Integers

Today

- Numeric Encodings
- Programming Implications
- Basic operations
- Programming Implications
- Next time
- Floats

Checkpoint

Encoding integers in binary

Positive integers, easy

binary to
unsigned
$$B2U(X) = \sum_{i=0}^{w-1} x_i \otimes^i$$

• What about negative integers?

Encoding integers in binary

- Idea #1: sign bit
 - use 1 in the most significant (leftmost) bit like a minus sign
 - 3 = 0011, -3 = 1011
 - intuitive, but simple arithmetic is complicated
 - 5 + -3 = 0101 + 1011 = *a miracle occurs* = 0010
- Idea #2: ones' complement
 - flip all bits for negatives
 - 3 = 0011, -3 = 1100
 - addition not too bad (just add and then add carry bit if any)
 - 5 + -3 = 0101 + 1100 = 0001 + 1 (carry) = 0010

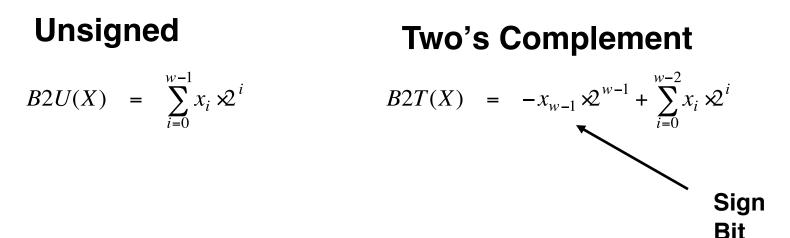
Encoding integers

- Both ideas lead to two representations of zero, positive and negative:
 - sign bit: 0000 and 1000
 - ones' complement: 0000 1111
 - 5 + -5 = 0101 + 1010 = 1111 = -0

Encoding integers

- Idea #3: Two's complement
 - Informal encoding view:
 - To encode -- N, encode N, flip all bits, add 1
 - 5 = 0101,
 - -5 = 1010 + 1 = 1011
 - More formally, given w bits $[x_{w-1}, x_{w-2}, ..., x_1, x_0]$,
 - N = -(2^{w-1})* $x_{w-1} + \sum 2^{i} * x_{i}$ for *i* from 0 to *w*-2
 - $1011 = -2^3 + 3 = -8 + 3 = -5$
- Addition is now simple: always add, ignore overflow
 - -5 + -5 = 0101 + 1011 = 0000
- Only one zero (why?)
- Significant bit still serves as sign bit

Encoding integers



C short 2 bytes long

short int x = 15213;short int y = -15213;

	Decimal	Hex	Binary
Х	15213	3B 6D	00111011 01101101
У	-15213	C4 93	11000100 10010011

Encoding example

x = 15213: 00111011 01101101

y = -15213: 11000100 10010011

Weight	1521	3	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768
Sum		15213		-15213

Numeric ranges

- Unsigned Values
 - Umin = 0
 - 000...0
 - UMax = 2^w-1

• 111...1

- Two's Complement Values
 - Tmin = -2^{w-1}
 - 100...0

$$- \text{TMax} = 2^{w-1} - 1$$

• 011...1

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7f ff	01111111 11111111
TMin	-32768	80 00	1000000 0000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	0000000 00000000

Values for other word sizes

		W					
	8	16	32	64			
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615			
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807			
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808			

- Observations
 - |TMin| = |TMax| + 1
 - Asymmetric range

$$- UMax = 2 * TMax + 1$$

C constants

- #include <limits.h>
- Declares
 - ULONG_MAX
 - INT_MAX, INT_MIN
 - LONG_MAX, LONG_MIN
- Values platform-specific

Unsigned & signed numeric values

X	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

- Equivalence
 - Same encodings for nonnegative values
- Uniqueness (bijections)
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding
- \Rightarrow Can invert mappings
 - $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
 - $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp integer

