRAM 7

DRAM 0

031 78151623243263 394047485556

64-bit doubleword at main memory address A

bits
0-7

bits
8-15

bits
16-23

bits
24-31

bits
32-39

bits
40-47

bits
48-55

bits
56-63

64-bit doubleword

031 78151623243263 394047485556

64-bit doubleword at main memory address A
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Enhanced DRAMs

All enhanced DRAMs are built around the 
conventional DRAM core. 
– Fast page mode DRAM (FPM DRAM)

• Access contents of row with [RAS, CAS, CAS, CAS, CAS] 
instead of [(RAS,CAS), (RAS,CAS), (RAS,CAS), (RAS,CAS)].

– Extended data out DRAM (EDO DRAM)
• Enhanced FPM DRAM with more closely spaced CAS signals.

– Synchronous DRAM (SDRAM)
• Driven with rising clock edge instead of asynchronous control 

signals.
– Double data-rate synchronous DRAM (DDR SDRAM)

• Enhancement of SDRAM that uses both clock edges as control 
signals.

– Video RAM (VRAM)
• Like FPM DRAM, but output is produced by shifting row buffer
• Dual ported (allows concurrent reads and writes)
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Nonvolatile memories

DRAM and SRAM are volatile memories
– Lose information if powered off.

Nonvolatile memories retain value even if powered off.
– Generic name is read-only memory (ROM).
– Misleading because some ROMs can be read and modified.

Types of ROMs
– Programmable ROM (PROM)
– Eraseable programmable ROM (EPROM)
– Electrically eraseable PROM (EEPROM)
– Flash memory

Firmware
– Program stored in a ROM

• Boot time code, BIOS (basic input/ouput system)
• graphics cards, disk controllers.
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Typical bus structure

A bus is a collection of parallel wires that carry 
address, data, and control signals.
Buses are typically shared by multiple devices.

main
memory

I/O 
bridgebus interface

ALU

register file

CPU chip

system bus memory bus
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Memory read transaction (1)

CPU places address A on the memory bus.

 

ALU

register file

bus interface
A 0

Ax

main memory
I/O bridge

%eax

Load operation: movl A, %eax
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Memory read transaction (2)

Main memory reads A from the memory bus, retreives 
word x, and places it on the bus.

ALU

register file

bus interface

x 0

Ax

main memory

%eax

I/O bridge

Load operation: movl A, %eax
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Memory read transaction (3)

CPU read word x from the bus and copies it into 
register %eax.

x
ALU

register file

bus interface x

main memory
0

A

%eax

I/O bridge

Load operation: movl A, %eax
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Memory write transaction (1)

 CPU places address A on bus. Main memory reads it 
and waits for the corresponding data word to arrive.

y
ALU

register file

bus interface
A

main memory
0

A

%eax

I/O bridge

Store operation: movl %eax, A
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Memory write transaction (2)

 CPU places data word y on the bus.

y
ALU

register file

bus interface
y

main memory
0

A

%eax

I/O bridge

Store operation: movl %eax, A
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Memory write transaction (3)

 Main memory read data word y from the bus and 
stores it at address A.

y
ALU

register file

bus interface y

main memory
0

A

%eax

I/O bridge

Store operation: movl %eax, A
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Disk geometry

Disks consist of platters, each with two surfaces.
Each surface consists of concentric rings called tracks.
Each track consists of sectors separated by gaps.

spindle

surface
tracks

track k

sectors

gaps
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Disk geometry (Muliple-platter view)

 Aligned tracks form a cylinder.

surface 0
surface 1
surface 2
surface 3
surface 4
surface 5

cylinder k

spindle

platter 0

platter 1

platter 2
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Disk capacity

Capacity: maximum number of bits that can be stored.
– Vendors express capacity in units of gigabytes (GB),  where 1 

GB = 10^9. 

Capacity is determined by these technology factors:
– Recording density (bits/in): number of bits that can be 

squeezed into a 1 inch segment of a track.
– Track density (tracks/in): number of tracks that can be 

squeezed into a 1 inch radial segment.
– Areal density (bits/in2): product of recording and track density.

Modern disks partition tracks into disjoint subsets 
called recording zones 
– Each track in a zone has the same number of sectors, 

determined by the circumference of innermost track.
– Each zone has a different number of sectors/

track   
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 Computing disk capacity
Capacity =  (# bytes/sector) x (avg. # sectors/track) x 
              (# tracks/surface) x (# surfaces/platter) x
                     (# platters/disk)
Example:
– 512 bytes/sector
– 300 sectors/track (on average)
– 20,000 tracks/surface
– 2 surfaces/platter
– 5 platters/disk

Capacity = 512 x 300 x 20000 x 2 x 5  = 
30,720,000,000 = 30.72 GB 
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Disk operation (Single-platter view)

The disk 
surface 
spins at a fixed
rotational rate

By moving radially, the arm 
can position the read/write 
head over any track.

