
Chris Riesbeck, Fall 2011

Floating point

Today
! IEEE Floating Point Standard
! Rounding
! Floating Point Operations
! Mathematical properties

Next time
! The machine model
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IEEE Floating point

Floating point representations
– Encodes rational numbers of the form V=x*(2y)
– Useful for very large numbers or numbers close to zero

IEEE Standard 754 (IEEE floating point)
– Established in 1985 as uniform standard for floating point 

arithmetic (started as an Intel’s sponsored effort)
• Before that, many idiosyncratic formats

– Supported by all major CPUs
Driven by numerical concerns
– Nice standards for rounding, overflow, underflow
– Hard to make go fast

• Numerical analysts predominated over hardware types in 
defining standard
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Fractional binary numbers
Representation #1:
– Place notation like decimals, 123.456
– Bits to right of “binary point” represent fractional powers of 2
– Represents rational number:

bi bi–1 b2 b1 b0 b–1 b–2 b–3 b–j• • •• • • .

1
2
4

2i–1

2i

• • •

• • •

1/2
1/4
1/8

2–j
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Fractional binary number examples

Value Representation
– 5-3/4 101.112

– 2-7/8  10.1112

– 63/64   0.1111112

Observations
– Divide by 2 by shifting right (the point moves to the left)
– Multiply by 2 by shifting left (the point moves to the right)
– Numbers of form 0.111111…2 represent those just below 1.0

• 1/2 + 1/4 + 1/8 + … + 1/2i + … ! 1.0
• We use notation 1.0 – ! to represent them
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Representable numbers

Limitation
– Can only exactly represent numbers of the form x/2k

– Other numbers have repeating bit representations
Value Representation
– 1/3 0.0101010101[01]…2

– 1/5 0.001100110011[0011]…2

– 1/10 0.0001100110011[0011]…2

Wastes bits with very big (10100000000000) and very 
small (.000000000101) numbers
– Wasted bits means fewer representable numbers
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Floating point representation

Representation #2:
– Scientific notation, like 1.23456 x 102

Numerical form
– V = (–1)s * M * 2E

• Sign bit s determines whether number is negative or positive
• Significand M  normally a fractional value in range [1.0,2.0).
• Exponent E weights value by power of two

Encoding
– MSB is sign bit
– exp field encodes E (note: encode != is)
– frac field encodes M

s exp frac
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Floating point precisions

Encoding

– Sign bit; exp (encodes E): k-bit; frac (encodes M): n-bit
Sizes
– Single precision: k = 8 exp bits, n= 23 frac bits

• 32 bits total
– Double precision: k = 11 exp bits, n = 52 frac bits

• 64 bits total
– Extended precision: k = 15 exp bits, n = 63 frac bits

• Only found in Intel-compatible machines
• Stored in 80 bits

– 1 bit wasted

Value encoded – three different cases, depending on 
value of exp

s exp frac
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Normalized numeric values

Condition
– exp " 000…0 and exp " 111…1

Exponent coded as biased value
–  E  =  Exp – Bias

• Exp : unsigned value denoted by exp 
• Bias : Bias value

– Single precision: 127 (Exp: 1…254, E: -126…127)
– Double precision: 1023 (Exp: 1…2046, E: -1022…1023)
– in general: Bias = 2k-1 - 1, where k is number of exponent bits

Significand coded with implied leading 1
–  M  =  1.xxx…x2 (1+f & f = 0.xxx2)

•  xxx…x: bits of frac
• Minimum when 000…0 (M = 1.0)
• Maximum when 111…1 (M = 2.0 – !)
• Get extra leading bit for “free”
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Normalized encoding example

Value
– Float F = 15213.0;
– 1521310  = 111011011011012   = 1.11011011011012 X 213

Significand
– M = 1.11011011011012

– frac = 11011011011010000000000

Exponent
– E   = 13
– Bias = 127
– exp = 140 =100011002

Floating Point Representation:
Hex:     4    6    6    D    B    4    0    0    
Binary:   0100 0110 0110 1101 1011 0100 0000 0000

140:    100 0110 0

15213:              110 1101 1011 01
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Denormalized values

Condition
–  exp = 000…0

Value
– Exponent value E = 1 - Bias 

• Note: not simply E= – Bias

– Significand value M =  0.xxx…x2 (0.f)
• xxx…x: bits of frac

Cases
–  exp = 000…0, frac = 000…0

• Represents value 0
• Note that have distinct values +0 and –0

– exp = 000…0, frac " 000…0
• Numbers very close to 0.0

Monday, October 3, 2011



12EECS 213 Introduction to Computer Systems
Northwestern University

Special values

Condition
–  exp = 111…1

Cases
–  exp = 111…1, frac = 000…0

• Represents value   "(infinity)
• Operation that overflows
• Both positive and negative
• E.g., 1.0/0.0 = -1.0/-0.0 = +",  1.0/-0.0 = -"

– exp = 111…1, frac " 000…0
• Not-a-Number (NaN)
• Represents case when no numeric value can be 

determined
• E.g., sqrt(-1), -  ("-")
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Dynamic range
s exp  frac E Value 

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001   -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1    = 1
0 0111 001 0 9/8*1    = 9/8
0 0111 010 0 10/8*1   = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf

closest to zero

largest denorm
smallest norm

closest to 1 below
closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers
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Summary of FP real number encodings

NaNNaN

+#$#

$0

+Denorm +Normalized-Denorm-Normalized

+0
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Distribution of values

6-bit IEEE-like format
– e = 3 exponent bits
– f = 2 fraction bits
– Bias is 3

Notice how the distribution gets denser toward zero. 

-15.0000 -11.2500 -7.5000 -3.7500 0 3.7500 7.5000 11.2500 15.0000

Denormalized Normalized Infinity
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Distribution of values (close-up view)

6-bit IEEE-like format
– e = 3 exponent bits
– f = 2 fraction bits
– Bias is 3

Note: Smooth transition between normalized and de-
normalized numbers due to definition E = 1 - Bias for 
denormalized values

-1.0000 -0.7500 -0.5000 -0.2500 0 0.2500 0.5000 0.7500 1.0000

Denormalized Normalized Infinity
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Interesting numbers
Description  exp frac  Numeric Value
Zero   00…00  00…00 0.0
Smallest Pos. Denorm. 00…00 00…01 2– {23,52} X 2– {126,1022}

Single ~ 1.4 X 10–45

Double ~ 4.9 X 10–324

Largest Denormalized 00…00 11…11 (1.0 – !) X 2– {126,1022}

Single ~ 1.18 X 10–38

Double ~ 2.2 X 10–308

Smallest Pos. Normalized 00…01 00…00 1.0 X 2– {126,1022}

Just larger than largest denormalized
One   01…11 00…00 1.0
Largest Normalized 11…10 11…11 (2.0 – !) X 2 {127,1023}

• Single ~ 3.4 X 1038

• Double ~ 1.8 X 10308
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Values related to the exponent

Exp exp E 2E

0 0000 -6  1/64 (denorms)
1 0001 -6 1/64
2 0010 -5 1/32
3 0011 -4 1/16
4 0100 -3 1/8
5 0101 -2 1/4
6 0110 -1 1/2
7 0111  0 1
8 1000 +1 2
9 1001 +2 4
10 1010 +3 8
11 1011 +4 16
12 1100 +5 32
13 1101 +6 64
14 1110 +7 128
15 1111 n/a  (inf, NaN)

Normalized 
E = e - Bias

Denormalized 
E = 1 - Bias
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Floating point operations

Conceptual view
– First compute exact result
– Make it fit into desired precision

• Possibly overflow if exponent too large
• Possibly round to fit into frac

Rounding modes (illustrate with $ rounding)
    $1.40 $1.60 $1.50 $2.50 –$1.50

Zero   $1 $1 $1
 $2 –$1

Round down (-") $1 $1 $1 $2 –$2
Round up (+")  $2 $2 $2 $3 –$1
Nearest Even (default) $1 $2 $2 $2 –$2