Casting signed to unsigned

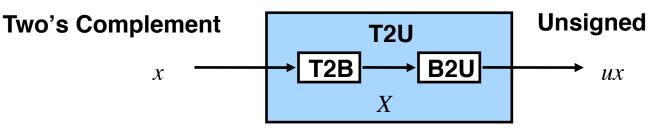
C allows conversions from signed to unsigned

short intx = 15213;unsigned short int ux = (unsigned short) x;short inty = -15213;unsigned short int uy = (unsigned short) y;

- Resulting value
 - No change in bit representation
 - Non-negative values unchanged
 - *ux* = 15213
 - Negative values change into (large) positive values
 - *uy* = 50323

Relation between signed & unsigned

Casting from signed to unsigned



Maintain same bit pattern

Consider B2U and B2T equations

$$B2U(X) = \sum_{i=0}^{w-1} x_i \, \mathcal{A}^i \qquad B2T(X) = -x_{w-1} \, \mathcal{A}^{w-1} + \sum_{i=0}^{w-2} x_i \, \mathcal{A}^i$$

and a bit pattern X; compute B2U(X) - B2T(X)weighted sum of for bits from 0 to w – 2 cancel each other

$$B2U(X) - B2T(X) = x_{w-1}(2^{w-1} - 2^{w-1}) = x_{w-1}2^{w}$$

$$B2U(X) = x_{w-1}2^{w} + B2T(X)$$

If we let $B2T(X) = x$

$$B2U(T2B(x)) = T2U(x) = x_{w-1}2^{w} + x$$

$$ux = \begin{cases} x & x \ge 0\\ x+2^w & x < 0 \end{cases}$$

EECS 213 Introduction to Computer Systems Northwestern University

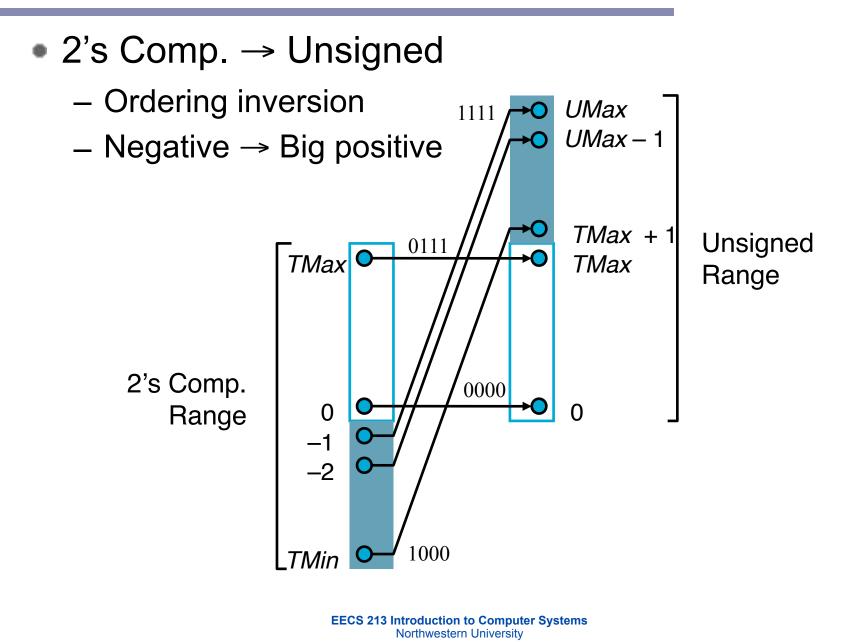
Relation between signed & unsigned

Weight	-152	213	503	23
1	1	1	1	1
2	1	2	1	2
4	0	0	0	0
8	0	0	0	0
16	1	16	1	16
32	0	0	0	0
64	0	0	0	0
128	1	128	1	128
256	0	0	0	0
512	0	0	0	0
1024	1	1024	1	1024
2048	0	0	0	0
4096	0	0	0	0
8192	0	0	0	0
16384	1	16384	1	16384
32768	1	-32768	1	32768
Sum		-15213		50323

 $ux = x + 2^{16} = -15213 + 65536$

 $T2U(x) = x_{w-1}2^w + x$

Conversion - graphically



Signed and unsigned in C

- Constants
 - By default are considered to be signed integers
 - Unsigned if have "U" as suffix

