
Chris Riesbeck, Fall 2011

Floating point

Today
! IEEE Floating Point Standard
! Rounding
! Floating Point Operations
! Mathematical properties

Next time
! The machine model

Monday, October 3, 2011

Checkpoint

Monday, October 3, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/04-FloatingPoint-quiz.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/04-FloatingPoint-quiz.key

3EECS 213 Introduction to Computer Systems
Northwestern University

IEEE Floating point

Floating point representations
– Encodes rational numbers of the form V=x*(2y)
– Useful for very large numbers or numbers close to zero

IEEE Standard 754 (IEEE floating point)
– Established in 1985 as uniform standard for floating point

arithmetic (started as an Intel’s sponsored effort)
• Before that, many idiosyncratic formats

– Supported by all major CPUs
Driven by numerical concerns
– Nice standards for rounding, overflow, underflow
– Hard to make go fast

• Numerical analysts predominated over hardware types in
defining standard

Monday, October 3, 2011

4EECS 213 Introduction to Computer Systems
Northwestern University

Fractional binary numbers
Representation #1:
– Place notation like decimals, 123.456
– Bits to right of “binary point” represent fractional powers of 2
– Represents rational number:

bi bi–1 b2 b1 b0 b–1 b–2 b–3 b–j• • •• • • .

1
2
4

2i–1

2i

• • •

• • •

1/2
1/4
1/8

2–j

Monday, October 3, 2011

5EECS 213 Introduction to Computer Systems
Northwestern University

Fractional binary number examples

Value Representation
– 5-3/4 101.112

– 2-7/8 10.1112

– 63/64 0.1111112

Observations
– Divide by 2 by shifting right (the point moves to the left)
– Multiply by 2 by shifting left (the point moves to the right)
– Numbers of form 0.111111…2 represent those just below 1.0

• 1/2 + 1/4 + 1/8 + … + 1/2i + … ! 1.0
• We use notation 1.0 – ! to represent them

Monday, October 3, 2011

6EECS 213 Introduction to Computer Systems
Northwestern University

Representable numbers

Limitation
– Can only exactly represent numbers of the form x/2k

– Other numbers have repeating bit representations
Value Representation
– 1/3 0.0101010101[01]…2

– 1/5 0.001100110011[0011]…2

– 1/10 0.0001100110011[0011]…2

Wastes bits with very big (10100000000000) and very
small (.000000000101) numbers
– Wasted bits means fewer representable numbers

Monday, October 3, 2011

7EECS 213 Introduction to Computer Systems
Northwestern University

Floating point representation

Representation #2:
– Scientific notation, like 1.23456 x 102

Numerical form
– V = (–1)s * M * 2E

• Sign bit s determines whether number is negative or positive
• Significand M normally a fractional value in range [1.0,2.0).
• Exponent E weights value by power of two

Encoding
– MSB is sign bit
– exp field encodes E (note: encode != is)
– frac field encodes M

s exp frac

Monday, October 3, 2011

8EECS 213 Introduction to Computer Systems
Northwestern University

Floating point precisions

Encoding

– Sign bit; exp (encodes E): k-bit; frac (encodes M): n-bit
Sizes
– Single precision: k = 8 exp bits, n= 23 frac bits

• 32 bits total
– Double precision: k = 11 exp bits, n = 52 frac bits

• 64 bits total
– Extended precision: k = 15 exp bits, n = 63 frac bits

• Only found in Intel-compatible machines
• Stored in 80 bits

– 1 bit wasted

Value encoded – three different cases, depending on
value of exp

s exp frac

Monday, October 3, 2011

9EECS 213 Introduction to Computer Systems
Northwestern University

Normalized numeric values

Condition
– exp " 000…0 and exp " 111…1

Exponent coded as biased value
– E = Exp – Bias

• Exp : unsigned value denoted by exp
• Bias : Bias value

– Single precision: 127 (Exp: 1…254, E: -126…127)
– Double precision: 1023 (Exp: 1…2046, E: -1022…1023)
– in general: Bias = 2k-1 - 1, where k is number of exponent bits

Significand coded with implied leading 1
– M = 1.xxx…x2 (1+f & f = 0.xxx2)

• xxx…x: bits of frac
• Minimum when 000…0 (M = 1.0)
• Maximum when 111…1 (M = 2.0 – !)
• Get extra leading bit for “free”

Monday, October 3, 2011

10EECS 213 Introduction to Computer Systems
Northwestern University

Normalized encoding example

Value
– Float F = 15213.0;
– 1521310 = 111011011011012 = 1.11011011011012 X 213

Significand
– M = 1.11011011011012

– frac = 11011011011010000000000

Exponent
– E = 13
– Bias = 127
– exp = 140 =100011002

Floating Point Representation:
Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000

140: 100 0110 0

15213: 110 1101 1011 01

Monday, October 3, 2011

11EECS 213 Introduction to Computer Systems
Northwestern University

Denormalized values

Condition
– exp = 000…0

Value
– Exponent value E = 1 - Bias

• Note: not simply E= – Bias

– Significand value M = 0.xxx…x2 (0.f)
• xxx…x: bits of frac

Cases
– exp = 000…0, frac = 000…0

• Represents value 0
• Note that have distinct values +0 and –0

– exp = 000…0, frac " 000…0
• Numbers very close to 0.0

Monday, October 3, 2011

12EECS 213 Introduction to Computer Systems
Northwestern University

Special values

Condition
– exp = 111…1

Cases
– exp = 111…1, frac = 000…0

• Represents value "(infinity)
• Operation that overflows
• Both positive and negative
• E.g., 1.0/0.0 = -1.0/-0.0 = +", 1.0/-0.0 = -"

– exp = 111…1, frac " 000…0
• Not-a-Number (NaN)
• Represents case when no numeric value can be

determined
• E.g., sqrt(-1), - ("-")

Monday, October 3, 2011

Checkpoint

Monday, October 3, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/04-FloatingPoint-quiz-decode.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/04-FloatingPoint-quiz-decode.key

14EECS 213 Introduction to Computer Systems
Northwestern University

Dynamic range
s exp frac E Value

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001 -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1 = 1
0 0111 001 0 9/8*1 = 9/8
0 0111 010 0 10/8*1 = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf

closest to zero

largest denorm
smallest norm

closest to 1 below
closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

Monday, October 3, 2011

15EECS 213 Introduction to Computer Systems
Northwestern University

Summary of FP real number encodings

NaNNaN

+#$#

$0

+Denorm +Normalized-Denorm-Normalized

+0

Monday, October 3, 2011

16EECS 213 Introduction to Computer Systems
Northwestern University

Distribution of values

6-bit IEEE-like format
– e = 3 exponent bits
– f = 2 fraction bits
– Bias is 3

Notice how the distribution gets denser toward zero.

-15.0000 -11.2500 -7.5000 -3.7500 0 3.7500 7.5000 11.2500 15.0000

Denormalized Normalized Infinity

Monday, October 3, 2011

17EECS 213 Introduction to Computer Systems
Northwestern University

Distribution of values (close-up view)

6-bit IEEE-like format
– e = 3 exponent bits
– f = 2 fraction bits
– Bias is 3

Note: Smooth transition between normalized and de-
normalized numbers due to definition E = 1 - Bias for
denormalized values

-1.0000 -0.7500 -0.5000 -0.2500 0 0.2500 0.5000 0.7500 1.0000

Denormalized Normalized Infinity

Monday, October 3, 2011

18EECS 213 Introduction to Computer Systems
Northwestern University

Interesting numbers
Description exp frac Numeric Value
Zero 00…00 00…00 0.0
Smallest Pos. Denorm. 00…00 00…01 2– {23,52} X 2– {126,1022}

Single ~ 1.4 X 10–45

Double ~ 4.9 X 10–324

Largest Denormalized 00…00 11…11 (1.0 – !) X 2– {126,1022}

Single ~ 1.18 X 10–38

Double ~ 2.2 X 10–308

Smallest Pos. Normalized 00…01 00…00 1.0 X 2– {126,1022}

Just larger than largest denormalized
One 01…11 00…00 1.0
Largest Normalized 11…10 11…11 (2.0 – !) X 2 {127,1023}

• Single ~ 3.4 X 1038

• Double ~ 1.8 X 10308

Monday, October 3, 2011

19EECS 213 Introduction to Computer Systems
Northwestern University

Values related to the exponent

Exp exp E 2E

0 0000 -6 1/64 (denorms)
1 0001 -6 1/64
2 0010 -5 1/32
3 0011 -4 1/16
4 0100 -3 1/8
5 0101 -2 1/4
6 0110 -1 1/2
7 0111 0 1
8 1000 +1 2
9 1001 +2 4
10 1010 +3 8
11 1011 +4 16
12 1100 +5 32
13 1101 +6 64
14 1110 +7 128
15 1111 n/a (inf, NaN)

Normalized
E = e - Bias

Denormalized
E = 1 - Bias

Monday, October 3, 2011

20EECS 213 Introduction to Computer Systems
Northwestern University

Floating point operations

Conceptual view
– First compute exact result
– Make it fit into desired precision

• Possibly overflow if exponent too large
• Possibly round to fit into frac

Rounding modes (illustrate with $ rounding)
 $1.40 $1.60 $1.50 $2.50 –$1.50

Zero $1 $1 $1
 $2 –$1

Round down (-") $1 $1 $1 $2 –$2
Round up (+") $2 $2 $2 $3 –$1
Nearest Even (default) $1 $2 $2 $2 –$2

Note:
1. Round down: rounded result is close to but no greater than true result.
2. Round up: rounded result is close to but no less than true result.

Monday, October 3, 2011

21EECS 213 Introduction to Computer Systems
Northwestern University

Closer look at round-to-even

Default rounding mode
– All others are statistically biased

• Sum of set of positive numbers will consistently be over-
or under- estimated

Applying to other decimal places / bit positions
– When exactly halfway between two possible values

• Round so that least significant digit is even
– E.g., round to nearest hundredth

• 1.2349999 1.23 (Less than half way)
• 1.2350001 1.24 (Greater than half way)
• 1.2350000 1.24 (Half way—round up)
• 1.2450000 1.24 (Half way—round down)

Monday, October 3, 2011

22EECS 213 Introduction to Computer Systems
Northwestern University

Rounding binary numbers

Binary fractional numbers
– “Even” when least significant bit is 0
– Half way when bits to right of rounding position = 100…2

Examples
– Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded Value
2 3/32 10.000112 10.002 (<1/2—down) 2

2 3/16 10.001102 10.012 (>1/2—up) 2 1/4

2 7/8 10.111002 11.002 (1/2—up) 3

2 5/8 10.101002 10.102 (1/2—down) 2 1/2

Monday, October 3, 2011

23EECS 213 Introduction to Computer Systems
Northwestern University

FP multiplication

Operands
– (–1)s1 M1 2E1 * (–1)s2 M2 2E2

Exact result
– (–1)s M 2E

– Sign s: s1 ^ s2
– Significand M: M1 * M2
– Exponent E: E1 + E2

Fixing
– If M # 2, shift M right, increment E
– If E out of range, overflow
– Round M to fit frac precision

Implementation
– Biggest chore is multiplying significands

Monday, October 3, 2011

24EECS 213 Introduction to Computer Systems
Northwestern University

FP addition

Operands
– (–1)s1 M1 2E1

– (–1)s2 M2 2E2

– Assume E1 > E2
Exact Result
– (–1)s M 2E

– Sign s, significand M:
• Result of signed align & add

– Exponent E: E1
Fixing
– If M # 2, shift M right, increment E
– if M < 1, shift M left k positions, decrement E by k
– Overflow if E out of range
– Round M to fit frac precision

(–1)s1 M1

(–1)s2 M2

E1–E2

+

(–1)s M

Monday, October 3, 2011

25EECS 213 Introduction to Computer Systems
Northwestern University

Mathematical properties of FP add

Compare to those of Abelian Group
– Closed under addition? YES

• But may generate infinity or NaN
– Commutative? YES
– Associative? NO

• Overflow and inexactness of rounding
– (3.14+1e10)-1e10=0 (rounding)
– 3.14+(1e10-1e10)=3.14

– 0 is additive identity? YES
– Every element has additive inverse ALMOST

• Except for infinities & NaNs

Monotonicity
– a # b % a+c # b+c? ALMOST

• Except for NaNs

Monday, October 3, 2011

26EECS 213 Introduction to Computer Systems
Northwestern University

Math. properties of FP multiplication

Compare to commutative ring
– Closed under multiplication? YES

• But may generate infinity or NaN
– Multiplication Commutative? YES
– Multiplication is Associative? NO

• Possibility of overflow, inexactness of rounding
– 1 is multiplicative identity? YES
– Multiplication distributes over addition? NO

• Possibility of overflow, inexactness of rounding

Monotonicity
– a # b & c # 0 % a *c # b *c? ALMOST

• Except for NaNs

Monday, October 3, 2011

27EECS 213 Introduction to Computer Systems
Northwestern University

Floating point in C

C guarantees two levels
– float single precision
– double double precision

Conversions
– int $ float : maybe rounded
– int $ double : exact value preserved (double has greater

range and higher precision)
– float $ double : exact value preserved (double has greater

range and higher precision)
– double $ float : may overflow or be rounded
– double $ int : truncated toward zero (-1.999 $ -1)
– float $ int : truncated toward zero

No standard methods to change rounding or get
special values like -0, inf and NaN.

Monday, October 3, 2011

28EECS 213 Introduction to Computer Systems
Northwestern University

Summary

IEEE Floating point has clear mathematical
properties
– Represents numbers of form M X 2E

– Not the same as real arithmetic
• Violates associativity/distributivity
• Makes life difficult for compilers & serious numerical

applications programmers

Monday, October 3, 2011

