## Integers

## Today


(10) Numeric Encodings
(10) Programming Implications
(1) Basic operations
(1) Programming Implications

Next time
(1) Floats

## Checkpoint



## Encoding integers in binary

- Positive integers, easy

- What about negative integers?


## Encoding integers in binary

- Idea \#1: sign bit
- use 1 in the most significant (leftmost) bit like a minus sign
- 3 = 0011, -3 = 1011
- intuitive, but simple arithmetic is complicated
$\cdot 5+-3=0101+1011=$ a miracle occurs $=0010$
- Idea \#2: ones' complement
- flip all bits for negatives
- 3 = 0011, $-3=1100$
- addition not too bad (just add and then add carry bit if any)
- $5+-3=0101+1100=0001+1$ (carry) $=0010$


## Encoding integers

- Both ideas lead to two representations of zero, positive and negative:
- sign bit: 0000 and 1000
- ones' complement: 00001111
$-5+-5=0101+1010=1111=-0$


## Encoding integers

- Idea \#3: Two’s complement
- Informal encoding view:
- To encode -N, encode N, flip all bits, add 1
- 5 = 0101,
- $-5=1010+1=1011$
- More formally, given $w$ bits $\left[x_{w-1}, x_{w-2}, \ldots, x_{1}, x_{0}\right.$ ],
- $\mathrm{N}=-\left(2^{w-1}\right)^{*} \mathrm{x}_{\mathrm{w}-1}+\sum 2^{i}{ }^{*} \mathrm{x}_{i}$ for $i$ from 0 to $w-2$
- $1011=-2^{3}+3=-8+3=-5$
- Addition is now simple: always add, ignore overflow
$-5+-5=0101+1011=0000$
- Only one zero (why?)
- Significant bit still serves as sign bit


## Encoding integers

Unsigned
$B 2 U(X)=\sum_{i=0}^{m-1} x_{i} \times^{i}$

## Two's Complement

$$
B 2 T(X)=-x_{w-1} \times 2^{w-1}+\sum_{i=0}^{w-2} x_{i} \times 2^{i}
$$

C short 2 bytes long

$$
\begin{aligned}
& \text { short int } x=15213 ; \\
& \text { short int } y=-15213 ;
\end{aligned}
$$

|  | Decimal | Hex | Binary |  |
| :--- | ---: | ---: | ---: | ---: |
| $x$ | 15213 | 3B 6D | $00111011 \quad 01101101$ |  |
| y | -15213 | C4 93 | 11000100 | 10010011 |

## Encoding example

$$
\begin{array}{lll}
\mathrm{x}=15213: & 0011101101101101 \\
\mathrm{y}=-15213: & 1100010010010011
\end{array}
$$

| Weight | 15213 |  | -15213 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | 1 | 1 | 1 |
| 2 | 0 | 0 | 1 | 2 |
| 4 | 1 | 4 | 0 | 0 |
| 8 | 1 | 8 | 0 | 0 |
| 16 | 0 | 0 | 1 | 16 |
| 32 | 1 | 32 | 0 | 0 |
| 64 | 1 | 64 | 0 | 0 |
| 128 | 0 | 0 | 1 | 128 |
| 256 | 1 | 256 | 0 | 0 |
| 512 | 1 | 512 | 0 | 0 |
| 1024 | 0 | 0 | 1 | 1024 |
| 2048 | 1 | 2048 | 0 | 0 |
| 4096 | 1 | 4096 | 0 | 0 |
| 8192 | 1 | 8192 | 0 | 0 |
| 16384 | 0 | 0 | 1 | 16384 |
| -32768 | 0 | 0 | 1 | -32768 |
| Sum |  | 15213 |  | -15213 |

## Numeric ranges

- Unsigned Values
- Umin = 0
- 000... 0
- UMax $=2^{\mathrm{w}}-1$
- 111... 1
- Two's Complement Values
$-\operatorname{Tmin}=-2^{\mathrm{w}-1}$
- 100... 0
- $\operatorname{TMax}=2^{\mathrm{w}-1}-1$
- 011... 1