OU, 4294967259U

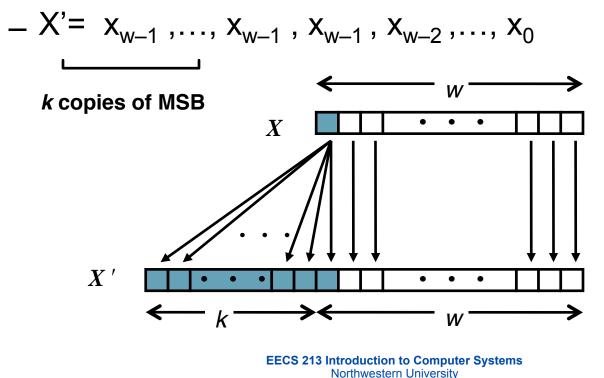
- Casting
 - Explicit casting bet/ signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
- Implicit casting
tx = ux;
uy = ty;
- Mixed expressions - cast to unsigned first
```

```
tx + ux;
uy < ty;</pre>
```

Sign extension

- Task:
 - Given w-bit signed integer x
 - Convert it to w+k-bit integer with same value
- Rule:
 - Make k copies of sign bit:



Sign extension example

- Converting from smaller to larger integer data type
- C automatically performs sign extension

```
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

	Decimal		He	ex		Binary			
Х	15213			3в	6D			00111011	01101101
ix	15213	00	00	3в	6D	00000000	00000000	00111011	01101101
У	-15213			C4	93			11000100	10010011
iy	-15213	FF	FF	C4	93	11111111	11111111	11000100	10010011

Justification for sign extension

Prove correctness by induction on k

Induction Step: extending by single bit maintains value

_

• X'
$$-2^{w} x_{w-1} + 2^{w-1} x_{w-1} = -2^{w-1} x_{w-1}$$

EECS 213 Introduction to Computer Systems Northwestern University

Why should I use unsigned?

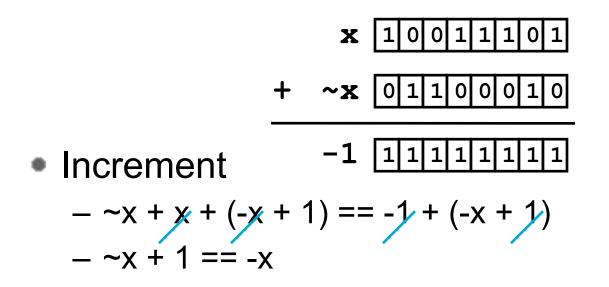
- Don't use just because number nonzero
 - C compilers on some machines generate less efficient code
 - Easy to make mistakes (e.g., casting)
 - Few languages other than C supports unsigned integers
- Do use when need extra bit's worth of range
 Working right up to limit of word size

Checkpoint

Negating with complement & increment

- Claim: Following holds for 2's complement
 ~x + 1 == -x
- Complement

- Observation: $\sim x + x == 1111...11_2 == -1$



Comp. & incr. examples

x = 15213

	Decimal	Hex	Binary
Х	15213	3B 6D	00111011 01101101
~X	-15214	C4 92	11000100 10010010
~x+1	-15213	C4 93	11000100 1001001 1
У	-15213	C4 93	11000100 10010011

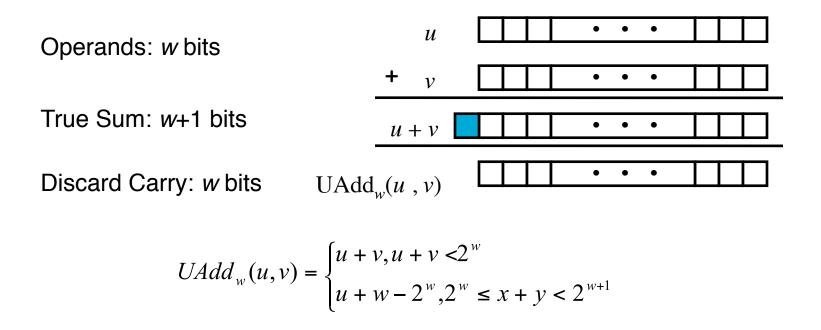
0

	Decimal Hex Binary		
0	0	00 00	0000000 00000000
~0	-1	FF FF	11111111 11111111
~0+1	0	00 00	0000000 00000000

Unsigned addition

- Standard addition function
 - Ignores carry output
- Implements modular arithmetic

$$-s = UAdd_w(u, v) = u + v \mod 2^w$$

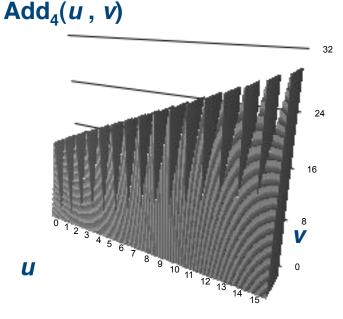


EECS 213 Introduction to Computer Systems Northwestern University

Visualizing integer addition

- Integer addition
 - 4-bit integers u, v
 - Compute true sum Add4(u , v)
 - Values increase linearly with u and v
 - Forms planar surface

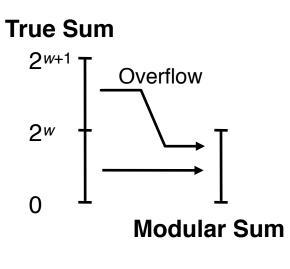
Integer Addition

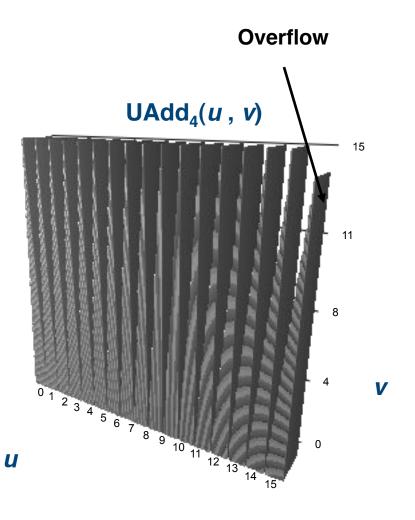


EECS 213 Introduction to Computer Systems Northwestern University

Visualizing unsigned addition

- Wraps around
 - − If true sum $\ge 2^{w}$
 - At most once





Two's complement addition

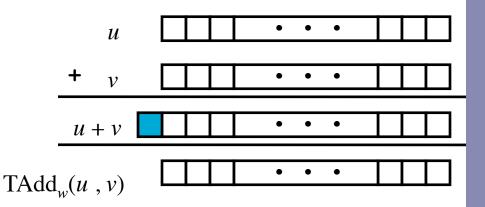
- TAdd and UAdd have identical Bit-level behavior
 - Signed vs. unsigned addition in C:
 - int s, t, u, v;
 - s = (int) ((unsigned) u + (unsigned) v);

– Will give s == t

Operands: w bits

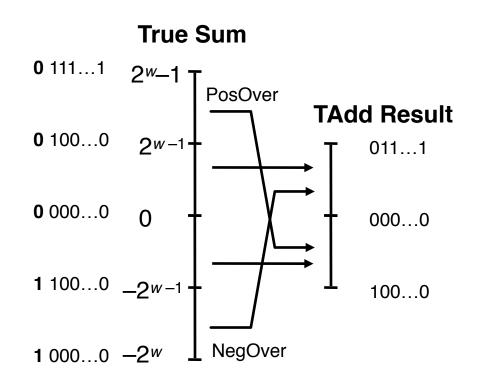
True Sum: w+1 bits

Discard Carry: w bits



Characterizing TAdd

- Functionality
 - True sum requires w+1 bits
 - Drop off MSB
 - Treat remaining bits as 2's comp. integer

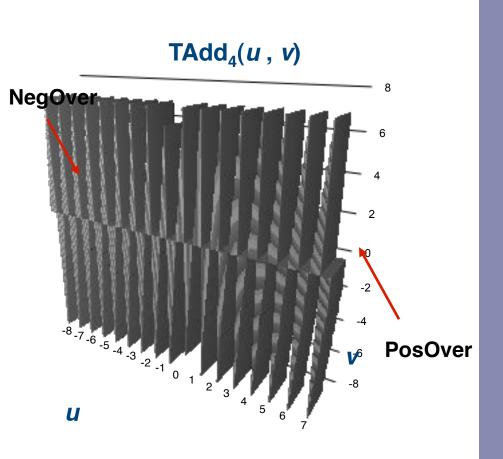


$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w-1} & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \le u+v \le TMax_{w} \\ u+v-2^{w-1} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$$