Note:
1.  Round down: rounded result is close to but no greater than true result.
2.  Round up: rounded result is close to but no less than true result. 
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Closer look at round-to-even

Default rounding mode
– All others are statistically biased

• Sum of set of positive numbers will consistently be over- 
or under- estimated

Applying to other decimal places / bit positions
– When exactly halfway between two possible values

• Round so that least significant digit is even
– E.g., round to nearest hundredth

• 1.2349999 1.23 (Less than half way)
• 1.2350001 1.24 (Greater than half way)
• 1.2350000 1.24 (Half way—round up)
• 1.2450000 1.24 (Half way—round down)

Monday, October 3, 2011



22EECS 213 Introduction to Computer Systems
Northwestern University

Rounding binary numbers

Binary fractional numbers
– “Even” when least significant bit is 0
– Half way when bits to right of rounding position = 100…2

Examples
– Round to nearest 1/4 (2 bits right of binary point)
Value Binary     Rounded    Action      Rounded Value
2 3/32 10.000112  10.002         (<1/2—down)    2

2 3/16 10.001102  10.012        (>1/2—up)      2 1/4

2 7/8 10.111002  11.002        (1/2—up)      3

2 5/8 10.101002  10.102        (1/2—down)      2 1/2
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FP multiplication

Operands
– (–1)s1 M1  2E1 * (–1)s2 M2  2E2

Exact result
– (–1)s M  2E

– Sign s:  s1 ^ s2
– Significand M:  M1 * M2
– Exponent E:  E1 + E2

Fixing
– If M # 2, shift M right, increment E 
– If E out of range, overflow 
– Round M to fit frac precision

Implementation
– Biggest chore is multiplying significands
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FP addition

Operands
– (–1)s1 M1  2E1

– (–1)s2 M2  2E2

– Assume E1 > E2
Exact Result
– (–1)s M  2E

– Sign s, significand M: 
• Result of signed align & add

– Exponent E:  E1
Fixing
– If M # 2, shift M right, increment E 
– if M < 1, shift M left k positions, decrement E by k
– Overflow if E out of range
– Round M to fit frac precision

(–1)s1 M1 

(–1)s2 M2 

E1–E2

+

(–1)s M 

Monday, October 3, 2011



25EECS 213 Introduction to Computer Systems
Northwestern University

Mathematical properties of FP add

Compare to those of Abelian Group
– Closed under addition? YES  

• But may generate infinity or NaN
– Commutative? YES
– Associative? NO

• Overflow and inexactness of rounding
– (3.14+1e10)-1e10=0 (rounding)
– 3.14+(1e10-1e10)=3.14

– 0 is additive identity? YES
– Every element has additive inverse ALMOST

• Except for infinities & NaNs

Monotonicity
– a # b % a+c # b+c? ALMOST

• Except for NaNs
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Math. properties of FP multiplication

Compare to commutative ring
– Closed under multiplication? YES

• But may generate infinity or NaN
– Multiplication Commutative? YES
– Multiplication is Associative? NO

• Possibility of overflow, inexactness of rounding
– 1 is multiplicative identity? YES
– Multiplication distributes over addition? NO

• Possibility of overflow, inexactness of rounding

Monotonicity
– a # b  & c # 0  % a *c # b *c? ALMOST

• Except for NaNs
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Floating point in C

C guarantees two levels
– float single precision
– double double precision

Conversions
– int $ float : maybe rounded
– int $ double : exact value preserved (double has greater 

range and higher precision)
– float $ double : exact value preserved (double has greater 

range and higher precision)
– double $ float : may overflow or be rounded
– double $ int : truncated toward zero (-1.999 $ -1)
– float $  int : truncated toward zero

No standard methods to change rounding or get 
special values like -0, inf and NaN.
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Summary

IEEE Floating point has clear mathematical  
properties
– Represents numbers of form M X 2E

– Not the same as real arithmetic
• Violates associativity/distributivity
• Makes life difficult for compilers & serious numerical 

applications programmers
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