Values for $W=16$

|  | Decimal | Hex |  | Binary |  |
| :--- | ---: | ---: | ---: | ---: | :---: |
| UMax | 65535 | FF FF | 11111111 | 11111111 |  |
| TMax | 32767 | $7 F$ | FF | 01111111 |  |
| 11111111 |  |  |  |  |  |
| TMin | -32768 | 80 | 00 | 10000000 |  |
| 0000000 |  |  |  |  |  |
| -1 | -1 | FF FF | 11111111 | 11111111 |  |
| 0 | 0 | 00 | 00 | 00000000 |  |
| 00000000 |  |  |  |  |  |

## Values for other word sizes

|  | W |  |  |  |
| :--- | :---: | ---: | ---: | ---: |
|  |  | 16 | $\mathbf{3 2}$ | 64 |
| UMax | 255 | 65,535 | $\mathbf{4 , 2 9 4 , 9 6 7 , 2 9 5}$ | $\mathbf{1 8 , 4 4 6 , 7 4 4 , 0 7 3 , 7 0 9 , 5 5 1 , 6 1 5}$ |
| TMax | 127 | 32,767 | $\mathbf{2 , 1 4 7 , 4 8 3 , 6 4 7}$ | $9,223,372,036,854,775,807$ |
| TMin | -128 | $-32,768$ | $-2,147,483,648$ | $-9,223,372,036,854,775,808$ |

- Observations
- |TMin $|=|$ TMax $\mid+1$
- Asymmetric range
- UMax $=2$ *TMax +1

C constants

- \#include <limits.h>
- Declares
- ULONG_MAX
- INT_MAX, INT_MIN
- LONG_MAX, LONG_MIN
- Values platform-specific


## Unsigned \& signed numeric values

| $X$ | $\mathbf{B 2 U}(\boldsymbol{X})$ | $\mathbf{B 2 T}(\boldsymbol{X})$ |
| :---: | :---: | :---: |
| 0000 | 0 | 0 |
| 0001 | 1 | 1 |
| 0010 | 2 | 2 |
| 0011 | 3 | 3 |
| 0100 | 4 | 4 |
| 0101 | 5 | 5 |
| 0110 | 6 | 6 |
| 0111 | 7 | 7 |
| 1000 | 8 | -8 |
| 1001 | 9 | -7 |
| 1010 | 10 | -6 |
| 1011 | 11 | -5 |
| 1100 | 12 | -4 |
| 1101 | 13 | -3 |
| 1110 | 14 | -2 |
| 1111 | 15 | -1 |

- Equivalence
- Same encodings for nonnegative values
- Uniqueness (bijections)
- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding
- $\Rightarrow$ Can invert mappings
$-\mathrm{U} 2 \mathrm{~B}(\boldsymbol{x})=\mathrm{B}_{2} \mathrm{U}^{-1}(\boldsymbol{x})$
- Bit pattern for unsigned integer
$-\mathrm{T} 2 \mathrm{~B}(\mathrm{x})=\mathrm{B}^{-1} \mathrm{~T}^{-1}(\boldsymbol{x})$
- Bit pattern for two's comp integer


## Casting signed to unsigned

- C allows conversions from signed to unsigned

```
short int x = 15213;
unsigned short int ux = (unsigned short) x;
short int y = -15213;
unsigned short int uy = (unsigned short) y;
```

- Resulting value
- No change in bit representation
- Non-negative values unchanged
- $u x=15213$
- Negative values change into (large) positive values
- uy = 50323


## Relation between signed \& unsigned

Casting from signed to unsigned


Maintain same bit pattern
Consider B2U and B2T equations

$$
B 2 U(X)=\sum_{i=0}^{w-1} x_{i} \times 2^{i} \quad B 2 T(X)=-x_{w-1} \times 2^{w-1}+\sum_{i=0}^{w-2} x_{i} \times 2^{i}
$$

and a bit pattern X ; compute $B 2 U(X)-B 2 T(X)$ weighted sum of for bits from 0 to $w-2$ cancel each other

$$
\begin{aligned}
& B 2 U(X)-B 2 T(X)=x_{w-1}\left(2^{w-1}--2^{w-1}\right)=x_{w-1} 2^{w} \\
& B 2 U(X)=x_{w-1} 2^{w}+B 2 T(X)
\end{aligned}
$$

$$
\text { If we let } B 2 T(X)=x
$$

$$
u x= \begin{cases}x & x \geq 0 \\ x+2^{w} & x<0\end{cases}
$$

$$
B 2 U(T 2 B(x))=T 2 U(x)=x_{w-1} 2^{w}+x
$$

## Relation between signed \& unsigned

$T 2 U(x)=x_{w-1} 2^{w}+x$

| Weight | -15213 | 50323 |  |  |
| ---: | :---: | ---: | :---: | ---: |
| 1 | 1 | 1 | 1 | 1 |
| 2 | 1 | 2 | 1 | 2 |
| 4 | 0 | 0 | 0 | 0 |
| 8 | 0 | 0 | 0 | 0 |
| 16 | 1 | 16 | 1 | 16 |
| 32 | 0 | 0 | 0 | 0 |
| 64 | 0 | 0 | 0 | 0 |
| 128 | 1 | 128 | 1 | 128 |
| 256 | 0 | 0 | 0 | 0 |
| 512 | 0 | 0 | 0 | 0 |
| 1024 | 1 | 1024 | 1 | 1024 |
| 2048 | 0 | 0 | 0 | 0 |
| 4096 | 0 | 0 | 0 | 0 |
| 8192 | 0 | 0 | 0 | 0 |
| 16384 | 1 | 16384 | 1 | 16384 |
| 32768 | 1 | -32768 | 1 | 32768 |
| Sum |  |  |  |  |

## Conversion - graphically

- 2's Comp. $\rightarrow$ Unsigned
- Ordering inversion
- Negative $\rightarrow$ Big positive


2's Comp. Range


## Signed and unsigned in C

- Constants
- By default are considered to be signed integers
- Unsigned if have "U" as suffix

OU, 4294967259U

- Casting
- Explicit casting bet/ signed \& unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

- Implicit casting

$$
\begin{aligned}
& t x=u x ; \\
& u y=t y ;
\end{aligned}
$$

- Mixed expressions - cast to unsigned first

```
tx + ux;
uy < ty;
```


## Sign extension

- Task:
- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value
- Rule:
- Make k copies of sign bit:
$-X^{\prime}=x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_{0}$



