
Chris Riesbeck, Spring 2010
Original: Fabian Bustamante

The Memory Hierarchy

Today
 Storage technologies and trends
 Locality of reference
 Caching in the memory hierarchy

Next time
 Cache memory

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

2

Random-Access Memory (RAM)
Key features

– RAM is packaged as a chip.
– Basic storage unit is a cell (one bit per cell).
– Multiple RAM chips form a memory.

Static RAM (SRAM)
– Each cell stores bit with a six-transistor circuit.
– Retains value indefinitely, as long as it is kept powered.
– Relatively insensitive to disturbances such as electrical noise.
– Faster and more expensive than DRAM.

Dynamic RAM (DRAM)
– Each cell stores bit with a capacitor and transistor.
– Value must be refreshed every 10-100 ms.
– Sensitive to disturbances.
– Slower and cheaper than SRAM.

Tran. Per bit Access time Persist? Sensitive? Cost Applications

SRAM 6 1X Yes No 100X Cache mem.

DRAM 1 10X No Yes 1X Main mem.,
frame buffers

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

3

Conventional DRAM organization

d x w DRAM:
– dw total bits organized as d supercells of size w bits

cols

rows

0 1 2 3

0

1

2

3

internal row buffer

16 x 8 DRAM chip

addr

data

supercell
(2,1)

2 bits
/

8 bits
/

memory
controller

(to CPU)

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

4

Reading DRAM supercell (2,1)

Step 1(a): Row access strobe (RAS) selects row 2.
Step 1(b): Row 2 copied from DRAM array to row
buffer.

cols

rows

RAS = 2 0 1 2 3

0

1

2

internal row buffer

16 x 8 DRAM chip

3

addr

data

2
/

8
/

memory
controller

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

5

Reading DRAM supercell (2,1)

Step 2(a): Column access strobe (CAS) selects col 1.
Step 2(b): Supercell (2,1) copied from buffer to data
lines, and eventually back to the CPU.

cols

rows

0 1 2 3

0

1

2

3

internal row buffer

16 x 8 DRAM chip

CAS = 1

addr

data

2
/

8
/

memory
controller

supercell
(2,1)

supercell
(2,1)

To CPU

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

6

Memory modules

: supercell (i,j)

64 MB
memory module
consisting of
eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory
controller

DRAM 7

DRAM 0

031 78151623243263 394047485556

64-bit doubleword at main memory address A

bits
0-7

bits
8-15

bits
16-23

bits
24-31

bits
32-39

bits
40-47

bits
48-55

bits
56-63

64-bit doubleword

031 78151623243263 394047485556

64-bit doubleword at main memory address A

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

7

Enhanced DRAMs

All enhanced DRAMs are built around the
conventional DRAM core.
– Fast page mode DRAM (FPM DRAM)

• Access contents of row with [RAS, CAS, CAS, CAS, CAS]
instead of [(RAS,CAS), (RAS,CAS), (RAS,CAS), (RAS,CAS)].

– Extended data out DRAM (EDO DRAM)
• Enhanced FPM DRAM with more closely spaced CAS signals.

– Synchronous DRAM (SDRAM)
• Driven with rising clock edge instead of asynchronous control

signals.
– Double data-rate synchronous DRAM (DDR SDRAM)

• Enhancement of SDRAM that uses both clock edges as control
signals.

– Video RAM (VRAM)
• Like FPM DRAM, but output is produced by shifting row buffer
• Dual ported (allows concurrent reads and writes)

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

8

Nonvolatile memories

DRAM and SRAM are volatile memories
– Lose information if powered off.

Nonvolatile memories retain value even if powered off.
– Generic name is read-only memory (ROM).
– Misleading because some ROMs can be read and modified.

Types of ROMs
– Programmable ROM (PROM)
– Eraseable programmable ROM (EPROM)
– Electrically eraseable PROM (EEPROM)
– Flash memory

Firmware
– Program stored in a ROM

• Boot time code, BIOS (basic input/ouput system)
• graphics cards, disk controllers.

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

9

Typical bus structure

A bus is a collection of parallel wires that carry
address, data, and control signals.
Buses are typically shared by multiple devices.

main
memory

I/O
bridgebus interface

ALU

register file

CPU chip

system bus memory bus

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

10

Memory read transaction (1)

CPU places address A on the memory bus.

ALU

register file

bus interface
A 0

Ax

main memory
I/O bridge

%eax

Load operation: movl A, %eax

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

11

Memory read transaction (2)

Main memory reads A from the memory bus, retreives
word x, and places it on the bus.

ALU

register file

bus interface

x 0

Ax

main memory

%eax

I/O bridge

Load operation: movl A, %eax

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

12

Memory read transaction (3)

CPU read word x from the bus and copies it into
register %eax.

x
ALU

register file

bus interface x

main memory
0

A

%eax

I/O bridge

Load operation: movl A, %eax

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

13

Memory write transaction (1)

 CPU places address A on bus. Main memory reads it
and waits for the corresponding data word to arrive.

y
ALU

register file

bus interface
A

main memory
0

A

%eax

I/O bridge

Store operation: movl %eax, A

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

14

Memory write transaction (2)

 CPU places data word y on the bus.

y
ALU

register file

bus interface
y

main memory
0

A

%eax

I/O bridge

Store operation: movl %eax, A

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

15

Memory write transaction (3)

 Main memory read data word y from the bus and
stores it at address A.

y
ALU

register file

bus interface y

main memory
0

A

%eax

I/O bridge

Store operation: movl %eax, A

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

16

Disk geometry

Disks consist of platters, each with two surfaces.
Each surface consists of concentric rings called tracks.
Each track consists of sectors separated by gaps.

spindle

surface
tracks

track k

sectors

gaps

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

17

Disk geometry (Muliple-platter view)

 Aligned tracks form a cylinder.

surface 0
surface 1
surface 2
surface 3
surface 4
surface 5

cylinder k

spindle

platter 0

platter 1

platter 2

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

18

Disk capacity

Capacity: maximum number of bits that can be stored.
– Vendors express capacity in units of gigabytes (GB), where 1

GB = 10^9.

Capacity is determined by these technology factors:
– Recording density (bits/in): number of bits that can be

squeezed into a 1 inch segment of a track.
– Track density (tracks/in): number of tracks that can be

squeezed into a 1 inch radial segment.
– Areal density (bits/in2): product of recording and track density.

Modern disks partition tracks into disjoint subsets
called recording zones
– Each track in a zone has the same number of sectors,

determined by the circumference of innermost track.
– Each zone has a different number of sectors/

track

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

19

 Computing disk capacity
Capacity = (# bytes/sector) x (avg. # sectors/track) x
 (# tracks/surface) x (# surfaces/platter) x
 (# platters/disk)
Example:
– 512 bytes/sector
– 300 sectors/track (on average)
– 20,000 tracks/surface
– 2 surfaces/platter
– 5 platters/disk

Capacity = 512 x 300 x 20000 x 2 x 5 =
30,720,000,000 = 30.72 GB

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

20

Disk operation (Single-platter view)

The disk
surface
spins at a fixed
rotational rate

By moving radially, the arm
can position the read/write
head over any track.

The read/write head
is attached to the end
of the arm and flies over
 the disk surface on
a thin cushion of air.

spindle

arm

read/write heads
move in unison
from cylinder to cylinder

spindle

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

21

Disk access time

Average time to access some target sector
approximated by :
– Taccess = Tavg seek + Tavg rotation + Tavg transfer

Seek time (Tavg seek)
– Time to position heads over cylinder containing target sector.
– Typical Tavg seek = 9 ms

Rotational latency (Tavg rotation)
– Time waiting for first bit of target sector to pass under r/w

head.
– = 1/2 x (60 sec / RPMs) x 1000 ms / sec

Transfer time (Tavg transfer)
– Time to read the bits in the target sector.
– = (60 sec / RPMs) x sectors / track x 1000 ms / sec

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

22

Disk access time example
Given:
– Rotational rate = 7,200 RPM
– Tavg seek = 9 ms.

– Avg # sectors/track = 400.
Derived:
– Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms.
– Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec =

0.02 ms
– Taccess = 9 ms + 4 ms + 0.02 ms

Important points:
– Access time dominated by seek time and rotational latency.
– First bit in a sector is the most expensive, the rest are free.
– SRAM access time is about 4 ns/doubleword, DRAM about 60 ns

• Disk is about 40,000 times slower than SRAM,
• 2,500 times slower then DRAM.

Saturday, October 29, 2011

Checkpoint

Saturday, October 29, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/10-MemHierarchy-disk-quiz.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/10-MemHierarchy-disk-quiz.key

EECS 213 Introduction to Computer Systems
Northwestern University

24

Logical disk blocks

Modern disks present a simpler abstract view
of the complex sector geometry:
– The set of available sectors is modeled as a

sequence of b-sized logical blocks (0, 1, 2, ...)
Mapping between logical blocks and actual
(physical) sectors
– Maintained by hardware/firmware device called disk

controller.
– Converts requests for logical blocks into

(surface,track,sector) triples.
Allows controller to set aside spare cylinders
for each zone.
– Accounts for the difference in “formatted capacity”

and “maximum capacity”.

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

25

I/O Bus

main
memory

I/O
bridgebus interface

ALU

register file
CPU chip

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus
Expansion slots for
other devices such
as network adapters.

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

26

Reading a disk sector (1)

main
memory

ALU

register file
CPU chip

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus

bus interface

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
(address) associated with disk controller.

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

27

Reading a disk sector (2)

main
memory

ALU

register file
CPU chip

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus

bus interface

Disk controller reads the sector and
performs a direct memory access (DMA)
transfer into main memory.

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

28

Reading a disk sector (3)

main
memory

ALU

register file
CPU chip

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus

bus interface

When the DMA transfer completes, the
disk controller notifies the CPU with an
interrupt (i.e., asserts a special “interrupt”
pin on the CPU)

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Solid State Disk

Read/write in pages
To write, an entire block of pages must be erased, i.e.,
data must be saved first
Writing much slower because erasing expensive
(approx. 1ms)
A block wears out after about 100,000 writes

29

Read Writes

Sequential
Throughput
Random
Throughput
Random Access
Time

250 MB/sec 170 MB/sec

140 MB/sec 14 MB/sec

30 µs 300 µs

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

30

Storage trends

(Culled from back issues of Byte and PC Magazine)

metric! ! 1980! 1985! 1990! 1995! 2000! 2000:1980

$/MB! ! 8,000! 880! 100! 30! 1! 8,000
access (ns)! 375! 200! 100! 70! 60! 6
typical size(MB) !0.064! 0.256! 4! 16! 64! 1,000

DRAM

metric! ! 1980! 1985! 1990! 1995! 2000! 2000:1980

$/MB! ! 19,200! 2,900! 320! 256! 100! 190
access (ns)! 300! 150! 35! 15! 2! 100

SRAM

metric! ! 1980! 1985! 1990! 1995! 2000! 2000:1980

$/MB! ! 500! 100! 8! 0.30! 0.05! 10,000
access (ms)! 87! 75! 28! 10! 8! 11
typical size(MB) !1! 10! 160! 1,000! 9,000! 9,000

Disk

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

31

CPU clock rates

! ! 1980! 1985! 1990! 1995! 2000! 2000:1980
processor! 8080! 286! 386! Pent! P-III
clock rate(MHz) ! 1! 6! 20! 150! 750! 750
cycle time(ns)! 1,000! 166! 50! 6! 1.6! 750

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

32

The CPU-Memory gap

 The increasing gap between DRAM, disk, and
CPU speeds.

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1980 1985 1990 1995 2000

ns

year

Disk seek time
DRAM access time
SRAM access time
CPU cycle time

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

33

Locality

Principle of Locality:
– Programs tend to reuse data and instructions near

those they have used recently, or that were recently
referenced themselves.

– Temporal locality: Recently referenced items are
likely to be referenced in the near future.

– Spatial locality: Items with nearby addresses tend
to be referenced close together in time.

Locality Example:
• Data

– Reference array elements in succession
(stride-1 reference pattern):

– Reference sum each iteration:
• Instructions

– Reference instructions in sequence:
– Cycle through loop repeatedly:

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

Spatial locality

Spatial locality
Temporal locality

Temporal locality

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

34

Locality example

Claim: Being able to look at code and get a
qualitative sense of its locality is a key skill for
a professional programmer.
Question: Does this function have good
locality?

int sumarrayrows(int a[M][N])
{
 int i, j, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];
 return sum
}

Saturday, October 29, 2011

Address
0 4 8 12 16 20

Contents a00 a01 a02 a10 a11 a12

Access Order 1 2 3 4 5 6

This is called
stride-1 Good locality!

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

36

Locality example

Question: Does this function have good
locality?

int sumarraycols(int a[M][N])
{
 int i, j, sum = 0;

 for (j = 0; j < N; j++)
 for (i = 0; i < M; i++)
 sum += a[i][j];
 return sum
}

Saturday, October 29, 2011

Address
0 4 8 12 16 20

Contents a00 a01 a02 a10 a11 a12

Access Order 1 3 5 2 4 6

This is called
stride-2

Not as good
locality

Saturday, October 29, 2011

Checkpoint

Saturday, October 29, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/10-MemHierarchy-locality-quiz.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/10-MemHierarchy-locality-quiz.key

EECS 213 Introduction to Computer Systems
Northwestern University

39

Memory hierarchies

Some fundamental and enduring properties of
hardware and software:
– Fast storage technologies cost more per byte and

have less capacity.
– The gap between CPU and main memory speed is

widening.
– Well-written programs tend to exhibit good locality.

These fundamental properties complement
each other beautifully.
They suggest an approach for organizing
memory and storage systems known as a
memory hierarchy.

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

40

An example memory hierarchy

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,

and
cheaper

(per byte)
storage
devices

remote secondary storage
(distributed file systems, Web servers)

Local disks hold files
retrieved from disks
on remote network
servers.

Main memory holds disk
blocks retrieved from local
disks.

off-chip L2
cache (SRAM)

L1 cache holds cache lines
retrieved from the L2 cache
memory.

CPU registers hold words
retrieved from L1 cache.

L2 cache holds cache lines
retrieved from main
memory.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,

and
costlier

(per byte)
storage
devices

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

41

Caches

Cache: A smaller, faster storage device that acts as a
staging area for a subset of the data in a larger, slower
device.
Fundamental idea of a memory hierarchy:
– For each k, the faster, smaller device at level k serves as a

cache for the larger, slower device at level k+1.
Why do memory hierarchies work?
– Programs tend to access the data at level k more often than

they access the data at level k+1.
– Thus, the storage at level k+1 can be slower, and thus larger

and cheaper per bit.
– Net effect: A large pool of memory that costs as much as the

cheap storage near the bottom, but that serves data to
programs at the rate of the fast storage near the top.

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

42

Caching in a memory hierarchy

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Larger, slower, cheaper storage
device at level k+1 is partitioned
into blocks.

Data is copied between
levels in block-sized transfer
units

8 9 14 3
Smaller, faster, more expensive
device at level k caches a
subset of the blocks from level k+1

Level k:

Level k+1: 4

4

4 10

10

10

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

43

Request
14

Request
12

General caching concepts
Program needs object d, which is
stored in some block b.
Cache hit
– Program finds b in the cache at

level k. E.g., block 14.
Cache miss
– b is not at level k, so level k cache

must fetch it from level k+1. E.g.,
block 12.

– If level k cache is full, then some
current block must be replaced
(evicted). Which one is the
“victim”?

• Placement policy: where can the
new block go? E.g., b mod 4

• Replacement policy: which block
should be evicted? E.g., LRU

9 3

0 1 2 3
4 5 6 7

8 9 10 11
12 13 14 15

Level
 k:

Level
k+1:

1414

12

14

4*

4*12

12

0 1 2 3

Request
12

4*4*12

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

44

General caching concepts

Types of cache misses:
– Cold (compulsary) miss

• Cold misses occur because the cache is empty.
– Conflict miss

• Most caches limit blocks at level k+1 to a small subset
(sometimes a singleton) of the block positions at level k.

• E.g. Block i at level k+1 must be placed in block (i mod 4) at level
k+1.

• Conflict misses occur when the level k cache is large enough,
but multiple data objects all map to the same level k block.

• E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
– Capacity miss

• Occurs when the set of active cache blocks (working set) is
larger than the cache.

Saturday, October 29, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

45

Examples of caching in the hierarchy

Hardware0On-Chip TLBAddress
translations

TLB

Web
browser

10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer
cache

Buffer cache

Virtual Memory
L2 cache
L1 cache

Registers

Cache Type

Web pages

Parts of files
Parts of files

4-KB page
32-byte block
32-byte block

4-byte word

What Cached

Web proxy
server

1,000,000,000Remote server
disks

OS100Main memory

Hardware1On-Chip L1
Hardware10Off-Chip L2

AFS/NFS
client

10,000,000Local disk

Hardware
+OS

100Main memory

Compiler0 CPU registers

Managed
By

Latency
(cycles)

Where Cached
Translation Lookaside

Buffer (virtual
memory, ch 10)

Saturday, October 29, 2011

