Floating point

Today

- IEEE Floating Point Standard
- Rounding
- Floating Point Operations
- Mathematical properties

Next time

The machine model

Checkpoint

IEEE Floating point

- Floating point representations
 - Encodes rational numbers of the form $V=x^*(2^y)$
 - Useful for very large numbers or numbers close to zero
- IEEE Standard 754 (*IEEE floating point*)
 - Established in 1985 as uniform standard for floating point arithmetic (started as an Intel's sponsored effort)
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make go fast
 - Numerical analysts predominated over hardware types in defining standard

Fractional binary numbers

- Representation #1:
 - Place notation like decimals, 123.456
 - Bits to right of "binary point" represent fractional powers of 2
 - Represents rational number:

EECS 213 Introduction to Computer Systems Northwestern University

Fractional binary number examples

- Value Representation
 - 5-3/4 101.11₂
 - 2-7/8 10.111₂
 - 63/64 0.111111₂
- Observations
 - Divide by 2 by shifting right (the point moves to the left)
 - Multiply by 2 by shifting left (the point moves to the right)
 - Numbers of form $0.111111..._2$ represent those just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$
 - We use notation 1.0ε to represent them

Representable numbers

- Limitation
 - Can only exactly represent numbers of the form $x/2^k$
 - Other numbers have repeating bit representations
- Value Representation
 - 1/3 0.0101010101[01]...₂
 - 1/5 0.001100110011[0011]...₂
 - 1/10 0.0001100110011[0011]...₂
- Wastes bits with very big (1010000000000) and very small (.00000000101) numbers
 - Wasted bits means fewer representable numbers

Floating point representation

- Representation #2:
 - Scientific notation, like 1.23456×10^2
- Numerical form
 - $V = (-1)^{s} * M * 2^{E}$
 - Sign bit s determines whether number is negative or positive
 - Significand M normally a fractional value in range [1.0,2.0).
 - Exponent E weights value by power of two
- Encoding
 - MSB is sign bit
 - exp field encodes E (note: encode != is)
 - frac field encodes \boldsymbol{M}

Floating point precisions

Encoding

s exp frac

- Sign bit; exp (encodes E): k-bit; frac (encodes M): n-bit
- Sizes
 - Single precision: k = 8 exp bits, n= 23 frac bits
 - 32 bits total
 - Double precision: k = 11 exp bits, n = 52 frac bits
 - 64 bits total
 - Extended precision: k = 15 exp bits, n = 63 frac bits
 - Only found in Intel-compatible machines
 - Stored in 80 bits
 - 1 bit wasted
- Value encoded three different cases, depending on value of exp

Normalized numeric values

- Condition
 - exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as biased value
 - E = Exp Bias
 - *Exp* : unsigned value denoted by exp
 - Bias : Bias value
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
 - in general: Bias = 2^{k-1} 1, where k is number of exponent bits
- Significand coded with implied leading 1
 - M = 1.xxx...x₂ (1+f & f = 0.xxx₂)
 - xxx...x: bits of frac
 - Minimum when 000...0 (M = 1.0)
 - Maximum when $111...1 (M = 2.0 \epsilon)$
 - Get extra leading bit for "free"

Normalized encoding example

- Value
 - Float F = 15213.0;
 - $15213_{10} = 11101101101_{2} = 1.1101101101_{2} X 2^{13}$
- Significand
 - M = 1.1101101101101₂
 - frac = 110110110110100000000
- Exponent
 - E = 13
 - Bias = 127
 - $\exp = 140 = 10001100_{2}$

Floating Point Representation:								
Hex:	4	6	6	D	в	4	0	0
Binary:	0100	0110	0110	1101	1011	0100	0000	0000
140:	100	0110	0					
15213:			110	1101	1011	01		
			<u> </u>					

EECS 213 Introduction to Computer Systems Northwestern University

Denormalized values

- Condition
 - $\exp = 000...0$
- Value
 - Exponent value E = 1 Bias
 - Note: not simply E= Bias
 - Significand value M = $0.xxx...x_2(0.f)$
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents value 0
 - Note that have distinct values +0 and -0
 - $\exp = 000...0$, frac $\neq 000...0$
 - Numbers very close to 0.0

Special values

- Condition
 - exp = 111...1
- Cases
 - exp = 111...1, frac = 000...0
 - Represents value ∞(infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., 1.0/0.0 = -1.0/-0.0 = +∞, 1.0/-0.0 = -∞
 - $\exp = 111...1$, frac $\neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), (∞-∞)

Checkpoint

Dynamic range

	S	exp	frac	Ε	Value
Denormalized	_	0000	001	-6 -6 -6	0 1/8*1/64 = 1/512 closest to zero 2/8*1/64 = 2/512
numbers	0	0000		-6 6	6/8*1/64 = 6/512 7/8*1/64 = 7/512 largest denorm
	0 0	0001 0001		-6 -6	8/8*1/64 = 8/512 smallest norm 9/8*1/64 = 9/512
Normalized numbers	0 0 0	00	111 000 001	-1 -1 0 0 0	14/8*1/2 = 14/16 15/8*1/2 = 15/16 closest to 1 below 8/8*1 = 1 closest to 1 above 9/8*1 = 9/8 10/8*1 = 10/8
	• • • • •	1110 1110	111	7	14/8*128 = 224 largest norm 15/8*128 = 240
	0	1111	000	n/a	inf

EECS 213 Introduction to Computer Systems Northwestern University

Summary of FP real number encodings

EECS 213 Introduction to Computer Systems Northwestern University

Monday, October 3, 2011

Distribution of values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3
- Notice how the distribution gets denser toward zero.

000 -11.2500 -7.5000 -3.7500 0 3.7500 7.5000 11.2500 15.0000

Distribution of values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3
- Note: Smooth transition between normalized and denormalized numbers due to definition E = 1 - Bias for denormalized values

000	-0.7500	-0.5000	-0.2500	0	0.2500	0.5000	0.7500	1.0000	
			Denorm	nalized	Norma	alized E	I Infinity		

Interesting numbers

Description	ехр	frac	Numeric Value			
Zero	0000	0000	0.0			
Smallest Pos. Denorm.	0000	0001	$2^{-23,52} X 2^{-126,1022}$			
 Single ~ 1.4 X 10⁻⁴⁵ 						
 Double ~ 4.9 X 10⁻³²⁴ 						
Largest Denormalized	0000	1111	$(1.0 - \epsilon) \ge 2^{-126,1022}$			
 Single ~ 1.18 X 10⁻³⁸ 						
• Double ~ 2.2 X 10 ⁻³⁰⁸						
Smallest Pos. Normalized	0001	0000	1.0 X 2 ^{-{126,1022}}			
 Just larger than largest denormalized 						
One	0111	0000	1.0			
Largest Normalized	1110	1111	$(2.0 - \epsilon) \ge 2^{127,1023}$			
 Single ~ 3.4 X 10³⁸ 						

• Double ~ 1.8 X 10³⁰⁸

Values related to the exponent

	Exp	exp	Е	2 ^E	
	0	0000	-6	1/64	(denorms)
Normalized	1	0001	-6	1/64	
E = e - Bias	2	0010	-5	1/32	
	3	0011	-4	1/16	
	4	0100	-3	1/8	
Denormalized	5	0101	-2	1/4	
E = 1 - Bias	6	0110	-1	1/2	
L = 1 = DldS	7	0111	0	1	
	8	1000	+1	2	
	9	1001	+2	4	
	10	1010	+3	8	
	11	1011	+4	16	
	12	1100	+5	32	
	13	1101	+6	64	
	14	1110	+7	128	
	15	1111	n/a		(inf, NaN)

Floating point operations

- Conceptual view
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac
- Rounding modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Zero		\$1	\$1	\$1	
\$2	-\$1				
Round down (-∞)	\$1	\$1	\$1	\$2	-\$2
Round up (+∞)	\$2	\$2	\$2	\$3	-\$1
Nearest Even (default)	\$1	\$2	\$2	\$2	-\$2

Note:

- 1. Round down: rounded result is close to but no greater than true result.
- 2. Round up: rounded result is close to but no less than true result.

Closer look at round-to-even

- Default rounding mode
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be overor under- estimated
- Applying to other decimal places / bit positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth
 - 1.2349999 1.23 (Less than half way)
 - 1.2350001 1.24 (Greater than half way)
 - 1.2350000 1.24 (Half way—round up)
 - 1.2450000 1.24 (Half way—round down)

Rounding binary numbers

- Binary fractional numbers
 - "Even" when least significant bit is 0
 - Half way when bits to right of rounding position = $100..._2$
- Examples
 - Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.00011 ₂	10.00 ₂	(<1/2—down)	2
2 3/16	10.00110 ₂	10.01 ₂	(>1/2—up)	2 1/4
2 7/8	10.11100 ₂	11.00 ₂	(1/2—up)	3
2 5/8	10.10100 ₂	10.10 ₂	(1/2—down)	2 1/2

FP multiplication

Operands

$$- (-1)^{s1} M^1 2^{E1} * (-1)^{s2} M^2 2^{E2}$$

- Exact result
 - (-1)^s M 2^E
 - Sign s: s1 ^ s2
 - Significand M: M1 * M2
 - Exponent E: E1 + E2
- Fixing
 - If $M \ge 2$, shift M right, increment E
 - If E out of range, overflow
 - Round M to fit frac precision
- Implementation
 - Biggest chore is multiplying significands

FP addition

- Operands
 - (-1)^{s1} M1 2^{E1}
 - (-1)^{s2} M2 2^{E2}
 - Assume E1 > E2
- Exact Result
 - $(-1)^{s} M 2^{E}$
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1
- Fixing
 - If $M \ge 2$, shift M right, increment E
 - if M < 1, shift M left k positions, decrement E by k
 - Overflow if E out of range
 - Round M to fit frac precision

EECS 213 Introduction to Computer Systems Northwestern University

Mathematical properties of FP add

- Compare to those of Abelian Group
 - Closed under addition? YES
 - But may generate infinity or NaN
 - Commutative? YES
 - Associative? NO
 - Overflow and inexactness of rounding
 - (3.14+1e10)-1e10=0 (rounding)
 - 3.14+(1e10-1e10)=3.14
 - 0 is additive identity? YES
 - Every element has additive inverse ALMOST
 - Except for infinities & NaNs
- Monotonicity
 - $a \ge b \Rightarrow a+c \ge b+c? ALMOST$
 - Except for NaNs

Math. properties of FP multiplication

- Compare to commutative ring
 - Closed under multiplication? YES
 - But may generate infinity or NaN
 - Multiplication Commutative? YES
 - Multiplication is Associative?
 NO
 - Possibility of overflow, inexactness of rounding
 - 1 is multiplicative identity?
 YES
 - Multiplication distributes over addition? NO
 - Possibility of overflow, inexactness of rounding
- Monotonicity
 - $-a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c?$ ALMOST
 - Except for NaNs

Floating point in C

- C guarantees two levels
 - float single precision
 - double double precision
- Conversions
 - int \rightarrow float : maybe rounded
 - int → double : exact value preserved (double has greater range and higher precision)
 - float \rightarrow double : exact value preserved (double has greater range and higher precision)
 - double \rightarrow float : may overflow or be rounded
 - double \rightarrow int : truncated toward zero (-1.999 \rightarrow -1)
 - float \rightarrow int : truncated toward zero
- No standard methods to change rounding or get special values like -0, inf and NaN.

EECS 213 Introduction to Computer Systems Northwestern University

Summary

- IEEE Floating point has clear mathematical properties
 - Represents numbers of form M X 2^{E}
 - Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers