
Integers

Today
! Numeric Encodings
! Programming Implications
! Basic operations
! Programming Implications

Next time
! Floats

Tuesday, September 27, 2011

Checkpoint

Tuesday, September 27, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/03-Integers-quiz-1.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/03-Integers-quiz-1.key

EECS 213 Introduction to Computer Systems
Northwestern University

3

Encoding integers in binary

Positive integers, easy

What about negative integers?

binary to
unsigned

Tuesday, September 27, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

4

Encoding integers in binary

Idea #1: sign bit
– use 1 in the most significant (leftmost) bit like a minus

sign
• 3 = 0011, -3 = 1011

– intuitive, but simple arithmetic is complicated
• 5 + -3 = 0101 + 1011 = a miracle occurs = 0010

Idea #2: ones' complement
– flip all bits for negatives

• 3 = 0011, -3 = 1100
– addition not too bad (just add and then add carry bit if

any)
• 5 + -3 = 0101 + 1100 = 0001 + 1 (carry) = 0010

Tuesday, September 27, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

5

Encoding integers

Both ideas lead to two representations of zero,
positive and negative:
– sign bit: 0000 and 1000
– ones' complement: 0000 1111
– 5 + -5 = 0101 + 1010 = 1111 = -0

Tuesday, September 27, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

6

Encoding integers

Idea #3: Two’s complement
– Informal encoding view:
– To encode –N, encode N, flip all bits, add 1

• 5 = 0101,
• -5 = 1010 + 1 = 1011

– More formally, given w bits [xw-1, xw-2, …, x1, x0],
• N = -(2w-1)* xw-1 + !2i * xi for i from 0 to w-2
• 1011 = -23 + 3 = -8 + 3 = -5

Addition is now simple: always add, ignore
overflow
– 5 + -5 = 0101 + 1011 = 0000

Only one zero (why?)
Significant bit still serves as sign bit

Tuesday, September 27, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

7

Encoding integers

 short int x = 15213;
 short int y = -15213;

C short 2 bytes long

Unsigned Twoʼs Complement

Sign
Bit

Tuesday, September 27, 2011

Encoding example

EECS 213 Introduction to Computer Systems
Northwestern University

8

 x = 15213: 00111011 01101101
 y = -15213: 11000100 10010011

Tuesday, September 27, 2011

Numeric ranges
Unsigned Values
– Umin = 0

• 000…0
– UMax = 2w-1

• 111…1

Two’s Complement Values
– Tmin = –2w–1

• 100…0
– TMax = 2w–1 – 1

• 011…1

EECS 213 Introduction to Computer Systems
Northwestern University

9

Values for W = 16

Tuesday, September 27, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

10

Values for other word sizes

Observations
– |TMin | = |TMax | + 1

• Asymmetric range
– UMax = 2 * TMax + 1

C constants
– #include <limits.h>
– Declares

• ULONG_MAX
• INT_MAX, INT_MIN
• LONG_MAX, LONG_MIN

– Values platform-specific

Tuesday, September 27, 2011

Unsigned & signed numeric values

Equivalence
– Same encodings for

nonnegative values

Uniqueness (bijections)
– Every bit pattern represents

unique integer value
– Each representable integer has

unique bit encoding

! Can invert mappings
– U2B(x) = B2U-1(x)

• Bit pattern for unsigned integer
– T2B(x) = B2T-1(x)

• Bit pattern for two’s comp
integer

EECS 213 Introduction to Computer Systems
Northwestern University

11

X B2T(X)B2U(X)
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

–88
–79
–610
–511
–412
–313
–214
–115

1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7

Tuesday, September 27, 2011

C allows conversions from signed to unsigned

Resulting value
– No change in bit representation
– Non-negative values unchanged

• ux = 15213
– Negative values change into (large) positive values

• uy = 50323

EECS 213 Introduction to Computer Systems
Northwestern University

12

 short int x = 15213;
 unsigned short int ux = (unsigned short) x;
 short int y = -15213;
 unsigned short int uy = (unsigned short) y;

Casting signed to unsigned

Tuesday, September 27, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

13

T2U
T2B B2U

Twoʼs Complement Unsigned

Maintain same bit pattern

x ux
X

Relation between signed & unsigned
Casting from signed to unsigned

Consider B2U and B2T equations

and a bit pattern X; compute B2U(X) – B2T(X)
weighted sum of for bits from 0 to w – 2 cancel each other

If we let

Tuesday, September 27, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

14

Relation between signed & unsigned

ux = x + 216 = -15213 + 65536

Tuesday, September 27, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

15

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2ʼs Comp.
Range

Unsigned
Range

Conversion - graphically

2’s Comp. " Unsigned
– Ordering inversion
– Negative " Big positive

1000

0111

1111

0000

Tuesday, September 27, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

17

Signed and unsigned in C

Constants
– By default are considered to be signed integers
– Unsigned if have “U” as suffix

0U, 4294967259U

Casting
– Explicit casting bet/ signed & unsigned same as U2T and T2U

int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

– Implicit casting
tx = ux;
uy = ty;

– Mixed expressions – cast to unsigned first
tx + ux;
uy < ty;

Tuesday, September 27, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

19

Sign extension

Task:
– Given w-bit signed integer x
– Convert it to w+k-bit integer with same value

Rule:
– Make k copies of sign bit:
– X’= xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB
• • •X

X # • • • • • •

• • •

w

wk

Tuesday, September 27, 2011

Sign extension example

Converting from smaller to larger integer data type
C automatically performs sign extension

EECS 213 Introduction to Computer Systems
Northwestern University

20

 short int x = 15213;
 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

Tuesday, September 27, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

21

Justification for sign extension

Prove correctness by induction on k
– Induction Step: extending by single bit maintains value

– Key observation: –2w +2w–1 = –2w–1 =
– Look at weight of upper bits:

• X –2w–1 xw–1

• X’ –2w xw–1 + 2w–1 xw–1 = –2w–1 xw–1

- • • •X

X # - + • • •

w+1

w

Tuesday, September 27, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

22

Why should I use unsigned?

Don’t use just because number nonzero
– C compilers on some machines generate less

efficient code
– Easy to make mistakes (e.g., casting)
– Few languages other than C supports unsigned

integers

Do use when need extra bit’s worth of range
– Working right up to limit of word size

Tuesday, September 27, 2011

Checkpoint

Tuesday, September 27, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/03-Integers-quiz-2.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/03-Integers-quiz-2.key

EECS 213 Introduction to Computer Systems
Northwestern University

23

Negating with complement & increment

Claim: Following holds for 2’s complement
– ~x + 1 == -x

Complement
– Observation: ~x + x == 1111…112 == -1

Increment
– ~x + x + (-x + 1) == -1 + (-x + 1)
– ~x + 1 == -x

1 0 0 1 0 11 1 x

0 1 1 0 1 00 0~x+

1 1 1 1 1 11 1-1

Tuesday, September 27, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

24

Comp. & incr. examples

x = 15213

0

Tuesday, September 27, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

25

Unsigned addition

Standard addition function
– Ignores carry output

Implements modular arithmetic
– s = UAddw(u , v) = u + v mod 2w

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

Tuesday, September 27, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

26

0

8

16

24

32

0 1 2 3 4 5 6 7 8 9 10 11
12 13

14
15

Integer Addition

Visualizing integer addition

Integer addition
– 4-bit integers u, v
– Compute true sum Add4(u , v)
– Values increase linearly with u and v
– Forms planar surface

Add4(u , v)

u
v

Tuesday, September 27, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

27

0

4

8

11

15

0 1 2 3 4 5 6 7 8 9 10 11
12 13

14
15

Visualizing unsigned addition

Wraps around
– If true sum " 2w

– At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow

Tuesday, September 27, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

28

Two’s complement addition

TAdd and UAdd have identical Bit-level
behavior
– Signed vs. unsigned addition in C:
– int s, t, u, v;
– s = (int) ((unsigned) u + (unsigned) v);
– t = u + v
– Will give s == t

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

Tuesday, September 27, 2011

Functionality
– True sum requires

w+1 bits
– Drop off MSB
– Treat remaining bits

as 2’s comp.
integer

EECS 213 Introduction to Computer Systems
Northwestern University

29

Characterizing TAdd

–2w –1

–2w

0

2w –1

2w–1
True Sum

TAdd Result

1 000…0

1 100…0

0 000…0

0 100…0

0 111…1

100…0

000…0

011…1

PosOver

NegOver

(NegOver)

(PosOver)

Tuesday, September 27, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

30

-8

-6

-4

-2

0

2

4

6

8

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3
4

5 6
7

Visualizing 2’s comp. addition

Values
– 4-bit two’s comp.
– Range from -8 to +7

Wraps Around
– If sum ! 2w–1

• Becomes negative
• At most once

– If sum < –2w–1

• Becomes positive
• At most once

TAdd4(u , v)

u

v PosOver

NegOver

Tuesday, September 27, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

31

Detecting 2’s comp. overflow

Task
– Given s = TAddw(u , v)
– Determine if s = Addw(u , v)
– Example
– int s, u, v;
– s = u + v;

Claim
– Overflow iff either:

• u, v < 0, s ! 0 (NegOver)
• u, v ! 0, s < 0 (PosOver)

ovf = (u<0 == v<0) && (u<0 != s<0);

0

2w –1

2w–1
PosOver

NegOver

Tuesday, September 27, 2011

Checkpoint

Tuesday, September 27, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/03-Integers-quiz-3.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/03-Integers-quiz-3.key

EECS 213 Introduction to Computer Systems
Northwestern University

32

Multiplication

Computing exact product of w-bit numbers x, y
– Either signed or unsigned

Ranges
– Unsigned: 0 # x * y # (2w – 1) 2 = 22w – 2w+1 + 1

• May need up to 2w bits to represent
– Two’s complement min: x * y " (–2w–1)*(2w–1–1) = –22w–2 +

2w–1

• Up to 2w–1 bits
– Two’s complement max: x * y # (–2w–1) 2 = 22w–2

• Up to 2w bits

Maintaining exact results
– Would need to keep expanding word size with each product

computed
– Done in software by “arbitrary precision” arithmetic packages

Tuesday, September 27, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

33

Unsigned multiplication in C

Standard multiplication function
– Ignores high order w bits

Implements modular arithmetic
UMultw(u , v) = u ! v mod 2w

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)

• • •

Tuesday, September 27, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

34

Unsigned vs. signed multiplication

Unsigned multiplication
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy

– Truncates product to w-bit number up =
UMultw(ux, uy)

– Modular arithmetic: up = ux * uy mod 2w

Two’s complement multiplication
int x, y;
int p = x * y;

– Compute exact product of two w-bit numbers x, y
– Truncate result to w-bit number p = TMultw(x, y)

Tuesday, September 27, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

35

Unsigned vs. signed multiplication

Unsigned multiplication
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy

Two’s complement multiplication
int x, y;
int p = x * y;

Relation
– Signed multiplication gives same bit-level result as

unsigned
– up == (unsigned) p

Tuesday, September 27, 2011

Operation
– u << k gives u * 2k

– Both signed and unsigned

Examples
– 3*a = a<<1 + a
– Most machines shift and add much faster than multiply (1 to

+12 cycles)
• Compiler generates this code automatically

Power-of-2 multiply with shift

EECS 213 Introduction to Computer Systems
Northwestern University

36

• • •

0 0 1 0 0 0•••

u

2k*

u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)

0 0 0••••••

Tuesday, September 27, 2011

Unsigned power-of-2 divide with shift

Quotient of unsigned by power of 2
– u >> k gives " u / 2k #

– Uses logical shift

EECS 213 Introduction to Computer Systems
Northwestern University

37

0 0 1 0 0 0•••

u

2k/

u / 2kDivision:

Operands:
•••

k
••• •••

•••0 ••• •••

$ u / 2k % •••Result:

.

Binary Point

0 •••

Tuesday, September 27, 2011

Arithmetic Right Shift = Division by 2?

Compare right-shifting 3-bit
negative numbers to dividing by
2

-4100

101

110

111

-3

-2

-1

000

001

010

0

1

2

011 3

Tuesday, September 27, 2011

Signed power-of-2 divide with shift

Quotient of signed by power of 2
– x >> k gives " x / 2k #

– Uses arithmetic shift
– Rounds wrong direction when u < 0

EECS 213 Introduction to Computer Systems
Northwestern University

39

0 0 1 0 0 0•••

x

2k/

x / 2kDivision:

Operands:
•••

k
••• •••

•••0 ••• •••

RoundDown(x / 2k) •••Result:

.

Binary Point

0 •••

Tuesday, September 27, 2011

Correct power-of-2 divide

Quotient of negative number by power of 2
– Want $ x / 2k % (Round Toward 0)
– Compute as "(x+2k-1)/ 2k #

• In C: (x<0 ? (x + (1<<k) - 1) : x) >> k
• Biases dividend toward 0

Case 1: No rounding

EECS 213 Introduction to Computer Systems
Northwestern University

40

Divisor:

Dividend:

0 0 1 0 0 0•••

u

2k/

 & u / 2k '

•••

k
1 ••• 0 0 0•••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k +–1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing has no effect

Tuesday, September 27, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

41

Correct power-of-2 divide (Cont.)

Divisor:

Dividend:

Case 2: Rounding

0 0 1 0 0 0•••

x

2k/

 & x / 2k '

•••

k
1 ••• •••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k +–1 •••

1 ••• •••

Biasing adds 1 to final result

•••

Incremented by 1

Incremented by 1

Tuesday, September 27, 2011

