
Fabián E. Bustamante, Spring 2007

Machine-Level Programming – Introduction

Today
 Assembly programmer’s exec model
 Accessing information
 Arithmetic operations

Next time
 More of the same

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

2

IA32 Processors

Totally dominate computer market
Evolutionary design
– Starting in 1978 with 8086
– Added more features as time goes on
– Backward compatibility: able to run code for earlier version

Complex Instruction Set Computer (CISC)
– Many different instructions with many different formats

• But, only small subset encountered with Linux programs
– Hard to match performance of Reduced Instruction Set

Computers (RISC)
– But, Intel has done just that!

X86 evolution clones: Advanced Micro Devices (AMD)
– Historically followed just behind Intel – a little bit slower, a lot

cheaper

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

3

X86 Evolution: Programmer’s view

Name Date Transistors Comments
8086 1978 29k 16-bit processor, basis for IBM PC & DOS; limited to

1MB address space

80286 1982 134K Added elaborate, but not very useful, addressing
scheme; basis for IBM PC AT and Windows

386 1985 275K Extended to 32b, added “flat addressing”, capable of
running Unix, Linux/gcc uses

486 1989 1.9M Improved performance; integrated FP unit into chip

Pentium 1993 3.1M Improved performance

PentiumPro
(P6)

1995 6.5M Added conditional move instructions; big change in
underlying microarchitecture

Pentium/
MMX

1997 6.5M Added special set of instructions for 64-bit vectors of 1,
2, or 4 byte integer data

Pentium II 1997 7M Merged Pentium/MMZ and PentiumPro implementing
MMX instructions within P6

Pentium III 1999 8.2M Instructions for manipulating vectors of integers or
floating point; later versions included Level2 cache

Pentium 4 2001 42M 8 byte ints and floating point formats to vector
instructions

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

4

X86 Evolution: Programmer’s view

Name Date Transistors Comments

Pentium 4E 2004 125M Hyperthreading (execute 2 programs on one processor),
EM64T 64-bit extension

Core 2 2006 291M first multi-core; similar to P6; no hyperthreading

Core i7 2008 781M multi-core with hyperthreading; 2 programs on each
core, up to 4 cores per chip;

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

5

Assembly programmer’s view

 Programmer-Visible State
– %eip Program Counter

• %rip in 64bit
• Address of next instruction

– Register file (8x32bit)
• Heavily used program data

– Condition codes
• Store status information about

most recent arithmetic operation
• Used for conditional branching

– Floating point register file

%eip
Registers

CPU Memory

Object Code
Program Data

OS Data

Addresses

Data

Instructions
Stack

Condition
Codes

Memory
– Byte addressable array
– Code, user data, (some) OS

data
– Includes stack used to

support procedures

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

6

text

text

binary

binary

Compiler (gcc -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into object code

Code in files p1.c p2.c
Compile with command: gcc –O2 p1.c p2.c -o p
– Use level 2 optimizations (-O2); put resulting binary in file p

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

7

Compiling into assembly

int sum(int x, int y)
{
 int t = x+y;
 return t;
}

code.s (GAS Gnu Assembler)
sum:
 pushl %ebp
 movl %esp,%ebp
 movl 12(%ebp),%eax
 addl 8(%ebp),%eax
 popl %ebp
 ret

gcc -S code.c -O1

code.c (C source)

Text

ordinary text file

might see
"leave"

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

8

Assembly characteristics

gcc default target architecture: I386 (flat addressing)
Minimal data types
– “Integer” data of 1, 2, or 4 bytes

• Data values or addresses
– Floating point data of 4, 8, or 10 bytes
– No aggregate types such as arrays or structures

• Just contiguously allocated bytes in memory

Primitive operations
– Perform arithmetic function on register or memory data
– Transfer data between memory and register

• Load data from memory into register
• Store register data into memory

– Transfer control
• Unconditional jumps to/from procedures
• Conditional branches

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

9

Code for sum
0x401040
<sum>: 0x55
 0x89
 0xe5
 0x8b
 0x45
 0x0c
 0x03
 0x45
 0x08
 0x89
 0xec
 0x5d
 0xc3

Object code

Assembler
– Translates .s into .o
– Binary encoding of each

instruction
– Nearly-complete image of

exec code
– But unresolved linkages

between code in different files,
such as function calls

• Total of 13 bytes
• Each instruction 1, 2, or 3 bytes
• Starts at address 0x401040

gcc -c code.c -O1

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

Getting an executable

To generate an executable requires the linker
– resolves references between files, e.g., function

calls, including to library functions like printf()
– dynamic linking leaves references for resolution at

run-time
– checks that there is one and only one main()

function

10

gcc -o code.o main.c -O1
int main()
{
 return sum(1, 3);
}

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

11

Machine instruction example
C Code
– Add two signed integers

Assembly
– Add 2 4-byte integers

• “Long” words in GCC parlance
• Same instruction whether signed or

unsigned
– Operands:

x: Register %eax
y: Memory M[%ebp+8]
t: Register %eax

– Return function value in %eax

Object code
– 3-byte instruction
– Stored at address 0x401046

int t = x+y;

addl 8(%ebp),%eax

0x401046: 03 45 08

Similar to C expression
x += y

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

12

Disassembler
– objdump -d code (otool -tV on MacOS X)
– Useful tool for examining object code
– Analyzes bit pattern of series of instructions
– Produces approximate rendition of assembly code
– Can be run on either a.out (complete executable) or .o file

00401040 <_sum>:
 0: 55 push %ebp
 1: 89 e5 mov %esp,%ebp
 3: 8b 45 0c mov 0xc(%ebp),%eax
 6: 03 45 08 add 0x8(%ebp),%eax
 9: 89 ec mov %ebp,%esp
 b: 5d pop %ebp
 c: c3 ret
 d: 8d 76 00 lea 0x0(%esi),%esi

Disassembled

Disassembling object code

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

13

Disassembled
0x401040 <sum>: push %ebp
0x401041 <sum+1>: mov %esp,%ebp
0x401043 <sum+3>: mov 0xc(%ebp),%eax
0x401046 <sum+6>: add 0x8(%ebp),%eax
0x401049 <sum+9>: mov %ebp,%esp
0x40104b <sum+11>: pop %ebp
0x40104c <sum+12>: ret
0x40104d <sum+13>: lea 0x0(%esi),%esi

Alternate disassembly

Within gdb debugger
– Once you know the length of sum using

the dissambler
– Examine the 13 bytes starting at sum
gdb code.o
x/13b sum

Object
0x401040:
 0x55
 0x89
 0xe5
 0x8b
 0x45
 0x0c
 0x03
 0x45
 0x08
 0x89
 0xec
 0x5d
 0xc3

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

14

“word” – (Intel) 16b data type (historical)
– 32b – double word
– 64b – quad words

In GAS, operator suffix indicates word size involved.
The overloading of “l” (long) OK because FP involves
different operations & registers

Data formats

C decl Intel data type GAS suffix Size (bytes)

char Byte b 1

short Word w 2

int, unsigned,
long int,
unsigned long,
char *

Double word l 4

float Single precision s 4

double Double precision l 8

long double Extended precision t 10/12

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

15

Registers

Eight 32bit registers
First six mostly general
purpose
Last two used for
process stack
First four also support
access to low order
bytes and words

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax %ah %al

%cx %ch %cl

%dx %dh %dl

%bx %bh %bl

%si

%di

%sp

%bp

15 0831 7

Stack pointer

Frame pointer

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

16

Instruction formats

Most instructions have 1 or 2 operands
– operator [source[, destination]]
– Operand types:

• Immediate – constant, denoted with a “$” in front
• Register – either 8 or 16 or 32bit registers
• Memory – location given by an effective address

– Source: constant or value from register or memory
– Destination: register or memory

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

17

Operand specifiers

Operand forms
– Imm means a number
– Ea means a register form, e.g., %eax

– s is 1, 2, 4 or 8 (called the scale factor)
– Memory form is the most general; subsets also work, e.g.,

• Absolute: Imm ⇒ M[Imm]
• Base + displacement: Imm(Eb) ⇒ M[Imm + R[Eb]]

Operand values
– R[Ea] means "value in register"

– M[loc] means "value in memory location loc"
Type Form Operand value Name
Immediate $Imm Imm Immediate

Register Ea R[Ea] Register

Memory Imm (Eb, Ei, s) M[Imm + R[Eb] + R[Ei] * s] Scaled indexed

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

18

Operand specifiers

– Memory form has many subsets
• Don’t confuse $Imm with Imm, or Ea with (Ea)

Type Form Operand value Name

Memory Imm M[Imm] Absolute

Memory (Ea) M[R[Eb]] Indirect

Memory Imm (Eb) M[Imm + R[Eb]] Base + displacement

Memory (Eb, Ei) M[R[Eb] + R[Ei]] Indexed

Memory Imm (Eb, Ei) M[Imm + R[Eb] + R[Ei]] Indexed

Memory (, Ei, s) M[R[Ei] * s] Scaled indexed

Memory Imm (, Ei, s) M[Imm + R[Ei] * s] Scaled indexed

Memory (Eb, Ei, s) M[R[Eb] + R[Ei] * s] Scaled indexed

Memory Imm (Eb, Ei, s) M[Imm + R[Eb] + R[Ei] * s] Scaled indexed

Monday, October 10, 2011

Checkpoint

Monday, October 10, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/05-MachLevelProg-operand-quiz.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/05-MachLevelProg-operand-quiz.key

EECS 213 Introduction to Computer Systems
Northwestern University

20

Moving data
Among the most common instructions
IA32 restriction – cannot move from one memory location to
another with one instruction
Note the differences between movb, movsbl and movzbl
Last two work with the stack
pushl %ebp = subl $4, %esp

 movl %ebp, (%esp)

Since stack is part of program mem, you can really access all

Instruction Effect Description
mov{l,w,b} S,D D ← S Move double word, word or byte

movsbl S,D D ← SignExtend(S) Move sign-extended byte

movzbl S,D D ← ZeroExtend(S) Move zero-extended byte

pushl S R[%esp] ← R[%esp] – 4;
M[R[%esp]] ← S

Push S onto the stack

popl D D ← M[R[%esp]]
R[%esp] ← R[%esp] + 4;

Pop S from the stack

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

21

movl operand combinations

movl

Imm

Reg

Mem

Reg
Mem

Reg
Mem

Reg

Source Destination

movl $0x4,%eax

movl $-147,(%eax)

movl %eax,%edx

movl %eax,(%edx)

movl (%eax),%edx

C Analog

temp = 0x4;

*p = -147;

temp2 = temp1;

*p = temp;

temp = *p;

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

22

Using simple addressing modes

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

swap:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx

 movl 8(%ebp),%edx
 movl 12(%ebp),%ecx
 movl (%ecx),%eax
 movl (%edx),%ebx
 movl %eax,(%edx)
 movl %ebx,(%ecx)

 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

Body

Set
Up

Finish

Read value stored in
location xp and store it in t0

Declares xp as being
a pointer to an int

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

23

Understanding swap

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

Register! Variable
%ecx yp
%edx xp
%eax t1
%ebx t0

movl 12(%ebp),%ecx # ecx = yp
movl 8(%ebp),%edx # edx = xp
movl (%ecx),%eax # eax = *yp (t1)
movl (%edx),%ebx # ebx = *xp (t0)
movl %eax,(%edx) # *xp = eax
movl %ebx,(%ecx) # *yp = ebx

0x120

0x124

Rtn adr

%ebp 0

 4

 8

12

Offset

-4

123

456

Address
0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

0x100

yp

xp

Old %ebp

Old %ebx

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

24

Understanding swap

 movl 12(%ebp),%ecx # ecx = yp
 movl 8(%ebp),%edx # edx = xp
 movl (%ecx),%eax # eax = *yp (t1)
 movl (%edx),%ebx # ebx = *xp (t0)
 movl %eax,(%edx) # *xp = eax
 movl %ebx,(%ecx) # *yp = ebx

0x120

0x124

Rtn adr

%ebp 0

 4

 8

12

Offset

-4

123

456

Address
0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

0x100

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp 0x104

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

25

Understanding swap

 movl 12(%ebp),%ecx # ecx = yp
 movl 8(%ebp),%edx # edx = xp
 movl (%ecx),%eax # eax = *yp (t1)
 movl (%edx),%ebx # ebx = *xp (t0)
 movl %eax,(%edx) # *xp = eax
 movl %ebx,(%ecx) # *yp = ebx

