
Chris Riesbeck, Fall 2011

Bits and Bytes

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

2

Why don’t computers use Base 10?

Base 10 number representation
– “Digit” in many languages also refers to fingers (and toes)

• Decimal (from latin decimus) means tenth
– A position numeral system (unlike, say Roman numerals)
– Natural representation for financial transactions (problems?)
– Even carries through in scientific notation

Implementing electronically
– Hard to store

• ENIAC (First electronic computer)
used 10 vacuum tubes / digit

– Hard to transmit
• Need high precision to encode 10 signal levels on single wire

– Harder to implement digital logic functions
• Addition, multiplication, etc.

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

3

Binary representations

Base 2 number representation
– Represent 1521310 as 111011011011012

– Represent 1.2010 as 1.0011001100110011[0011]…2

– Represent 1.5213 X 104 as 1.11011011011012 X 213

Electronic Implementation
– Easy to store with bistable elements
– Reliably transmitted on noisy and inaccurate wires

– Straightforward implementation of arithmetic functions
0.0V
0.5V

2.8V
3.3V

0 1 0

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

4

Byte-oriented memory organization

Programs refer to virtual addresses
– Conceptually very large array of bytes (byte = 8 bits)
– Actually implemented with hierarchy of different memory types

• SRAM, DRAM, disk
• Only allocate for regions actually used by program

– In Unix and Windows NT, address space private to particular
“process”

• Program being executed
• Program can manipulate its own data, but not that of others

Compiler + run-time system control allocation
– Where different program objects should be stored
– Multiple mechanisms: static, stack, and heap
– In any case, all allocation within single virtual address space

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

5

How do we represent the address space?

Hexadecimal notation
– Base 16 number representation
– Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
– E.g., FA1D37B16

• In C, 0xFA1D37B or 0xfa1d37b

– Each digit unpacks directly to binary
• A9 unpacks to 1010 1001

Byte = 8 bits
– Binary: 000000002 to 111111112

– Decimal: 010 to 25510

– Hexadecimal: 0016 to FF16

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary

Wednesday, September 28, 2011

Checkpoint

Wednesday, September 28, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/02-BitsBytes-quiz-1.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/02-BitsBytes-quiz-1.key

Checkpoint

Wednesday, September 28, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/02-BitsBytes-quiz-2.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/02-BitsBytes-quiz-2.key

EECS 213 Introduction to Computer Systems

8

What about Octal?

Octal notation:
– Digits 0 through 7, e.g., 7120

• In C, C++, Java, Javascript…, signaled with leading 0, e.g., 077
• Source of surprise in things like new Date(09/11/2011)

– Encodes 3 bits at a time
– Like hex, unpacks directly to binary
– Unlike hex, no extra digit characters needed

Used to be a serious competitor to hex
– Unix od command stands for "octal dump"
– Older architectures had word sizes divisible by 3, e.g., 24, 36, 60

Octal needed to understand this riddle:
– Why do programmers confuse Halloween and Christmas?

Because 31 OCT = 25 DEC

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

9

Machine words

Machine has “word size”
– Nominal size of integer-valued data

• Including addresses
• A virtual address is encoded by such a word

– Most current machines are 32 bits (4 bytes)
• Limits addresses to 4GB
• Becoming too small for memory-intensive applications

– High-end systems are 64 bits (8 bytes)
• Potentially address ! 1.8 X 1019 bytes

– Machines support multiple data formats
• Fractions or multiples of word size
• Always integral number of bytes

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

10

Word-oriented memory organization

Addresses specify
byte locations
– Address of first byte

in word
– Addresses of successive

 words differ by
4 (32-bit) or 8 (64-bit)

32-bit
Words

Bytes

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

11

Data representations

Sizes of C Objects (in Bytes)
C Data type Compaq Alpha Typical 32b Intel IA32

Int 4 4 4

Long int 8 4 4

Char 1 1 1

Short 2 2 2

Float 4 4 4

Double 8 8 8

Long double 8 8 10/12

Char * (any pointer) 8 4 4

Portability:
– Many programmers assume that object declared as int can be

used to store a pointer
• OK for a typical 32-bit machine
• Not for Alpha

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

12

Byte ordering

How to order bytes within multi-byte word in memory
Conventions
– Sun’s, Mac’s are “Big Endian” machines

• Least significant byte has highest address (comes last)
– Alphas, PC’s are “Little Endian” machines

• Least significant byte has lowest address (comes first)

Example
– Variable x has 4-byte representation 0x01234567
– Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

13

Reading byte-reversed Listings

For most programmers, these issues are invisible
Except with networking or disassembly
– Text representation of binary machine code
– Generated by program that reads the machine code

