Floating point

Today

- IEEE Floating Point Standard
- Rounding
- Floating Point Operations
- Mathematical properties

Next time
■ The machine model

Checkpoint

IEEE Floating point

- Floating point representations
- Encodes rational numbers of the form $V=x^{*}\left(2^{y}\right)$
- Useful for very large numbers or numbers close to zero
- IEEE Standard 754 (IEEE floating point)
- Established in 1985 as uniform standard for floating point arithmetic (started as an Intel's sponsored effort)
- Before that, many idiosyncratic formats
- Supported by all major CPUs
- Driven by numerical concerns
- Nice standards for rounding, overflow, underflow
- Hard to make go fast
- Numerical analysts predominated over hardware types in defining standard

Fractional binary numbers

- Representation \#1:
- Place notation like decimals, 123.456
- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

Fractional binary number examples

- Value Representation
- 5-3/4 101.112
- 2-7/8 10.111 2
- 63/64 0.111111 2
- Observations
- Divide by 2 by shifting right (the point moves to the left)
- Multiply by 2 by shifting left (the point moves to the right)
- Numbers of form $0.111111 \ldots 2$ represent those just below 1.0
- $1 / 2+1 / 4+1 / 8+\ldots+1 / 2^{i}+\ldots \rightarrow 1.0$
- We use notation $1.0-\varepsilon$ to represent them

Representable numbers

- Limitation
- Can only exactly represent numbers of the form $x / 2^{k}$
- Other numbers have repeating bit representations
- Value Representation
- 1/3 0.0101010101[01] ...2
- $1 / 5 \quad 0.001100110011[0011] \ldots 2$
- 1/10 $0.0001100110011[0011] \ldots 2$
- Wastes bits with very big (10100000000000) and very small (.000000000101) numbers
- Wasted bits means fewer representable numbers

Floating point representation

- Representation \#2:
- Scientific notation, like 1.23456×10^{2}
- Numerical form
$-V=(-1)^{*} M^{*} 2^{E}$
- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
- MSB is sign bit
- exp field encodes E (note: encode != is)
- frac field encodes M

Floating point precisions

- Encoding

s	\exp	frac

- Sign bit; exp (encodes E): k-bit; frac (encodes M): n-bit
- Sizes
- Single precision: $\mathrm{k}=8$ exp bits, $\mathrm{n}=23$ frac bits
- 32 bits total
- Double precision: $\mathrm{k}=11$ exp bits, $\mathrm{n}=52$ frac bits
- 64 bits total
- Extended precision: $\mathrm{k}=15$ exp bits, $\mathrm{n}=63$ frac bits
- Only found in Intel-compatible machines
- Stored in 80 bits
- 1 bit wasted
- Value encoded - three different cases, depending on value of exp

Normalized numeric values

- Condition
$-\exp \neq 000 \ldots 0$ and $\exp \neq 111 \ldots 1$
- Exponent coded as biased value
$-E=E x p-B i a s$
- Exp : unsigned value denoted by exp
- Bias: Bias value
- Single precision: 127 (Exp: 1...254, E: -126...127)
- Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- in general: Bias $=2^{k-1}-1$, where k is number of exponent bits
- Significand coded with implied leading 1
$-M=1 . x x x \ldots x_{2}\left(1+f \& f=0 . x^{2} x_{2}\right)$
- xxx...x: bits of frac
- Minimum when 000... 0 ($\mathrm{M}=1.0$)
- Maximum when 111... 1 ($\mathrm{M}=2.0-\varepsilon$)
- Get extra leading bit for "free"

Normalized encoding example

- Value
- Float $\mathrm{F}=15213.0$;
$-15213_{10}=11101101101101_{2}=1.1101101101101_{2} \times 2^{13}$
- Significand
- $M=1.1101101101101_{2}$
- $\mathrm{frac}=11011011011010000000000$
- Exponent
- E = 13
- Bias = 127
$-\exp =140=10001100_{2}$
Floating Point Representation:

```
Hex: }
Binary: 0100 0110 0110 1101 1011 0100 0000 0000
140: 100 0110 0
15213: 110 1101 1011 01
```


Denormalized values

- Condition
$-\exp =000 \ldots 0$
- Value
- Exponent value E = 1 - Bias
- Note: not simply E= - Bias
- Significand value $M=0 . x x x \ldots x_{2}$ (0.f)
- xxx...x: bits of frac
- Cases
$-\exp =000 \ldots 0$, frac $=000 \ldots 0$
- Represents value 0
- Note that have distinct values +0 and -0
- exp $=000 \ldots 0$, frac $\neq 000 \ldots 0$
- Numbers very close to 0.0