EECS 213 Introduction to Computer Systems Northwestern University

Visualizing 2's comp. addition

- Values
 - 4-bit two's comp.
 - Range from -8 to +7
- Wraps Around
 - If sum $\ge 2^{w-1}$
 - Becomes negative
 - At most once
 - If sum < -2^{w-1}
 - Becomes positive
 - At most once

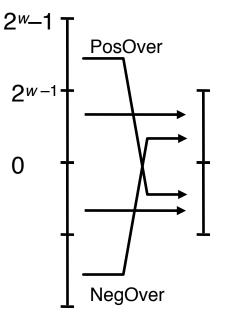


Detecting 2's comp. overflow

- Task
 - Given s = TAddw(u, v)
 - Determine if s = Addw(u, v)
 - Example
 - int s, u, v;

- Claim
 - Overflow iff either:
 - $u, v < 0, s \ge 0$ (NegOver)
 - $u, v \ge 0, s < 0$ (PosOver)

ovf = (u<0 == v<0) && (u<0 != s<0);

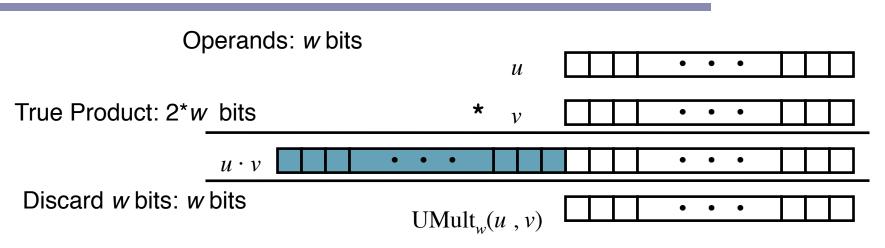


Checkpoint

Multiplication

- Computing exact product of w-bit numbers x, y
 - Either signed or unsigned
- Ranges
 - Unsigned: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - May need up to 2w bits to represent
 - Two's complement min: x * y ≥ $(-2^{w-1})^*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Up to 2^{w-1} bits
 - Two's complement max: x * y \leq (-2^{w-1})² = 2^{2w-2}
 - Up to 2w bits
- Maintaining exact results
 - Would need to keep expanding word size with each product computed
 - Done in software by "arbitrary precision" arithmetic packages

Unsigned multiplication in C



- Standard multiplication function
 - Ignores high order w bits
- Implements modular arithmetic $UMult_w(u, v) = u \cdot v \mod 2^w$

Unsigned vs. signed multiplication

Unsigned multiplication

```
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy
```

Truncates product to w-bit number up = UMult_w(ux, uy)

- Modular arithmetic: $up = ux * uy \mod 2^w$
- Two's complement multiplication
 - int x, y;
 - int p = x * y;
 - Compute exact product of two w-bit numbers x, y
 - Truncate result to w-bit number p = TMultw(x, y)

Unsigned vs. signed multiplication

Unsigned multiplication

```
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy
```

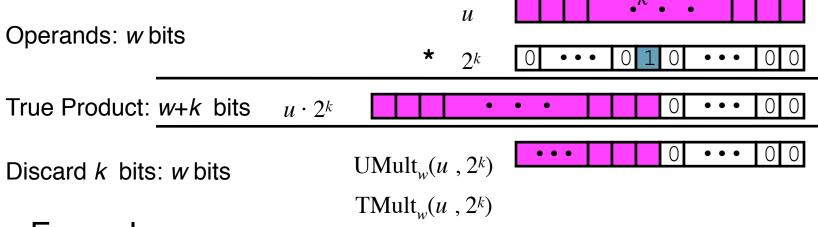
Two's complement multiplication

```
int x, y;
int p = x * y;
```

- Relation
 - Signed multiplication gives same bit-level result as unsigned
 - up == (unsigned) p

Power-of-2 multiply with shift

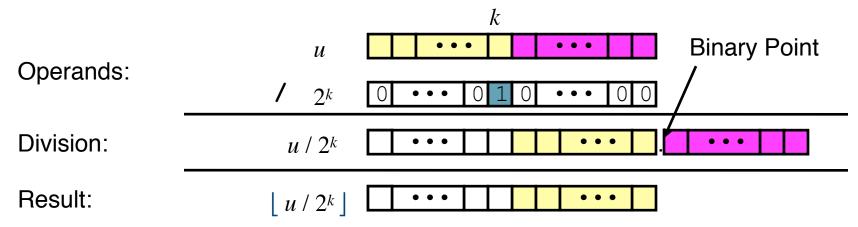
- Operation
 - u << k gives u * 2^k
 - Both signed and unsigned



- Examples
 - -3*a = a << 1 + a
 - Most machines shift and add much faster than multiply (1 to +12 cycles)
 - Compiler generates this code automatically

Unsigned power-of-2 divide with shift

- Quotient of unsigned by power of 2
 - u >> k gives [u / 2^k]
 - Uses logical shift



	Division	Computed	Hex	Binary
Х	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	0 0011101 10110110
x >> 4	950.8125	950	03 B6	0000 0011 10110110
x >> 8	59.4257813	59	00 3B	0000000 00111011

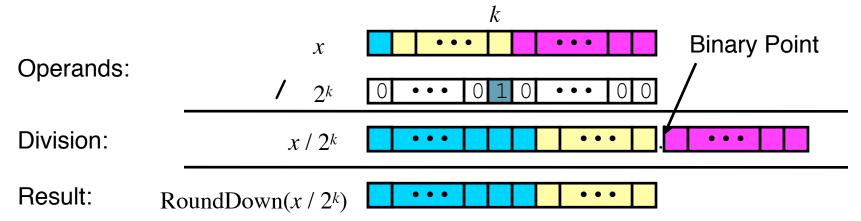
Arithmetic Right Shift = Division by 2?

 Compare right-shifting 3-bit negative numbers to dividing by 2

100	-4
101	-3
110	-2
111	-1
000	0
001	1
010	2
011	3

Signed power-of-2 divide with shift

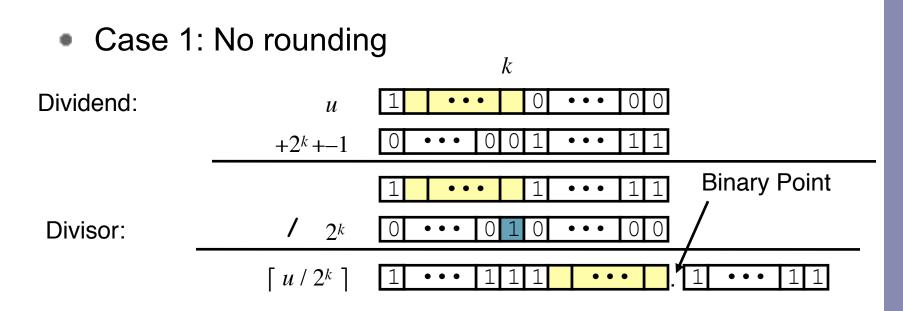
- Quotient of signed by power of 2
 - -x >> k gives $[x / 2^{k}]$
 - Uses arithmetic shift
 - Rounds wrong direction when u < 0



	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001
y >> 8	-59.4257813	-60	FF C4	1111111 11000100

Correct power-of-2 divide

- Quotient of negative number by power of 2 – Want $[x / 2^k]$ (Round Toward 0)
 - Compute as $\lfloor (x+2^k-1) / 2^k \rfloor$
 - In C: (x<0 ? (x + (1<<k) 1) : x) >> k
 - Biases dividend toward 0



Biasing has no effect

EECS 213 Introduction to Computer Systems Northwestern University

Correct power-of-2 divide (Cont.)

Case 2: Rounding