## Sign extension example

- Converting from smaller to larger integer data type
- C automatically performs sign extension

```
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

|  | Decimal | Hex |  |  | Binary |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| $x$ | 15213 |  | 3B 6D |  | 00111011 | 01101101 |  |  |
| ix | 15213 | 00 | 00 | 3B 6D | 00000000 | 0000000 | 00111011 |  |
| $y$ | -15213 |  | C4 93 |  | 1101101 |  |  |  |
| iy | -15213 | FF | FF C4 | 93 | 11111111 | 11111111 | 11000100 |  |

## Justification for sign extension

- Prove correctness by induction on k
- Induction Step: extending by single bit maintains value

$$
B 2 T(X)=-x_{w-1} \times 2^{w-1}+\sum_{i=0}^{w-2} x_{i} \times 2^{i}
$$



- Key observation:

$$
-2^{\mathrm{w}}+2^{\mathrm{w}-1}=-2^{\mathrm{w}-1}=
$$

- Look at weight of upper bits:
- X $\quad-2^{w-1} x_{w-1}$
- $X^{\prime} \quad-2^{w} x_{w-1}+2^{w-1} x_{w-1}=-2^{w-1} x_{w-1}$


## Why should I use unsigned?

- Don't use just because number nonzero
- C compilers on some machines generate less efficient code
- Easy to make mistakes (e.g., casting)
- Few languages other than $C$ supports unsigned integers
- Do use when need extra bit's worth of range
- Working right up to limit of word size


## Checkpoint



## Negating with complement \& increment

- Claim: Following holds for 2's complement
- ~x + 1 == -x
- Complement
- Observation: $\sim x+x==1111 \ldots 11_{2}==-1$

$$
\begin{aligned}
& +\sim x \text { O1110 } 0 \\
& -1 \begin{array}{lll}
1|1| & 1 & 1|1| \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& -\sim x+y+(-x+1)==-1+(-x+1) \\
& -\sim x+1==-x
\end{aligned}
$$

## Comp. \& incr. examples

| $x=15213$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Decimal | Hex |  | Binary |  |  |
| x | 15213 | 3B | 6D |  | 11011011 | 01101 |
| $\sim \mathrm{x}$ | -15214 | C4 | 92 |  | 00100100 | 10010 |
| $\sim$ | -15213 | C4 | 93 |  | 00100100 | 10011 |
| y | -15213 | C4 | 93 |  | 00100100 | 10011 |
| 0 |  |  |  |  |  |  |
|  | Decimal |  | Hex |  | Binary |  |
| 0 |  | 0 | 00 | 00 | 00000000 | 00000000 |
| $\sim 0$ |  | -1 | FF |  | 11111111 | 11111111 |
| $\sim 0+1$ |  | 0 | 00 | 00 | 00000000 | 00000000 |

## Unsigned addition

- Standard addition function
- Ignores carry output
- Implements modular arithmetic
$-s \quad=\operatorname{UAdd}_{w}(u, v)=u+v \bmod 2^{w}$

Operands: w bits

True Sum: $w+1$ bits

Discard Carry: w bits


$$
\operatorname{UAdd}_{w}(u, v)=\left\{\begin{array}{l}
u+v, u+v<2^{w} \\
u+w-2^{w}, 2^{w} \leq x+y<2^{w+1}
\end{array}\right.
$$

## Visualizing integer addition

- Integer addition
- 4-bit integers u, v
- Compute true sum Add4(u , v)
- Values increase linearly with $u$ and $v$
- Forms planar surface
$\operatorname{Add}_{4}(u, v)$



## Visualizing unsigned addition

- Wraps around
- If true sum $\geq 2^{w}$
- At most once



## Two's complement addition

- TAdd and UAdd have identical Bit-level behavior
- Signed vs. unsigned addition in C:
- int $\mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}$;
$-\quad s=($ int $)(($ unsigned $) u+(u n s i g n e d) v)$;
$-t=u+v$
- Will give $s==t$

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits


## Characterizing TAdd

- Functionality
- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer


## True Sum



$$
\begin{aligned}
\operatorname{TAdd}_{w}(u, v)= \begin{cases}u+v+2^{w-1} & u+v<\operatorname{TMin}_{w} \quad \text { (NegOver) } \\
u+v & \operatorname{TMin}_{w} \leq u+v \leq \operatorname{TMax}_{w} \\
u+v-2^{w-1} & \text { TMax }_{w}<u+v \text { (PosOver) }\end{cases}
\end{aligned}
$$

## Visualizing 2's comp. addition

- Values
- 4-bit two's comp.
- Range from -8 to +7
- Wraps Around
- If sum $\geq 2^{\mathrm{w}-1}$
- Becomes negative
- At most once
- If sum $<-2^{w-1}$
- Becomes positive
- At most once



## Detecting 2's comp. overflow

- Task
- Given s = TAddw(u, v)
- Determine if s = Addw(u,v)
- Example
- int $\mathrm{s}, \mathrm{u}, \mathrm{v}$;
- $\quad s=u+v$;
- Claim
- Overflow iff either:


$$
\begin{array}{cc}
\cdot & u, v<0, s \geq 0 \quad \text { (NegOver) } \\
\cdot & u, v \geq 0, s<0 \quad \text { (PosOver) } \\
\text { OVf }= & (u<0 \quad==v<0) \quad \& \& \quad(u<0 \quad!=s<0) ;
\end{array}
$$

## Checkpoint



## Multiplication

- Computing exact product of w-bit numbers $x, y$
- Either signed or unsigned
- Ranges
- Unsigned: $0 \leq x * y \leq\left(2^{w}-1\right)^{2}=2^{2 w}-2^{w+1}+1$
- May need up to 2 w bits to represent
- Two's complement min: $x^{*} y \geq\left(-2^{w-1}\right)^{*}\left(2^{w-1}-1\right)=-2^{2 w-2}+$ $2^{\mathrm{w}-1}$
- Up to $2^{\mathrm{w}-1}$ bits
- Two's complement max: $x^{*} y \leq\left(-2^{w-1}\right)^{2}=2^{2 w-2}$
- Up to $2 w$ bits
- Maintaining exact results
- Would need to keep expanding word size with each product computed
- Done in software by "arbitrary precision" arithmetic packages


## Unsigned multiplication in C



- Standard multiplication function
- Ignores high order w bits
- Implements modular arithmetic

UMult $_{w}(u, v)=u \cdot v \bmod 2^{w}$

## Unsigned vs. signed multiplication

- Unsigned multiplication

```
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy
```

- Truncates product to w-bit number up = UMult ${ }_{w}$ (ux, uy)
- Modular arithmetic: up $=u x *$ uy $\bmod 2^{w}$
- Two's complement multiplication

```
int x, y;
int p = x * y;
```

- Compute exact product of two w-bit numbers $x, y$
- Truncate result to w-bit number $p=\operatorname{TMultw}(x, y)$


## Unsigned vs. signed multiplication

- Unsigned multiplication

```
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy
```

- Two's complement multiplication

```
int x, y;
```

int $p=x$ * $y$;

- Relation
- Signed multiplication gives same bit-level result as unsigned
- up $==$ (unsigned) $p$


## Power-of-2 multiply with shift

- Operation
- u << k gives u * $\mathbf{2}^{\boldsymbol{k}}$
- Both signed and unsigned

Operands: w bits


True Product: $w+k$ bits $\quad u \cdot 2^{k}$
Discard $k$ bits: $w$ bits

- Examples
$\operatorname{UMult}_{w}\left(u, 2^{k}\right)$

$\operatorname{TMult}_{w}\left(u, 2^{k}\right)$
- 3*a = a<<1 + a
- Most machines shift and add much faster than multiply (1 to +12 cycles)
- Compiler generates this code automatically


## Unsigned power-of-2 divide with shift

- Quotient of unsigned by power of 2
- u >> k gives 【u / 2k
- Uses logical shift

| Operands: | $k$ |  |  | Binary Point |
| :---: | :---: | :---: | :---: | :---: |
|  | $u$ |  | $\cdots$ |  |
|  |  | $0$ | $1 . \cdots \mid 010$ |  |
| Division: | $u / 2^{k}$ | $\square \cdots$ | $\cdots$ | $\ldots$ |
| Result: | $\left\lfloor u / 2^{k}\right\rfloor$ | $\square \cdots$ | $\cdots \square$ |  |


|  | Division | Computed | Hex | Binary |
| :---: | :---: | :---: | :---: | :---: |
| x | 15213 | 15213 | 3B 6D | 0011101101101101 |
| $x$ >> 1 | 7606.5 | 7606 | 1D B6 | 0001110110110110 |
|  | 950.8125 | 950 | 03 B6 | 0000001110110110 |
| $x \gg 8$ | 59.4257813 | 59 | 00 3B | 0000000000111011 |

## Arithmetic Right Shift = Division by 2?

- Compare right-shifting 3-bit negative numbers to dividing by 2

| 100 | -4 |
| :---: | :---: |
| 101 | -3 |
| 110 | -2 |
| 111 | -1 |
| 000 | 0 |
| 001 | 1 |
| 010 | 2 |
| 011 | 3 |

## Signed power-of-2 divide with shift

- Quotient of signed by power of 2
- x >> k gives $\left\lfloor x / 2^{k}\right\rfloor$
- Uses arithmetic shift
- Rounds wrong direction when u $<0$


|  | Division | Computed | Hex | Binary |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| y | -15213 | -15213 | C4 93 | $11000100 \quad 10010011$ |  |
| $\mathrm{y} \gg 1$ | -7606.5 | -7607 | E2 49 | $11100010 \quad 01001001$ |  |
| $\mathrm{y} \gg 4$ | -950.8125 | -951 | FC 49 | $11111100 \quad 01001001$ |  |
| $\mathrm{y} \gg 8$ | -59.4257813 | -60 | FF C4 | $11111111 \quad 11000100$ |  |

## Correct power-of-2 divide

- Quotient of negative number by power of 2
- Want 「x / $\left.2^{k}\right\rceil$ (Round Toward 0)
- Compute as $\left\lfloor\left(x+2^{k}-1\right) / 2^{k}\right\rfloor$
- In C: $(x<0$ ? $(x+(1 \ll k)-1): x) \gg k$
- Biases dividend toward 0
- Case 1: No rounding

Dividend:


Biasing has no effect

## Correct power-of-2 divide (Cont.)

## Case 2: Rounding



