
Chris Riesbeck, Spring 2010
Original: Fabian Bustamante

Machine-Level Prog. V – Miscellaneous Topics

Today
 Buffer overflow
 Floating point code
Next time
 Memory

Monday, October 31, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

2

Internet worm and IM war

November, 1988
– Internet Worm attacks thousands of Internet hosts.
– How did it happen?

July, 1999
– Microsoft launches MSN Messenger (instant messaging

system).
– Messenger clients can access popular AOL Instant Messaging

Service (AIM) servers

AIM
server

AIM
client

AIM
client

MSN
client

MSN
server

Monday, October 31, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

3

Internet worm and IM war (cont.)

August 1999
– Mysteriously, Messenger clients can no longer access AIM

servers.
– Microsoft and AOL begin the IM war:

• AOL changes server to disallow Messenger clients
• Microsoft makes changes to clients to defeat AOL changes.
• At least 13 such skirmishes.

– How did it happen?

The Internet worm and AOL/Microsoft war were both
based on stack buffer overflow exploits!

• many Unix functions do not check argument sizes.
• allows target buffers to overflow.

Monday, October 31, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

4

String library code

Implementation of Unix function gets
– No way to specify limit on number of characters to

read

Similar problems with other Unix functions
– strcpy: Copies string of arbitrary length
– scanf, fscanf, sscanf, when given %s conversion

specification

/* Get string from stdin */
char *gets(char *dest)
{
 int c = getc();
 char *p = dest;
 while (c != EOF && c != '\n') {
 *p++ = c;
 c = getc();
 }
 *p = '\0';
 return dest;
}

Monday, October 31, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

5

Vulnerable buffer code

int main()
{
 printf("Type a string:");
 echo();
 return 0;
}

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 gets(buf);
 puts(buf);
}

Monday, October 31, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

6

Buffer overflow executions

unix>./bufdemo
Type a string:123
123

unix>./bufdemo
Type a string:12345
Segmentation Fault

unix>./bufdemo
Type a string:12345678
Segmentation Fault

Monday, October 31, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

7

Buffer overflow stack

echo:
 pushl %ebp # Save %ebp on stack
 movl %esp,%ebp
 subl $20,%esp # Allocate space on stack
 pushl %ebx # Save %ebx
 addl $-12,%esp # Allocate space on stack
 leal -4(%ebp),%ebx # Compute buf as %ebp-4
 pushl %ebx # Push buf on stack
 call gets # Call gets
 . . .

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 gets(buf);
 puts(buf);
}

Return Address
Saved %ebp

[3][2][1][0] buf

%ebp

Stack
Frame

for main

Stack
Frame

for echo

Monday, October 31, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

8

Buffer overflow stack example

Before call
to gets

unix> gdb bufdemo
(gdb) break echo
Breakpoint 1 at 0x8048583
(gdb) run
Breakpoint 1, 0x8048583 in echo ()
(gdb) print /x *(unsigned *)$ebp
$1 = 0xbffff8f8
(gdb) print /x *((unsigned *)$ebp + 1)
$3 = 0x804864d

 8048648: call 804857c <echo>
 804864d: mov 0xffffffe8(%ebp),%ebx # Return Point

Return Address
Saved %ebp

[3][2][1][0] buf

%ebp

Stack
Frame

for main

Stack
Frame

for echo

0xbffff8d8
Return Address

Saved %ebp
[3][2][1][0] buf

Stack
Frame

for main

Stack
Frame

for echo

bf ff f8 f8

08 04 86 4d

xx xx xx xx

Monday, October 31, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

9

Buffer overflow example #1

Before Call to gets Input = “123”

No Problem

0xbffff8d8
Return Address

Saved %ebp
[3][2][1][0] buf

Stack
Frame

for main

Stack
Frame

for echo

bf ff f8 f8

08 04 86 4d

00 33 32 31

Return Address
Saved %ebp

[3][2][1][0] buf

%ebp

Stack
Frame

for main

Stack
Frame

for echo

Monday, October 31, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

10

Buffer overflow stack example #2

Input = “12345”

 8048592: push %ebx
 8048593: call 80483e4 <_init+0x50> # gets
 8048598: mov 0xffffffe8(%ebp),%ebx
 804859b: mov %ebp,%esp
 804859d: pop %ebp # %ebp gets set to invalid value
 804859e: ret

echo code:

0xbffff8d8
Return Address

Saved %ebp
[3][2][1][0] buf

Stack
Frame

for main

Stack
Frame

for echo

bf ff 00 35

08 04 86 4d

34 33 32 31

Return Address
Saved %ebp

[3][2][1][0] buf

%ebp

Stack
Frame

for main

Stack
Frame

for echo

Saved value of %ebp set
to 0xbfff0035

Bad news when later
attempt to restore %ebp

Monday, October 31, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

11

Buffer overflow stack example #3

Input = “12345678”

Return Address
Saved %ebp

[3][2][1][0] buf

%ebp

Stack
Frame

for main

Stack
Frame

for echo

 8048648: call 804857c <echo>
 804864d: mov 0xffffffe8(%ebp),%ebx # Return Point

0xbffff8d8
Return Address

Saved %ebp
[3][2][1][0] buf

Stack
Frame

for main

Stack
Frame

for echo

38 37 36 35

08 04 86 00

34 33 32 31

Invalid address

No longer pointing to
desired return point

%ebp and return
address corrupted

Monday, October 31, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

12

Malicious use of buffer overflow

Input string contains byte representation of executable code
Overwrite return address with address of buffer
When bar() executes ret, will jump to exploit code

void bar() {
 char buf[64];
 gets(buf);
 ...
}

void foo(){
 bar();
 ...
}

Stack
after call to
gets()

B

return
address

A

foo
stack
frame

bar
stack
frame

B

exploit
code

pad
data

written
by

gets()

Monday, October 31, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

13

Exploits based on buffer overflows

Buffer overflow bugs allow remote machines to
execute arbitrary code on victim machines.
Internet worm
– Early versions of the finger server (fingerd) used
gets() to read the argument sent by the client:
• finger droh@cs.cmu.edu

– Worm attacked fingerd server by sending phony
argument:
• finger “exploit-code padding new-return-
address”

• exploit code: executed a root shell on the victim machine
with a direct TCP connection to the attacker.

Monday, October 31, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

14

Exploits based on buffer overflows

Buffer overflow bugs allow remote machines to
execute arbitrary code on victim machines.
IM War
– AOL exploited existing buffer overflow bug in AIM

clients
– exploit code: returned 4-byte signature (the bytes at

some location in the AIM client) to server.
– When Microsoft changed code to match signature,

AOL changed signature location.

Monday, October 31, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

15

Email from a supposed consultant
Date: Wed, 11 Aug 1999 11:30:57 -0700 (PDT)
From: Phil Bucking <philbucking@yahoo.com>
Subject: AOL exploiting buffer overrun bug in their own software!
To: rms@pharlap.com

Mr. Smith,

I am writing you because I have discovered something that I think you
might find interesting because you are an Internet security expert with
experience in this area. I have also tried to contact AOL but received
no response.

I am a developer who has been working on a revolutionary new instant
messaging client that should be released later this year.
...
It appears that the AIM client has a buffer overrun bug. By itself
this might not be the end of the world, as MS surely has had its share.
But AOL is now *exploiting their own buffer overrun bug* to help in
its efforts to block MS Instant Messenger.
....
Since you have significant credibility with the press I hope that you
can use this information to help inform people that behind AOL's
friendly exterior they are nefariously compromising peoples' security.

Sincerely,
Phil Bucking
Founder, Bucking Consulting
philbucking@yahoo.com Later determined to be from MS

Monday, October 31, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

16

Avoiding overflow vulnerability

Use library routines that limit string lengths
– fgets instead of gets
– strncpy instead of strcpy
– Don’t use scanf with %s conversion specification

• Use fgets to read the string

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 fgets(buf, 4, stdin);
 puts(buf);
}

Monday, October 31, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

IA32 floating point

– Note: the Floating Point textbook material is
available as a “web-aside” at the textbook site.

– Book home page:
• http://csapp.cs.cmu.edu/

– Web asides:
• http://csapp.cs.cmu.edu/public/waside.html

– Floating point aside
• http://csapp.cs.cmu.edu/public/waside/waside-x87.pdf

Monday, October 31, 2011

http://csapp.cs.cmu.edu
http://csapp.cs.cmu.edu
http://csapp.cs.cmu.edu/public/waside.html
http://csapp.cs.cmu.edu/public/waside.html
http://csapp.cs.cmu.edu/public/waside/waside-x87.pdf
http://csapp.cs.cmu.edu/public/waside/waside-x87.pdf

EECS 213 Introduction to Computer Systems
Northwestern University

18

IA32 floating point

History
– 8086: first computer to implement IEEE FP

• separate 8087 FPU (floating point unit)
– 486: merged FPU and Integer Unit onto

one chip
Summary
– Hardware to add, multiply, and divide
– Floating point data registers
– Various control & status registers

Floating Point formats
– single precision (C float): 32 bits
– double precision (C double): 64 bits
– extended precision (C long
double): 80 bits

Instruction
decoder and
sequencer

FPUInteger
Unit

Memory

Monday, October 31, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

19

FPU data register stack

FPU register format (extended precision)

s exp frac
063647879

FPU registers
– 8 registers
– Logically forms shallow

stack
– Top called %st(0)
– When push too many,

bottom values
disappear

stack grows down
“Top” %st(0)

%st(1)

%st(2)

%st(3)

Monday, October 31, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

20

FPU instructions

Large number of floating point instructions &
formats
– ~50 basic instruction types
– load, store, add, multiply
– sin, cos, tan, arctan, and log!

Sample instructions:

Instruction! Effect ! !! Description
fldz push 0.0! !! Load zero
flds Addr push M[Addr] ! !! Load single precision real
fmuls Addr %st(0) <- %st(0)*M[Addr]! Multiply
faddp %st(1) <- %st(0)+%st(1); pop! Add and pop

Monday, October 31, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

21

Floating point code example

Compute inner product of two vectors
– Single precision arithmetic
– Common computation

float ipf (float x[],
 float y[],
 int n)
{
 int i;
 float result = 0.0;

 for (i = 0; i < n; i++) {
 result += x[i] * y[i];
 }
 return result;
}

 pushl %ebp # setup
 movl %esp,%ebp
 pushl %ebx

 movl 8(%ebp),%ebx # %ebx=&x
 movl 12(%ebp),%ecx # %ecx=&y
 movl 16(%ebp),%edx # %edx=n
 fldz # push +0.0
 xorl %eax,%eax # i=0
 cmpl %edx,%eax # if i>=n done
 jge .L3
.L5:
 flds (%ebx,%eax,4) # push x[i]
 fmuls (%ecx,%eax,4) # st(0)*=y[i]
 faddp # st(1)+=st(0); pop
 incl %eax # i++
 cmpl %edx,%eax # if i<n repeat
 jl .L5
.L3:
 movl -4(%ebp),%ebx # finish
 movl %ebp, %esp
 popl %ebp
 ret # st(0) = result

Monday, October 31, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

22

Inner product stack trace

1. fldz
0.0 %st(0)

2. flds (%ebx,%eax,4)
0.0 %st(1)

x[0] %st(0)

3. fmuls (%ecx,%eax,4)
0.0 %st(1)

x[0]*y[0] %st(0)

4. faddp
0.0+x[0]*y[0] %st(0)

5. flds (%ebx,%eax,4)
x[0]*y[0] %st(1)

x[1] %st(0)

6. fmuls (%ecx,%eax,4)
x[0]*y[0] %st(1)

x[1]*y[1] %st(0)

7. faddp
%st(0)x[0]*y[0]+x[1]*y[1]

Initialization

Iteration 0 Iteration 1

%ebx=&x
%ecx=&y

Monday, October 31, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

23

Final observations

Working with strange code
– Important to analyze nonstandard cases

• E.g., what happens when stack corrupted due to buffer overflow
– Helps to step through with GDB

IA32 Floating point
– Strange “shallow stack” architecture

Monday, October 31, 2011