Special values

- Condition
$-\exp =111 . .1$
- Cases
$-\exp =111 \ldots 1$, frac $=000 \ldots 0$
- Represents value ∞ (infinity)
- Operation that overflows
- Both positive and negative
- E.g., 1.0/0.0 = -1.0/-0.0 $=+\infty, 1.0 /-0.0=-\infty$
$-\exp =111 \ldots 1$, frac $\neq 000 \ldots 0$
- Not-a-Number (NaN)
- Represents case when no numeric value can be determined
- E.g., sqrt(-1), $-(\infty-\infty)$

Checkpoint

Dynamic range

	s	exp	frac	E	Value	
	0	0000	000	-6	0	
	0	0000	001	-6	1/8*1/64 = 1/512	closest to zero
Denormalized	0	0000	010	-6	$2 / 8 * 1 / 64=2 / 512$	
	0	0000	110	-6	$6 / 8 * 1 / 64=6 / 512$	largest denorm
	. 0	. 0000.	1.11	-. 6	.7./.8*1/.64.......7./512.	largest denorm
	0	0001	000	-6	$8 / 8 * 1 / 64=8 / 512$	smallest norm
	0	0001	001	-6	9/8*1/64 $=9 / 512$	
	0	0110	110	-1	14/8*1/2 = 14/16	
	0	0110	111	-1	15/8*1/2 = 15/16	closest to 1 below
	0	0111	000	0	8/8*1 $=1$	closest to 1 above
	0	0111	001	0	9/8*1 $=9 / 8$	
numbers	0	0111	010	0	10/8*1 $=10 / 8$	
	-..	1110	110	7	14/8*128 $=224$	largest norm
	0	1110	111	7	$15 / 8 * 128=240$	
	0	1111	000	n / a	inf	

Summary of FP real number encodings

Distribution of values

- 6-bit IEEE-like format
$-\mathrm{e}=3$ exponent bits
- $f=2$ fraction bits
- Bias is 3
- Notice how the distribution gets denser toward zero.

000	-11.2500	-7.5000	-3.7500	0	3.7500	7.5000	11.2500	15.0000

- Denormalized
\triangle Normalized
Infinity

Distribution of values (close-up view)

- 6-bit IEEE-like format
$-e=3$ exponent bits
$-f=2$ fraction bits
- Bias is 3
- Note: Smooth transition between normalized and denormalized numbers due to definition E = 1 - Bias for denormalized values

- Denormalized \triangle Normalized \square Infinity

Interesting numbers

Description	exp	frac	Numeric Value
Zero	$00 \ldots 00$	$00 \ldots 00$	0.0
Smallest Pos. Denorm.	$00 \ldots 00$	$00 \ldots 01$	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$

- Single ~ 1.4×10^{-45}
- Double ~ 4.9×10^{-324}

Largest Denormalized $00 \ldots 0011 \ldots 11(1.0-\varepsilon) \times 2^{-\{126,1022\}}$

- Single ~ 1.18×10^{-38}
- Double ~2.2 X 10-308

Smallest Pos. Normalized 00... $01 \quad 00 \ldots 001.0 \times 2^{-\{126,1022\}}$

- Just larger than largest denormalized

One
Largest Normalized

- Single $\sim 3.4 \times 10^{38}$
- Double $\sim 1.8 \times 10^{308}$
01... 11 00... 001.0
$11 \ldots 10 \quad 11 \ldots 11(2.0-\varepsilon) \times 2\{127,1023\}$

Values related to the exponent

	Exp	exp	E	$2^{\text {E }}$	
Normalized	0	0000	-6	$1 / 64$	(denorms)
E = - Bias	1	0001	-6	$1 / 64$	
	2	0010	-5	$1 / 32$	
Denormalized	3	0011	-4	$1 / 16$	
E = - Bias	4	0100	-3	$1 / 8$	
	6	0101	-2	$1 / 4$	
	7	0110	-1	$1 / 2$	
	8	0111	0	1	
	9	1000	+1	2	
	10	1010	+3	8	
	11	1011	+4	16	
	12	1100	+5	32	
	13	1101	+6	64	
	14	1110	+7	128	
	15	1111	n / a		inf , NaN)

Floating point operations

- Conceptual view
- First compute exact result
- Make it fit into desired precision
- Possibly overflow if exponent too large
- Possibly round to fit into frac
- Rounding modes (illustrate with \$ rounding)

	$\$ 1.40$	$\$ 1.60$	$\$ 1.50$	$\$ 2.50$	$-\$ 1.50$
Zero		$\$ 1$	$\$ 1$	$\$ 1$	
	$-\$ 1$				
Round down $(-\infty)$	$\$ 1$	$\$ 1$	$\$ 1$	$\$ 2$	$-\$ 2$
Round up $(+\infty)$	$\$ 2$	$\$ 2$	$\$ 2$	$\$ 3$	$-\$ 1$
Nearest Even (default)	$\$ 1$	$\$ 2$	$\$ 2$	$\$ 2$	$-\$ 2$

Note:

1. Round down: rounded result is close to but no greater than true result.
2. Round up: rounded result is close to but no less than true result.

Closer look at round-to-even

- Default rounding mode
- All others are statistically biased
- Sum of set of positive numbers will consistently be overor under- estimated
- Applying to other decimal places / bit positions
- When exactly halfway between two possible values
- Round so that least significant digit is even
- E.g., round to nearest hundredth
- $1.2349999 \quad 1.23$ (Less than half way)
- 1.23500011 .24 (Greater than half way)
- 1.23500001 .24 (Half way-round up)
- 1.24500001 .24 (Half way-round down)

Rounding binary numbers

- Binary fractional numbers
- "Even" when least significant bit is 0
- Half way when bits to right of rounding position $=100 \ldots 2$
- Examples
- Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
$23 / 32$	10.00011_{2}	10.00_{2}	$(<1 / 2-$ down $)$	2
$23 / 16$	10.00110_{2}	10.01_{2}	(>1/2-up)	$21 / 4$
$27 / 8$	10.11100_{2}	11.00_{2}	(1/2-up)	3
$25 / 8$	10.10100_{2}	10.10_{2}	$(1 / 2-$ down $)$	$21 / 2$

FP multiplication

- Operands
$-(-1)^{\mathrm{s} 1} \mathrm{M}^{1} 2^{\mathrm{E} 1} \quad$ * $\quad(-1)^{\mathrm{s} 2} \mathrm{M}^{2} 2^{\mathrm{E} 2}$
- Exact result
$-(-1)^{\mathrm{s}} \mathrm{M} 2^{\mathrm{E}}$
- Sign s: s1^s2
- Significand M: M1 * M2
- Exponent E: E1 + E2
- Fixing
- If $M \geq 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision
- Implementation
- Biggest chore is multiplying significands

FP addition

- Operands
$-(-1)^{51} \mathrm{M} 12^{\mathrm{E} 1}$
$-(-1)^{\mathrm{s} 2} \mathrm{M} 22^{\mathrm{E} 2}$
- Assume E1 > E2
- Exact Result

$-(-1)^{\mathrm{s}} \mathrm{M} 2^{\mathrm{E}}$
- Sign s, significand M:
- Result of signed align \& add
- Exponent E:

E1

- Fixing
- If $M \geq 2$, shift M right, increment E
- if $M<1$, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit frac precision

Mathematical properties of FP add

- Compare to those of Abelian Group
- Closed under addition? YES
- But may generate infinity or NaN
- Commutative? YES
- Associative? NO
- Overflow and inexactness of rounding
- (3.14+1e10)-1e10=0 (rounding)
- 3.14+(1e10-1e10)=3.14
- 0 is additive identity? YES
- Every element has additive inverse ALMOST
- Except for infinities \& NaNs
- Monotonicity
$-a \geq b \Rightarrow a+c \geq b+c$? ALMOST
- Except for NaNs

Math. properties of FP multiplication

- Compare to commutative ring
- Closed under multiplication?
- But may generate infinity or NaN
- Multiplication Commutative?
- Multiplication is Associative? NO
- Possibility of overflow, inexactness of rounding
- 1 is multiplicative identity? YES
- Multiplication distributes over addition? NO
- Possibility of overflow, inexactness of rounding
- Monotonicity
$-\mathrm{a} \geq \mathrm{b} \& \mathrm{c} \geq 0 \Rightarrow \mathrm{a}$ * $\geq \mathrm{b}$ * c ? ALMOST
- Except for NaNs

Floating point in C

- C guarantees two levels
- float single precision
- double double precision
- Conversions
- int \rightarrow float : maybe rounded
- int \rightarrow double : exact value preserved (double has greater range and higher precision)
- float \rightarrow double : exact value preserved (double has greater range and higher precision)
- double \rightarrow float : may overflow or be rounded
- double \rightarrow int : truncated toward zero (-1.999 $\rightarrow-1$)
- float \rightarrow int : truncated toward zero
- No standard methods to change rounding or get special values like -0, inf and NaN .

Summary

- IEEE Floating point has clear mathematical properties
- Represents numbers of form M X 2^{E}
- Not the same as real arithmetic
- Violates associativity/distributivity
- Makes life difficult for compilers \& serious numerical applications programmers