The read/write head
is attached to the end
of the arm and flies over
 the disk surface on
a thin cushion of air.

spindle

arm

read/write heads 
move in unison
from cylinder to cylinder

spindle
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Disk access time

Average time to access some target sector 
approximated by :
– Taccess  =  Tavg seek +  Tavg rotation + Tavg transfer 

Seek time (Tavg seek)
– Time to position heads over cylinder containing target sector.
– Typical  Tavg seek = 9 ms

Rotational latency (Tavg rotation)
– Time waiting for first bit of target sector to pass under r/w 

head.
–  = 1/2 x (60 sec / RPMs) x 1000 ms / sec

Transfer time (Tavg transfer) 
– Time to read the bits in the target sector.
–  = (60 sec / RPMs) x sectors / track x 1000 ms / sec
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Disk access time example
Given:
– Rotational rate = 7,200 RPM
– Tavg seek = 9 ms.

– Avg # sectors/track = 400.
Derived:
– Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms.
– Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 

0.02 ms
– Taccess  = 9 ms + 4 ms + 0.02 ms

Important points:
– Access time dominated by seek time and rotational latency.
– First bit in a sector is the most expensive, the rest are free.
– SRAM access time is about  4 ns/doubleword, DRAM about  60 ns

• Disk is about 40,000 times slower than SRAM, 
• 2,500 times slower then DRAM.
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Logical disk blocks

Modern disks present a simpler abstract view 
of the complex sector geometry:
– The set of available sectors is modeled as a 

sequence of b-sized logical blocks (0, 1, 2, ...)
Mapping between logical blocks and actual 
(physical) sectors
– Maintained by hardware/firmware device called disk 

controller.
– Converts requests for logical blocks into 

(surface,track,sector) triples.
Allows controller to set aside spare cylinders 
for each zone.
– Accounts for the difference in “formatted capacity” 

and “maximum capacity”. 
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I/O Bus

main
memory

I/O 
bridgebus interface

ALU

register file
CPU chip

system bus memory bus

disk 
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus
Expansion slots for
other devices such
as network adapters.
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Reading a disk sector (1)

main
memory

ALU

register file
CPU chip

disk 
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus

bus interface

CPU initiates a disk read by writing a 
command, logical block number, and 
destination memory address to a port 
(address) associated with disk controller.
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Reading a disk sector (2)

main
memory

ALU

register file
CPU chip

disk 
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus

bus interface

Disk controller reads the sector and 
performs a direct memory access (DMA) 
transfer into main memory.
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Reading a disk sector (3)

main
memory

ALU

register file
CPU chip

disk 
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus

bus interface

When the DMA transfer completes, the 
disk controller notifies the CPU with an 
interrupt (i.e., asserts a special “interrupt” 
pin on the CPU)
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Read/write in pages
To write, an entire block of pages must be erased, i.e., 
data must be saved first
Writing much slower because erasing expensive 
(approx. 1ms)
A block wears out after about 100,000 writes

29

Read Writes

Sequential 
Throughput
Random 
Throughput
Random Access 
Time

250 MB/sec 170 MB/sec

140 MB/sec 14 MB/sec

30 µs 300 µs
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Storage trends

(Culled from back issues of Byte and PC Magazine)

metric! ! 1980! 1985! 1990! 1995! 2000! 2000:1980

$/MB! ! 8,000! 880! 100! 30! 1! 8,000
access (ns)! 375! 200! 100! 70! 60! 6
typical size(MB) !0.064! 0.256! 4! 16! 64! 1,000 

DRAM

metric! ! 1980! 1985! 1990! 1995! 2000! 2000:1980

$/MB! ! 19,200! 2,900! 320! 256! 100! 190
access (ns)! 300! 150! 35! 15! 2! 100

SRAM

metric! ! 1980! 1985! 1990! 1995! 2000! 2000:1980

$/MB! ! 500! 100! 8! 0.30! 0.05! 10,000
access (ms)! 87! 75! 28! 10! 8! 11
typical size(MB) !1! 10! 160! 1,000! 9,000! 9,000

Disk

Saturday, October 29, 2011



EECS 213 Introduction to Computer Systems
Northwestern University

31

CPU clock rates

! ! 1980! 1985! 1990! 1995! 2000! 2000:1980
processor!  8080! 286! 386! Pent! P-III
clock rate(MHz) ! 1! 6! 20! 150! 750! 750
cycle time(ns)! 1,000! 166! 50! 6! 1.6! 750
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The CPU-Memory gap

 The increasing gap between DRAM, disk, and 
CPU speeds.

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1980 1985 1990 1995 2000

ns

year

Disk seek time
DRAM access time
SRAM access time
CPU cycle time
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Locality

Principle of Locality:
– Programs tend to reuse data and instructions near 

those they have used recently, or that were recently 
referenced themselves.

– Temporal locality:  Recently referenced items are 
likely to be referenced in the near future.

– Spatial locality:  Items with nearby addresses tend 
to be referenced close together in time.

Locality Example:
• Data

– Reference array elements in succession 
(stride-1 reference pattern):

– Reference sum each iteration:
• Instructions

– Reference instructions in sequence:
– Cycle through loop repeatedly: 

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

Spatial locality

Spatial locality
Temporal locality

Temporal locality
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Locality example

Claim: Being able to look at code and get a 
qualitative sense of its locality is a key skill for 
a professional programmer.
Question: Does this function have good 
locality?

int sumarrayrows(int a[M][N])
{
    int i, j, sum = 0;

    for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            sum += a[i][j];
    return sum
}
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Address
0 4 8 12 16 20

Contents a00 a01 a02 a10 a11 a12

Access Order 1 2 3 4 5 6

This is called 
stride-1 Good locality!
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Locality example

Question: Does this function have good 
locality?

int sumarraycols(int a[M][N])
{
    int i, j, sum = 0;

    for (j = 0; j < N; j++)
        for (i = 0; i < M; i++)
            sum += a[i][j];
    return sum
}
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Address
0 4 8 12 16 20

Contents a00 a01 a02 a10 a11 a12

Access Order 1 3 5 2 4 6

This is called 
stride-2

Not as good 
locality
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Memory hierarchies

Some fundamental and enduring properties of 
hardware and software:
– Fast storage technologies cost more per byte and 

have less capacity. 
– The gap between CPU and main memory speed is 

widening.
– Well-written programs tend to exhibit good locality.

These fundamental properties complement 
each other beautifully.
They suggest an approach for organizing 
memory and storage systems known as a 
memory hierarchy.
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An example memory hierarchy

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,  
slower, 

and 
cheaper 

(per byte)
storage
devices

remote secondary storage
(distributed file systems, Web servers)

Local disks hold files 
retrieved from disks 
on remote network 
servers.

Main memory holds disk 
blocks retrieved from local 
disks.

off-chip L2
cache (SRAM)

L1 cache holds cache lines 
retrieved from the L2 cache 
memory.

CPU registers hold words 
retrieved from L1 cache.

L2 cache holds cache lines 
retrieved from main 
memory.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,

and 
costlier

(per byte)
storage 
devices
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Caches

Cache: A smaller, faster storage device that acts as a 
staging area for a subset of the data in a larger, slower 
device.
Fundamental idea of a memory hierarchy:
– For each k, the faster, smaller device at level k serves as a 

cache for the larger, slower device at level k+1.
Why do memory hierarchies work?
– Programs tend to access the data at level k more often than 

they access the data at level k+1. 
– Thus, the storage at level k+1 can be slower, and thus larger 

and cheaper per bit.
– Net effect:  A large pool of memory that costs as much as the 

cheap storage near the bottom, but that serves data to 
programs at the rate of the fast storage near the top.
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Caching in a memory hierarchy

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Larger, slower, cheaper storage
device at level k+1 is partitioned
into blocks.

Data is copied between
levels in block-sized transfer 
units

8 9 14 3
Smaller, faster, more expensive
device at level k caches a 
subset of the blocks from level k+1

Level k:

Level k+1: 4

4

4 10

10

10
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Request
14

Request
12

General caching  concepts
Program needs object d, which is 
stored in some block b.
Cache hit
– Program finds  b  in the cache at 

level k.  E.g.,  block 14.
Cache miss
– b is not at level k, so level k cache  

must fetch it from level k+1.   E.g.,  
block 12.

– If level k cache is full, then some 
current block must be replaced 
(evicted). Which one is the 
“victim”? 

• Placement policy: where can the 
new block go? E.g., b mod 4

• Replacement policy: which block 
should be evicted? E.g., LRU

9 3

0 1 2 3
4 5 6 7

8 9 10 11
12 13 14 15

Level
 k:

Level 
k+1:

1414

12

14

4*

4*12

12

0 1 2 3

Request
12

4*4*12
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General caching concepts

Types of cache misses:
– Cold (compulsary) miss

• Cold misses occur because the cache is empty.
– Conflict miss

• Most caches limit blocks at level k+1 to a small subset 
(sometimes a singleton) of the block positions at level k.

• E.g. Block i at level k+1 must be placed in block (i mod 4) at level 
k+1.

• Conflict misses occur when the level k cache is large enough, 
but multiple data objects all map to the same level k block.

• E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
– Capacity miss

• Occurs when the set of active cache blocks (working set) is 
larger than the cache.
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Examples of caching in the hierarchy

Hardware0On-Chip TLBAddress 
translations

TLB

Web 
browser

10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer 
cache

Buffer cache

Virtual Memory
L2 cache
L1 cache

Registers

Cache Type

Web pages

Parts of files
Parts of files

4-KB page
32-byte block
32-byte block

4-byte word

What Cached

Web proxy 
server

1,000,000,000Remote server 
disks

OS100Main memory

Hardware1On-Chip L1
Hardware10Off-Chip L2

AFS/NFS 
client

10,000,000Local disk

Hardware
+OS

100Main memory

Compiler0 CPU registers

Managed 
By

Latency 
(cycles)

Where Cached
Translation Lookaside 

Buffer (virtual 
memory, ch 10)
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