0x120

0x124

Rtn adr

%ebp 0

 4

 8

12

Offset

-4

123

456

Address

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

0x100

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x120

0x104

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

26

Understanding swap

 movl 12(%ebp),%ecx # ecx = yp
 movl 8(%ebp),%edx # edx = xp
 movl (%ecx),%eax # eax = *yp (t1)
 movl (%edx),%ebx # ebx = *xp (t0)
 movl %eax,(%edx) # *xp = eax
 movl %ebx,(%ecx) # *yp = ebx

0x120

0x124

Rtn adr

%ebp 0

 4

 8

12

Offset

-4

123

456

Address

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

0x100

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x124

0x120

0x104

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

27

Understanding swap

 movl 12(%ebp),%ecx # ecx = yp
 movl 8(%ebp),%edx # edx = xp
 movl (%ecx),%eax # eax = *yp (t1)
 movl (%edx),%ebx # ebx = *xp (t0)
 movl %eax,(%edx) # *xp = eax
 movl %ebx,(%ecx) # *yp = ebx

0x120

0x124

Rtn adr

%ebp 0

 4

 8

12

Offset

-4

123

456

Address

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

0x100

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456

0x124

0x120

0x104

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

28

Understanding swap

 movl 12(%ebp),%ecx # ecx = yp
 movl 8(%ebp),%edx # edx = xp
 movl (%ecx),%eax # eax = *yp (t1)
 movl (%edx),%ebx # ebx = *xp (t0)
 movl %eax,(%edx) # *xp = eax
 movl %ebx,(%ecx) # *yp = ebx

0x120

0x124

Rtn adr

%ebp 0

 4

 8

12

Offset

-4

123

456

Address

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

0x100

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456

0x124

0x120

123

0x104

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

29

Understanding swap

 movl 12(%ebp),%ecx # ecx = yp
 movl 8(%ebp),%edx # edx = xp
 movl (%ecx),%eax # eax = *yp (t1)
 movl (%edx),%ebx # ebx = *xp (t0)
 movl %eax,(%edx) # *xp = eax
 movl %ebx,(%ecx) # *yp = ebx

0x120

0x124

Rtn adr

%ebp 0

 4

 8

12

Offset

-4

456

456

Address

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

0x100

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456

0x124

0x120

123

0x104

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

30

Understanding swap

 movl 12(%ebp),%ecx # ecx = yp
 movl 8(%ebp),%edx # edx = xp
 movl (%ecx),%eax # eax = *yp (t1)
 movl (%edx),%ebx # ebx = *xp (t0)
 movl %eax,(%edx) # *xp = eax
 movl %ebx,(%ecx) # *yp = ebx

0x120

0x124

Rtn adr

%ebp 0

 4

 8

12

Offset

-4

456

123

Address

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

0x100

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456

0x124

0x120

123

0x104

Monday, October 10, 2011

Checkpoint

Monday, October 10, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/05-MachLevelProg-decode-quiz.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/05-MachLevelProg-decode-quiz.key

EECS 213 Introduction to Computer Systems
Northwestern University

32

Address computation instruction
leal S,D D ← &S

– leal = Load Effective Address
– S is address mode expression
– Set D to address denoted by expression

Uses
– Computing address w/o doing memory reference

• E.g., translation of p = &x[i];
– Computing arithmetic expressions of form x + k*y

k = 1, 2, 4, or 8.
leal 7(%edx,%edx,4), %eax

– when %edx=x, %eax becomes 5x+7

Monday, October 10, 2011

Checkpoint

Monday, October 10, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/05-MachLevelProg-address-quiz.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/05-MachLevelProg-address-quiz.key

EECS 213 Introduction to Computer Systems
Northwestern University

34

Some arithmetic operations

Instruction Effect Description
incl D D ← D + 1 Increment

decl D D ← D – 1 Decrement

negl D D ← -D Negate

notl D D ← ~D Complement

addl S,D D ← D + S Add

subl S,D D ← D – S Subtract

imull S,D D ← D * S Multiply

xorl S,D D ← D ^ S Exclusive or

orl S,D D ← D | S Or

andl S,D D ← D & S And

sall k,D D ← D << k Left shift, 0 ≤ k ≤ 31, Imm or %cl

shll k,D D ← D << k Left shift (same as sall)

sarl k,D D ← D >> k Arithmetic right shift

shrl k,D D ← D >> k Logical right shift

Monday, October 10, 2011

Checkpoint

Monday, October 10, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/05-MachLevelProg-arith-quiz.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/05-MachLevelProg-arith-quiz.key

EECS 213 Introduction to Computer Systems
Northwestern University

36

Using leal for arithmetic expressions

int arith
 (int x, int y, int z)
{
 int t1 = x+y;
 int t2 = z+t1;
 int t3 = x+4;
 int t4 = y * 48;
 int t5 = t3 + t4;
 int rval = t2 * t5;
 return rval;
}

arith:
 pushl %ebp
 movl %esp,%ebp

 movl 8(%ebp),%eax
 movl 12(%ebp),%edx
 leal (%edx,%eax),%ecx
 leal (%edx,%edx,2),%edx
 sall $4,%edx
 addl 16(%ebp),%ecx
 leal 4(%edx,%eax),%eax
 imull %ecx,%eax

 movl %ebp,%esp
 popl %ebp
 ret

Body

Set
Up

Finish

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

37

Understanding arith

int arith
 (int x, int y, int z)
{
 int t1 = x+y;
 int t2 = z+t1;
 int t3 = x+4;
 int t4 = y * 48;
 int t5 = t3 + t4;
 int rval = t2 * t5;
 return rval;
}

 movl 8(%ebp),%eax # eax = x
 movl 12(%ebp),%edx # edx = y
 leal (%edx,%eax),%ecx # ecx = x+y (t1)
 leal (%edx,%edx,2),%edx # edx = 3*y
 sall $4,%edx # edx = 48*y (t4)
 addl 16(%ebp),%ecx # ecx = z+t1 (t2)
 leal 4(%edx,%eax),%eax # eax = 4+t4+x (t5)
 imull %ecx,%eax # eax = t5*t2 (rval)

y

x

Rtn adr

Old %ebp %ebp 0

 4

 8

12

Offset
Stack

•
•
•

z16

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

38

Another example

int logical(int x, int y)
{
 int t1 = x^y;
 int t2 = t1 >> 17;
 int mask = (1<<13) - 7;
 int rval = t2 & mask;
 return rval;
}

logical:
 pushl %ebp
 movl %esp,%ebp

 movl 12(%ebp),%eax
 xorl 8(%ebp),%eax
 sarl $17,%eax
 andl $8185,%eax

 movl %ebp,%esp
 popl %ebp
 ret

Body

Set Up

Finish

 movl 8(%ebp),%eax eax = x
 xorl 12(%ebp),%eax eax = x^y (t1)
 sarl $17,%eax eax = t1>>17 (t2)
 andl $8185,%eax eax = t2 & 8185

mask 213 = 8192, 213 – 7 = 8185

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

39

CISC Properties

Instruction can reference different operand types
– Immediate, register, memory

Arithmetic operations can read/write memory
Memory reference can involve complex computation
– Rb + S*Ri + D
– Useful for arithmetic expressions, too

Instructions can have varying lengths
– IA32 instructions can range from 1 to 15 bytes

Monday, October 10, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

40

Whose assembler?

Intel/Microsoft Differs from GAS
– Operands listed in opposite order

mov Dest, Src movl Src, Dest

– Constants not preceded by ‘$’, Denote hex with ‘h’ at end
100h $0x100

– Operand size indicated by operands rather than operator suffix
sub subl

– Addressing format shows effective address computation
[eax*4+100h] $0x100(,%eax,4)

lea eax,[ecx+ecx*2]
sub esp,8
cmp dword ptr [ebp-8],0
mov eax,dword ptr [eax*4+100h]

leal (%ecx,%ecx,2),%eax
subl $8,%esp
cmpl $0,-8(%ebp)
movl $0x100(,%eax,4),%eax

Intel/Microsoft Format GAS/Gnu Format

Monday, October 10, 2011