Example fragment
 Address Instruction Code Assembly Rendition
 8048365: 5b pop %ebx
 8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx
 804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

Deciphering Numbers
– Value: 0x12ab
– Pad to 4 bytes: 0x000012ab
– Split into bytes: 00 00 12 ab
– Reverse: ab 12 00 00

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

14

Examining data representations

Code to print byte representation of data
– Casting pointer to unsigned char * creates byte array

typedef unsigned char *pointer;

void show_bytes(pointer start, int len)
{
 int i;
 for (i = 0; i < len; i++)
 printf("0x%p\t0x%.2x\n",
 start+i, start[i]);
 printf("\n");
}

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

Wednesday, September 28, 2011

Checkpoint

Wednesday, September 28, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/02-BitsBytes-quiz-3.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/02-BitsBytes-quiz-3.key

EECS 213 Introduction to Computer Systems

16

A null-terminated array of
characters
– Final character = 0

Each character encoded in 7-bit
ASCII format
– Other encodings exist, but

uncommon
– “0” has code 0x30
– Digit i has code 0x30+i

Compatibility
– Byte ordering not an issue

• Data are single byte quantities
– Text files generally platform

independent
• Except for different line termination

character(s)!

Representing strings in C

char S[6] = "15213";

Linux/Alpha Sun

32
31

31
35

33
00

32
31

31
35

33
00

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

17

Machine-level code representation

Encode program as sequence of instructions
– Each simple operation

• Arithmetic operation
• Read or write memory
• Conditional branch

– Instructions encoded as bytes
• Alpha’s, Sun’s, Mac’s use 4 byte instructions

– Reduced Instruction Set Computer (RISC)
• PC’s use variable length instructions

– Complex Instruction Set Computer (CISC)
– Different instruction types and encodings for different

machines
• Most code not binary compatible

A fundamental concept:
 Programs are byte sequences too!

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

18

Representing instructions

For this example, Alpha & Sun
use two 4-byte instructions
– Use differing numbers of instructions

in other cases

PC uses 7 instructions with lengths
1, 2, and 3 bytes
– Same for NT and for Linux
– NT / Linux not fully binary compatible

int sum(int x, int y)
{
 return x + y;
}

Different machines use totally different instructions and encodings

00
00
30
42

Alpha sum

01
80
FA
6B

E0
08

81
C3

Sun sum

90
02
00
09

E5
8B

55
89

PC sum
(Linux
and NT)

45
0C
03
45
08
89
EC
5D
C3

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

19

Boolean algebra

Developed by George Boole in 19th Century
– Algebraic representation of logic

• Encode “True” as 1 and “False” as 0

Not ~A And A & B Or A | B Xor A ^ B

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

20

A

~A

~B

B

Connection when

 A&~B | ~A&B

Application of Boolean Algebra

Applied to Digital Systems by Claude Shannon
– 1937 MIT Master’s Thesis
– Reason about networks of relay switches

• Encode closed switch as 1, open switch as 0

A&~B

~A&B = A^B

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

21

Integer Boolean algebra

Integer Arithmetic
"Z, +, *, –, 0, 1# forms a mathematical structure called “ring”

– Addition is “sum” operation
– Multiplication is “product” operation
– – is additive inverse
– 0 is identity for sum
– 1 is identity for product

Boolean Algebra
"{0,1}, |,&, ~, 0, 1# forms a mathematical structure called
“Boolean algebra”

– Or is “sum” operation
– And is “product” operation
– ~ is “complement” operation (not additive inverse)
– 0 is identity for sum
– 1 is identity for product

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

22

Boolean Algebra ! Integer Ring

Commutativity A | B = B | A
A & B = B & A

A + B = B + A
A * B = B * A

Associativity (A | B) | C = A | (B | C)
(A & B) & C = A & (B & C)

(A + B) + C = A + (B + C)
 (A * B) * C = A * (B * C)

Product distributes
over sum

A & (B | C) = (A & B) | (A & C) A * (B + C) = A * B + A * C

Sum and product
identities

A | 0 = A
 A & 1 = A

A + 0 = A
 A * 1 = A

Zero is product
annihilator

A & 0 = 0 A * 0 = 0

Cancellation of
negation

~ (~ A) = A – (– A) = A

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

23

Boolean Algebra $ Integer Ring

Boolean, not Ring: Sum
distributes over product

A | (B & C) = (A | B) & (A | C) A + (B * C) $
(A + B) * (B + C)

Boolean, not Ring:
Idempotency

A | A = A
A & A = A

A + A $ A
 A * A $ A

Boolean, not Ring:
Absorption

A | (A & B) = A
 A & (A | B) = A

A + (A * B) $ A
 A * (A + B) $ A

Boolean, not Ring: Laws of
Complements

A | ~A = 1 A + –A $ 1

Ring, not Boolean: Every
element has additive inverse

A | ~A $ 0 A + –A = 0

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

24

Properties of & and ^
Boolean ring

"{0,1}, ^, &, %, 0, 1#
– Identical to integers mod 2
– % is identity operation: % (A) = A

• A ^ A = 0

Property: Boolean ring
– Commutative sum A ^ B = B ^ A
– Commutative product A & B = B & A
– Associative sum (A ^ B) ^ C = A ^ (B ^ C)
– Associative product (A & B) & C = A & (B & C)
– Prod. over sum A & (B ^ C) = (A & B) ^ (B & C)
– 0 is sum identity A ^ 0 = A
– 1 is prod. identity A & 1 = A
– 0 is product annihilator A & 0 = 0
– Additive inverse A ^ A = 0

Wednesday, September 28, 2011

Checkpoint

Wednesday, September 28, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/02-BitsBytes-quiz-4.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/02-BitsBytes-quiz-4.key

EECS 213 Introduction to Computer Systems

26

Relations between operations

DeMorgan’s Laws
– Express in terms of |, and vice-versa

• A & B = ~(~A | ~B)
– A and B are true if and only if neither A nor B is false

• A | B = ~(~A & ~B)
– A or B are true if and only if A and B are not both false

Exclusive-Or using Inclusive Or
• A ^ B = (~A & B) | (A & ~B)

– Exactly one of A and B is true
• A ^ B = (A | B) ~(A & B)

– Either A is true, or B is true, but not both

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

27

General Boolean algebras

We can extend the four Boolean operations to
also operate on bit vectors
– Operations applied bitwise

All of the Properties of Boolean Algebra Apply
Resulting algebras:
– Boolean algebra: "{0,1}(w), |, &, ~, 0(w), 1(w)#
– Ring: "{0,1}(w), ^, &, %, 0(w), 1(w)#

 01101001
& 01010101
 01000001

 01101001
| 01010101
 01111101

 01101001
^ 01010101
 00111100

~ 01010101
 10101010 01000001 01111101 00111100 10101010

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

28

Representing manipulating sets

Useful application of bit vectors – represent finite sets
Representation
– Width w bit vector represents subsets of {0, …, w–1}
– aj = 1 if j & A

• 01101001 represents { 0, 3, 5, 6 }
• 01010101 represents { 0, 2, 4, 6 }

Operations
– & Intersection 01000001 { 0, 6 }
– | Union 01111101 { 0, 2, 3, 4, 5, 6 }
– ̂Symmetric difference 00111100 { 2, 3, 4, 5 }
– ~ Complement 10101010 { 1, 3, 5, 7 }

0 1 1 0 1 0 0 1

7 6 5 4 3 2 1 0

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

29

Bit-level operations in C

Operations &, |, ~, ^ available in C
– Apply to any “integral” data type

• long, int, short, char
– View arguments as bit vectors
– Arguments applied bit-wise

Examples (Char data type)
– ~0x41 --> 0xBE

~010000012 --> 101111102
– ~0x00 --> 0xFF

~000000002 --> 111111112
– 0x69 & 0x55 --> 0x41

011010012 010101012 --> 010000012
– 0x69 | 0x55 --> 0x7D

011010012 | 010101012 --> 011111012

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

30

Logic operations in C – not quite the same

Contrast to logical operators
– &&, ||, !

• View 0 as “False”
• Anything nonzero as “True”
• Always return 0 or 1
• Early termination (if you can answer looking at first argument,

you are done)

Examples (char data type)
– !0x41 --> 0x00
– !0x00 --> 0x01
– !!0x41 --> 0x01

– 0x69 && 0x55 --> 0x01
– 0x69 || 0x55 --> 0x01

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

31

Shift operations

Left shift: x << y
– Shift bit-vector x left y positions

• Throw away extra bits on left
• Fill with 0’s on right

Right shift: x << y
– Shift bit-vector x right y positions

• Throw away extra bits on right
– Logical shift

• Fill with 0’s on left
– Arithmetic shift

• Replicate most significant bit
on right

• Useful with two’s complement
integer representation

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

Wednesday, September 28, 2011

EECS 213 Introduction to Computer Systems

32

Main points

It’s all about bits & bytes
– Numbers
– Programs
– Text

Different machines follow different conventions
– