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Machine-Level Programming – Introduction

Today
 Assembly programmer’s exec  model
 Accessing information
 Arithmetic operations

Next time
 More of the same
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IA32 Processors

Totally dominate computer market
Evolutionary design
– Starting in 1978 with 8086
– Added more features as time goes on
– Backward compatibility: able to run code for earlier version

Complex Instruction Set Computer (CISC)
– Many different instructions with many different formats

• But, only small subset encountered with Linux programs
– Hard to match performance of Reduced Instruction Set 

Computers (RISC)
– But, Intel has done just that!

X86 evolution clones: Advanced Micro Devices (AMD)
– Historically followed just behind Intel – a little bit slower, a lot 

cheaper
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X86 Evolution: Programmer’s view 

Name Date Transistors Comments
8086 1978 29k 16-bit processor, basis for IBM PC & DOS; limited to 

1MB address space

80286 1982 134K Added elaborate, but not very useful, addressing 
scheme; basis for IBM PC AT and Windows

386 1985 275K Extended to 32b, added “flat addressing”, capable of 
running Unix, Linux/gcc uses

486 1989 1.9M Improved performance; integrated FP unit into chip

Pentium 1993 3.1M Improved performance

PentiumPro 
(P6)

1995 6.5M Added conditional move instructions; big change in 
underlying microarchitecture

Pentium/
MMX

1997 6.5M Added special set of instructions for 64-bit vectors of 1, 
2, or 4 byte integer data

Pentium II 1997 7M Merged Pentium/MMZ and PentiumPro implementing 
MMX instructions within P6

Pentium III 1999 8.2M Instructions for manipulating vectors of integers or 
floating point; later versions included Level2 cache

Pentium 4 2001 42M 8 byte ints and floating point formats to vector 
instructions
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X86 Evolution: Programmer’s view 

Name Date Transistors Comments

Pentium 4E 2004 125M Hyperthreading (execute 2 programs on one processor), 
EM64T 64-bit extension

Core 2 2006 291M first multi-core; similar to P6; no hyperthreading

Core i7 2008 781M multi-core with hyperthreading; 2 programs on each 
core, up to 4 cores per chip;
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Assembly programmer’s view

 Programmer-Visible State
– %eip Program Counter

• %rip in 64bit
• Address of next instruction

– Register file (8x32bit)
• Heavily used program data

– Condition codes
• Store status information about 

most recent arithmetic operation
• Used for conditional branching

– Floating point register file

%eip
Registers

CPU Memory

Object Code
Program Data

OS Data

Addresses

Data

Instructions
Stack

Condition
Codes

Memory
– Byte addressable array
– Code, user data, (some) OS 

data
– Includes stack used to 

support procedures
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text

text

binary

binary

Compiler (gcc -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries 
(.a)

Turning C into object code

Code in files p1.c p2.c
Compile with command: gcc –O2 p1.c p2.c -o p
– Use level 2 optimizations (-O2); put resulting binary in file p
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Compiling into assembly

int sum(int x, int y)
{
  int t = x+y;
  return t;
}

code.s (GAS Gnu Assembler)
sum:
 pushl %ebp
 movl %esp,%ebp
 movl 12(%ebp),%eax
 addl 8(%ebp),%eax
 popl %ebp
 ret

gcc -S code.c -O1

code.c (C source)

Text

ordinary text file

might see 
"leave"
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Assembly characteristics

gcc default target architecture: I386 (flat addressing)
Minimal data types
– “Integer” data of 1, 2, or 4 bytes

• Data values or addresses
– Floating point data of 4, 8, or 10 bytes
– No aggregate types such as arrays or structures

• Just contiguously allocated bytes in memory

Primitive operations
– Perform arithmetic function on register or memory data
– Transfer data between memory and register

• Load data from memory into register
• Store register data into memory

– Transfer control
• Unconditional jumps to/from procedures
• Conditional branches
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Code for sum
0x401040 
<sum>: 0x55
 0x89
 0xe5
 0x8b
 0x45
 0x0c
 0x03
 0x45
 0x08
 0x89
 0xec
 0x5d
 0xc3

Object code

Assembler
– Translates .s into .o
– Binary encoding of each 

instruction
– Nearly-complete image of 

exec code
– But unresolved linkages 

between code in different files, 
such as function calls

• Total of 13 bytes
• Each instruction 1, 2, or 3 bytes
• Starts at address 0x401040

gcc -c code.c -O1
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To generate an executable requires the linker
– resolves references between files, e.g., function 

calls, including to library functions like printf()
– dynamic linking leaves references for resolution at 

run-time
– checks that there is one and only one main() 

function

10

gcc -o code.o main.c -O1
int main()
{
  return sum(1, 3);
}
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Machine instruction example
C Code
– Add two signed integers

Assembly
– Add 2 4-byte integers

• “Long” words in GCC parlance
• Same instruction whether signed or 

unsigned
– Operands:

x: Register %eax
y: Memory M[%ebp+8]
t: Register %eax

– Return function value in %eax

Object code
– 3-byte instruction
– Stored at address 0x401046

int t = x+y;

addl 8(%ebp),%eax

0x401046: 03 45 08

Similar to C expression 
x += y
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Disassembler
– objdump -d code (otool -tV on MacOS X)
– Useful tool for examining object code
– Analyzes bit pattern of series of instructions
– Produces approximate rendition of assembly code
– Can be run on either a.out (complete executable) or .o file

00401040 <_sum>:
   0: 55              push   %ebp
   1: 89 e5           mov    %esp,%ebp
   3: 8b 45 0c        mov    0xc(%ebp),%eax
   6: 03 45 08        add    0x8(%ebp),%eax
   9: 89 ec           mov    %ebp,%esp
   b: 5d              pop    %ebp
   c: c3              ret    
   d: 8d 76 00        lea    0x0(%esi),%esi

Disassembled

Disassembling object code
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Disassembled
0x401040 <sum>: push   %ebp
0x401041 <sum+1>: mov    %esp,%ebp
0x401043 <sum+3>: mov    0xc(%ebp),%eax
0x401046 <sum+6>: add    0x8(%ebp),%eax
0x401049 <sum+9>: mov    %ebp,%esp
0x40104b <sum+11>: pop    %ebp
0x40104c <sum+12>: ret    
0x40104d <sum+13>: lea    0x0(%esi),%esi

Alternate disassembly

Within gdb debugger
– Once you know the length of sum using 

the dissambler
– Examine the 13 bytes starting at sum
gdb code.o
x/13b sum

Object
0x401040: 
 0x55
 0x89
 0xe5
 0x8b
 0x45
 0x0c
 0x03
 0x45
 0x08
 0x89
 0xec
 0x5d
 0xc3
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“word” – (Intel) 16b data type (historical)
– 32b – double word
– 64b – quad words

In GAS, operator suffix indicates word size involved.
The overloading of “l” (long) OK because FP involves 
different operations & registers

Data formats

C decl Intel data type GAS suffix Size (bytes)

char Byte b 1

short Word w 2

int, unsigned, 
long int, 
unsigned long, 
char *

Double word l 4

float Single precision s 4

double Double precision l 8

long double Extended precision t 10/12
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Registers

Eight 32bit registers
First six mostly general 
purpose
Last two used for  
process stack
First four also support 
access to low order 
bytes and words

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax %ah %al

%cx %ch %cl

%dx %dh %dl

%bx %bh %bl

%si

%di

%sp

%bp

15 0831 7

Stack pointer

Frame pointer
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Instruction formats

Most instructions have 1 or 2 operands
– operator [source[, destination]]
– Operand types:

• Immediate – constant, denoted with a “$” in front
• Register – either 8 or 16 or 32bit registers
• Memory – location given by an effective address

– Source: constant or value from register or memory
– Destination: register or memory
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Operand specifiers

Operand forms
– Imm means a number
– Ea means a register form, e.g., %eax

– s is 1, 2, 4 or 8 (called the scale factor)
– Memory form is the most general; subsets also work, e.g.,

• Absolute: Imm ⇒ M[Imm]
• Base + displacement: Imm(Eb) ⇒ M[Imm + R[Eb]]

Operand values
– R[Ea] means "value in register"

– M[loc] means "value in memory location loc"
Type Form Operand value Name
Immediate $Imm Imm Immediate

Register Ea R[Ea] Register

Memory Imm (Eb, Ei, s) M[Imm + R[Eb] + R[Ei] * s] Scaled indexed
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Operand specifiers

– Memory form has many subsets
• Don’t confuse $Imm with Imm, or Ea with (Ea)

Type Form Operand value Name

Memory Imm M[Imm] Absolute

Memory (Ea) M[R[Eb]] Indirect

Memory Imm (Eb) M[Imm + R[Eb]] Base + displacement

Memory (Eb, Ei) M[R[Eb] + R[Ei]] Indexed

Memory Imm (Eb, Ei) M[Imm + R[Eb] + R[Ei]] Indexed

Memory (, Ei, s) M[R[Ei] * s] Scaled indexed

Memory Imm (, Ei, s) M[Imm + R[Ei] * s] Scaled indexed

Memory (Eb, Ei, s) M[R[Eb] + R[Ei] * s] Scaled indexed

Memory Imm (Eb, Ei, s) M[Imm + R[Eb] + R[Ei] * s] Scaled indexed
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Moving data
Among the most common instructions
IA32 restriction – cannot move from one memory location to 
another with one instruction
Note the differences between movb, movsbl and movzbl
Last two work with the stack
pushl %ebp  =  subl $4, %esp

             movl %ebp, (%esp)

Since stack is part of program mem, you can really access all

Instruction Effect Description
mov{l,w,b} S,D D ← S Move double word, word or byte

movsbl S,D D ← SignExtend(S) Move sign-extended byte

movzbl S,D D ← ZeroExtend(S) Move zero-extended byte

pushl S R[%esp] ← R[%esp] – 4;
M[R[%esp]] ← S

Push S onto the stack

popl D D ← M[R[%esp]]
R[%esp] ← R[%esp] + 4;

Pop S from the stack
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movl operand combinations

movl

Imm

Reg

Mem

Reg
Mem

Reg
Mem

Reg

Source Destination

movl $0x4,%eax

movl $-147,(%eax)

movl %eax,%edx

movl %eax,(%edx)

movl (%eax),%edx

C Analog

temp = 0x4;

*p = -147;

temp2 = temp1;

*p = temp;

temp = *p;
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Using simple addressing modes

void swap(int *xp, int *yp) 
{
  int t0 = *xp;
  int t1 = *yp;
  *xp = t1;
  *yp = t0;
}

swap:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx
 
 movl 8(%ebp),%edx
   movl 12(%ebp),%ecx
 movl (%ecx),%eax
 movl (%edx),%ebx
 movl %eax,(%edx)
 movl %ebx,(%ecx)

 movl -4(%ebp),%ebx
 movl %ebp,%esp
 popl %ebp
 ret

Body

Set
Up

Finish

Read value stored in 
location xp and store it in t0

Declares xp as being 
a pointer to an int
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Understanding swap

void swap(int *xp, int *yp) 
{
  int t0 = *xp;
  int t1 = *yp;
  *xp = t1;
  *yp = t0;
}

Register! Variable
%ecx yp
%edx xp
%eax t1
%ebx t0

movl 12(%ebp),%ecx # ecx = yp
movl 8(%ebp),%edx # edx = xp
movl (%ecx),%eax # eax = *yp (t1)
movl (%edx),%ebx # ebx = *xp (t0)
movl %eax,(%edx) # *xp = eax
movl %ebx,(%ecx) # *yp = ebx 

0x120

0x124

Rtn adr

%ebp  0 

 4 

 8 

12 

Offset

-4 

123

456

Address
0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

Old %ebp

Old %ebx
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Understanding swap

 movl 12(%ebp),%ecx # ecx = yp
 movl 8(%ebp),%edx # edx = xp
 movl (%ecx),%eax # eax = *yp (t1)
 movl (%edx),%ebx # ebx = *xp (t0)
 movl %eax,(%edx) # *xp = eax
 movl %ebx,(%ecx) # *yp = ebx 

0x120

0x124

Rtn adr

%ebp  0 

 4 

 8 

12 

Offset

-4 

123

456

Address
0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp 0x104
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Understanding swap

 movl 12(%ebp),%ecx # ecx = yp
 movl 8(%ebp),%edx # edx = xp
 movl (%ecx),%eax # eax = *yp (t1)
 movl (%edx),%ebx # ebx = *xp (t0)
 movl %eax,(%edx) # *xp = eax
 movl %ebx,(%ecx) # *yp = ebx 

0x120

0x124

Rtn adr

%ebp  0 

 4 

 8 

12 

Offset

-4 

123

456

Address

0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x120

0x104
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Understanding swap

 movl 12(%ebp),%ecx # ecx = yp
 movl 8(%ebp),%edx # edx = xp
 movl (%ecx),%eax # eax = *yp (t1)
 movl (%edx),%ebx # ebx = *xp (t0)
 movl %eax,(%edx) # *xp = eax
 movl %ebx,(%ecx) # *yp = ebx 

0x120

0x124

Rtn adr

%ebp  0 

 4 

 8 

12 

Offset

-4 

123

456

Address

0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x124

0x120

0x104
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Understanding swap

 movl 12(%ebp),%ecx # ecx = yp
 movl 8(%ebp),%edx # edx = xp
 movl (%ecx),%eax # eax = *yp (t1)
 movl (%edx),%ebx # ebx = *xp (t0)
 movl %eax,(%edx) # *xp = eax
 movl %ebx,(%ecx) # *yp = ebx 

0x120

0x124

Rtn adr

%ebp  0 

 4 

 8 

12 

Offset

-4 

123

456

Address

0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456

0x124

0x120

0x104
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Understanding swap

 movl 12(%ebp),%ecx # ecx = yp
 movl 8(%ebp),%edx # edx = xp
 movl (%ecx),%eax # eax = *yp (t1)
 movl (%edx),%ebx # ebx = *xp (t0)
 movl %eax,(%edx) # *xp = eax
 movl %ebx,(%ecx) # *yp = ebx 

0x120

0x124

Rtn adr

%ebp  0 

 4 

 8 

12 

Offset

-4 

123

456

Address

0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456

0x124

0x120

123

0x104
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Understanding swap

 movl 12(%ebp),%ecx # ecx = yp
 movl 8(%ebp),%edx # edx = xp
 movl (%ecx),%eax # eax = *yp (t1)
 movl (%edx),%ebx # ebx = *xp (t0)
 movl %eax,(%edx) # *xp = eax
 movl %ebx,(%ecx) # *yp = ebx 

0x120

0x124

Rtn adr

%ebp  0 

 4 

 8 

12 

Offset

-4 

456

456

Address

0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456

0x124

0x120

123

0x104
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Understanding swap

 movl 12(%ebp),%ecx # ecx = yp
 movl 8(%ebp),%edx # edx = xp
 movl (%ecx),%eax # eax = *yp (t1)
 movl (%edx),%ebx # ebx = *xp (t0)
 movl %eax,(%edx) # *xp = eax
 movl %ebx,(%ecx) # *yp = ebx 

0x120

0x124

Rtn adr

%ebp  0 

 4 

 8 

12 

Offset

-4 

456

123

Address

0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456

0x124

0x120

123

0x104
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Address computation instruction
leal S,D   D ← &S

– leal = Load Effective Address
– S is address mode expression
– Set D to address denoted by expression

Uses
– Computing address w/o doing memory reference

• E.g., translation of p = &x[i];
– Computing arithmetic expressions of form x + k*y

k = 1, 2, 4, or 8.
leal 7(%edx,%edx,4), %eax

– when %edx=x, %eax becomes 5x+7
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Some arithmetic operations

Instruction Effect Description
incl D D ← D + 1 Increment

decl D D ← D – 1 Decrement

negl D D ← -D Negate

notl D D ← ~D Complement

addl S,D D ← D + S Add

subl S,D D ← D – S Subtract

imull S,D D ← D * S Multiply

xorl S,D D ← D ^ S Exclusive or

orl S,D D ← D | S Or

andl S,D D ← D & S And

sall k,D D ← D << k Left shift, 0 ≤ k ≤ 31, Imm or %cl

shll k,D D ← D << k Left shift (same as sall)

sarl k,D D ← D >> k Arithmetic right shift

shrl k,D D ← D >> k Logical right shift
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Using leal for arithmetic expressions

int arith
  (int x, int y, int z)
{
  int t1 = x+y;
  int t2 = z+t1;
  int t3 = x+4;
  int t4 = y * 48; 
  int t5 = t3 + t4;
  int rval = t2 * t5;
  return rval;
}

arith:
 pushl %ebp
 movl %esp,%ebp

 movl 8(%ebp),%eax
 movl 12(%ebp),%edx
 leal (%edx,%eax),%ecx
 leal (%edx,%edx,2),%edx
 sall $4,%edx
 addl 16(%ebp),%ecx
 leal 4(%edx,%eax),%eax
 imull %ecx,%eax

 movl %ebp,%esp
 popl %ebp
 ret

Body

Set
Up

Finish
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Understanding arith

int arith
  (int x, int y, int z)
{
  int t1 = x+y;
  int t2 = z+t1;
  int t3 = x+4;
  int t4 = y * 48; 
  int t5 = t3 + t4;
  int rval = t2 * t5;
  return rval;
}

 movl 8(%ebp),%eax # eax = x
 movl 12(%ebp),%edx # edx = y
 leal (%edx,%eax),%ecx # ecx = x+y  (t1)
 leal (%edx,%edx,2),%edx # edx = 3*y
 sall $4,%edx # edx = 48*y (t4)
 addl 16(%ebp),%ecx # ecx = z+t1 (t2)
 leal 4(%edx,%eax),%eax # eax = 4+t4+x (t5)
 imull %ecx,%eax # eax = t5*t2 (rval)

y

x

Rtn adr

Old %ebp %ebp 0 

 4 

 8 

12 

Offset
Stack

•
•
•

z16 
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Another example

int logical(int x, int y)
{
  int t1 = x^y;
  int t2 = t1 >> 17;
  int mask = (1<<13) - 7;
  int rval = t2 & mask;
  return rval;
}

logical:
 pushl %ebp
 movl %esp,%ebp

 movl 12(%ebp),%eax
 xorl 8(%ebp),%eax
 sarl $17,%eax
 andl $8185,%eax

 movl %ebp,%esp
 popl %ebp
 ret

Body

Set Up

Finish

 movl 8(%ebp),%eax eax = x
 xorl 12(%ebp),%eax eax = x^y (t1)
 sarl $17,%eax eax = t1>>17 (t2)
 andl $8185,%eax eax = t2 & 8185

mask 213 = 8192, 213 – 7 = 8185
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CISC Properties 

Instruction can reference different operand types
– Immediate, register, memory

Arithmetic operations can read/write memory
Memory reference can involve complex computation
– Rb + S*Ri + D
– Useful for arithmetic expressions, too

Instructions can have varying lengths
– IA32 instructions can range from 1 to 15 bytes
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Whose assembler?

Intel/Microsoft Differs from GAS
– Operands listed in opposite order

mov Dest, Src  movl Src, Dest

– Constants not preceded by ‘$’, Denote hex with ‘h’ at end
100h $0x100

– Operand size indicated by operands rather than operator suffix
sub subl

– Addressing format shows effective address computation
[eax*4+100h] $0x100(,%eax,4)

lea eax,[ecx+ecx*2]
sub esp,8
cmp dword ptr [ebp-8],0
mov eax,dword ptr [eax*4+100h]

leal (%ecx,%ecx,2),%eax
subl $8,%esp
cmpl $0,-8(%ebp)
movl $0x100(,%eax,4),%eax

Intel/Microsoft Format GAS/Gnu Format
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