Machine-Level Prog. V — Miscellaneous Topics

Today
m Buffer overflow
® Floating point code

Next time
= Memory

Chris Riesbeck, Spring 2010

Original: Fabian Bustamante

Monday, October 31, 2011

Internet worm and IM war

* November, 1988

— Internet Worm attacks thousands of Internet hosts.
— How did it happen?

* July, 1999
— Microsoft launches MSN Messenger (instant messaging
system).
— Messenger clients can access popular AOL Instant Messaging
Service (AIM) servers

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 31, 2011

Internet worm and IM war (cont.)
* August 1999

— Mysteriously, Messenger clients can no longer access AIM
servers.

— Microsoft and AOL begin the IM war:
« AOL changes server to disallow Messenger clients

* Microsoft makes changes to clients to defeat AOL changes.
» At least 13 such skirmishes.

— How did it happen?

* The Internet worm and AOL/Microsoft war were both

based on stack buffer overflow exploits!
« many Unix functions do not check argument sizes.
« allows target buffers to overflow.

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 31, 2011

String library code

* Implementation of Unix function gets

— No way to specify limit on number of characters to
read

/* Get string from stdin */
char *gets(char *dest)
{
int ¢ = getc();
char *p = dest;
while (¢ !'= EOF && c !'= '\n') {
*p++ = c;
c = getc();
}
*p = '\0';
return dest;

}

* Similar problems with other Unix functions

— strcpy: Copies string of arbitrary length

— scanf, fscanf, sscanf, when given %s conversion
specification

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 31, 2011

Vulnerable buffer code

/* Echo Line */

void echo()

{
char buf[4]; /* Way too small! */
gets (buf) ;
puts (buf) ;

int main|()

{
printf ("Type a string:");
echo () ;
return O;

}

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 31, 2011

Buffer overflow executions

unix>. /bufdemo
Type a string:123
123

unix>./bufdemo
Type a string:12345
Segmentation Fault

unix>. /bufdemo
Type a string:12345678
Segmentation Fault

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 31,

2011

Buffer overflow stack

Stack /* Echo Line */
Frame void echo()
for main {

char buf[4]; /* Way too small! */
gets (buf) ;
puts (buf) ;

Return Address
Saved %ebp fe— %ebp

}
[BNIZ2NILNI0]} but
Stack
Frame
for echo echo -

pushl %ebp # Save %ebp on stack
movl 3%esp, $ebp
subl $20,%esp # Allocate space on stack
pushl %ebx # Save %ebx
addl $-12,%esp # Allocate space on stack
leal -4 (%ebp) ,%ebx # Compute buf as %ebp-4
pushl %ebx # Push buf on stack
call gets # Call gets

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 31, 2011

Buffer overflow stack example

unix> gdb bufdemo

(gdb) break echo

Breakpoint 1 at 0x8048583

(gdb) run

Breakpoint 1, 0x8048583 in echo ()
(gdb) print /x *(unsigned *)Sebp

$1 = Oxbffff8f8

(gdb) print /x *((unsigned *)Sebp + 1)
$3 = 0x804864d

Stack Stack
Frame Frame Before call
for main for main
to gets
Return Address 08| 04| 86| 44
Saved $ebp fe— 2ebp bf| £f| £8| £8] Oxbf£f£f£f8d8
[BHIZ2H 1IN0} but XX | xx| xx| XX buf
Stack Stack
Frame Frame
for echo for echo

8048648: call 804857c <echo>
804864d: mov Oxffffffe8 (%ebp),h $ebx # Return Point

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 31, 2011

Buffer overflow example #1

Before Call to gets Input = “123”
Stack Stack
Frame Frame
for main for main
Return Address 08| 04| 86| 44
Saved sebp j&— %ebp bf| ££| £8| £8] Oxbff££8d8
[BN[2][1]J [0} buf 00| 33| 32| 31| buf
Stack Stack
Frame Frame
for echo for echo
No Problem

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 31, 2011

Buffer overflow stack example #2

Stack Stack Input = “12345”
Frame Frame
formain for main
Return Address 08l o4l gél 44
Saved Yebp p— %ebp bf| ££] 00| 35| Oxbff££8d8
[SN[2] [[0} buf 34| 33| 32| 31| pur
—_— Stack Saved value of $ebp set
Frame St to 0xbf££0035
for echo for echo
Bad news when later

echo code: attempt to restore %ebp

8048592: push %ebx

8048593: call 80483e4 < init+0x50> # gets
8048598: mov Oxffffffe8 (%ebp) , $ebx
804859%: mov %ebp, sesp

804859d: pop %ebp # %ebp gets set to invalid value
804859%e: ret

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 31, 2011

Buffer overflow stack example #3

Stack
— Stack Input = “12345678”
formain formain
Return Address 08| 04| 86| 00}.
Saved sebp fe— %ebp 38(37| 36| 35| oxbeer£sas
(31|21 (1) [01f bus 34[33| 32[31] bur *
Stack Stack :
Frame Frame : %ebp and return
for echo for echo s address corrupted

Invalid address

No longer pointing to 4
desired return point

8048648: call 804857c <echo>
804864d: mov Oxffffffe8 (%ebp),h %ebx # Return Point

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 31, 2011

Malicious use of buffer overflow

\
void foo () { f Stadl(l
roturn bar () ; after call to foo
address —» - - - gets () > stack
A } frame
| B
void bar() { data {
char buf[64]; written { pad
gets (buf) ; by
c .. gets () bar
} exploit > stack
\ code frame
B —™
y

* Input string contains byte representation of executable code
« Overwrite return address with address of buffer
« When bar () executes ret, will jump to exploit code

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 31, 2011

Exploits based on buffer overflows

* Buffer overflow bugs allow remote machines to
execute arbitrary code on victim machines.

* Internet worm

— Early versions of the finger server (fingerd) used
gets () to read the argument sent by the client:

e finger droh@cs.cmu.edu

— Worm attacked fingerd server by sending phony

argument:
e finger “exploit-code padding new-return-
address”
» exploit code: executed a root shell on the victim machine
with a direct TCP connection to the attacker.

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 31, 2011

Exploits based on buffer overflows

» Buffer overflow bugs allow remote machines to
execute arbitrary code on victim machines.

* IM War

— AOL exploited existing buffer overflow bug in AIM
clients

— exploit code: returned 4-byte signature (the bytes at
some location in the AIM client) to server.

— When Microsoft changed code to match signature,
AOL changed signature location.

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 31, 2011

Email from a supposed consultant

Date: Wed, 11 Aug 1999 11:30:57 -0700 (PDT)

From: Phil Bucking <philbucking@yahoo.com>

Subject: AOL exploiting buffer overrun bug in their own software!
To: rms@pharlap.com

Mr. Smith,

I am writing you because I have discovered something that I think you
might find interesting because you are an Internet security expert with
experience in this area. I have also tried to contact AOL but received
no response.

I am a developer who has been working on a revolutionary new instant
messaging client that should be released later this year.

It appears that the AIM client has a buffer overrun bug. By itself
this might not be the end of the world, as MS surely has had its share.
But AOL is now *exploiting their own buffer overrun bug* to help in
its efforts to block MS Instant Messenger.

Since you have significant credibility with the press I hope that you
can use this information to help inform people that behind AOL's
friendly exterior they are nefariously compromising peoples' security.

Sincerely,
Phil Bucking
Founder, Bucking Consulting

philbucking@yahoo.com Later determined to be from MS

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 31, 2011

Avoiding overflow vulnerability

* Use library routines that limit string lengths
— fgets instead of gets
— strncpy instead of strcpy

— Don’t use scanf with $s conversion specification
« Use fgets toread the string

/* Echo Line */

void echo()

{
char buf[4]; /* Way too small! */
fgets (buf, 4, stdin);
puts (buf) ;

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 31, 2011

IA32 floating point

— Note: the Floating Point textbook material is
available as a “web-aside” at the textbook site.

— Book home page:
* http://csapp.cs.cmu.edu/

— Web asides:
 http://csapp.cs.cmu.edu/public/waside.html

— Floating point aside
 http://csapp.cs.cmu.edu/public/waside/waside-x87.pdf

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 31, 2011

http://csapp.cs.cmu.edu
http://csapp.cs.cmu.edu
http://csapp.cs.cmu.edu/public/waside.html
http://csapp.cs.cmu.edu/public/waside.html
http://csapp.cs.cmu.edu/public/waside/waside-x87.pdf
http://csapp.cs.cmu.edu/public/waside/waside-x87.pdf

IA32 floating point

* History
— 8086: first computer to implement IEEE FP

- separate 8087 FPU (floating point unit) J::;':I‘::i:: 4
— 486: merged FPU and Integer Unit onto sequencer
one chip
* Summary
— Hardware to add, multiply, and divide |
— Floating point data registers integer -
— Various control & status registers Unit FPU
* Floating Point formats I I
— single precision (C float): 32 bits
_ _ : Memory
— double precision (C double): 64 bits

— extended precision (C long
double): 80 bits

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 31, 2011

FPU data register stack

* FPU register format (extended precision)

79 78 6463 0
s| exp frac

* FPU registers

— 8 registers

— Logically forms shallow
stack

— Top called $st (0) N P

— When push too many, 35t (2)
bottom values st (1)
disappear “Top” = %5t (0)

stack grows down

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 31, 2011

FPU instructions

* Large number of floating point instructions &
formats

— ~50 basic instruction types
— load, store, add, multiply
— sin, cos, tan, arctan, and log!

* Sample instructions:

Instruction
fldz

flds Addr
fmuls Addr
faddp

Effect Description

push 0.0 Load zero

push M[Addr] Load single precision real
$st (0) <- %st(0) *M[Addr] Multiply

$st(l) <- %st(0)+%st(l); pop Addand pop

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 31, 2011

Floating point code example

* Compute inner product of two vectors
— Single precision arithmetic
— Common computation

pushl %ebp # setup
movl %$esp, $ebp
pushl %ebx
movl 8 (%ebp) , $ebx # %ebx=&x
- movl 12 (%ebp) , %ecx # %ecx=&y
float ipf (float x[], movl 16 (%ebp),%edx # %edx=n
float yI[1, fldz # push +0.0
int n) xorl %eax, %eax # i=0
cmpl %edx, %$eax # if i>=n done
{ jge .L3
int 1i; .L5:
float result = 0.0; flds (%ebx, %eax,4) # push x[i]
fmuls (%ecx,%eax,4) # st(0)*=y[i]
. . . fadd # st(l)+=st(0),; po
for (i = 0; i < n; i++) { inclp%eax # i++ Pep
result += x[i] * y[i]; cmpl %edx, $eax # if i<n repeat
} jl .15
.L3:
return result; movl -4 (%ebp),%ebx # finish
} movl %ebp, %esp
popl %ebp
ret # st(0) = result

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 31, 2011

Inner product stack trace

Initialization
Y%ebx=&Xx
1. £1d
: Y%ecx=&y
| 0.0 |%st(0)
Iteration 0 Iteration 1
2. £f1ds (%ebx, %eax,4) 5. £f1ds (%ebx, %eax,4)
0.0 $st (1) x[0]*y[0O] $st (1)
x[0] %st (0) x[1] %st (0)
3. fmuls (%ecx, %eax,4) 6. fmuls (%ecx, %eax,4)
0.0 %st (1) x[0]*y[0O] $st (1)
x[0]*y[0] $st (0) x[1]*y[1] $st (0)
4. faddp 7. faddp

0.0+x[0]*y[0] |%st(0) |x[0]*y[0]+x[1]*y[1]| %st (0)

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 31, 2011

Final observations

* Working with strange code

— Important to analyze nonstandard cases
« E.g., what happens when stack corrupted due to buffer overflow

— Helps to step through with GDB
* |A32 Floating point

— Strange “shallow stack” architecture

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 31, 2011

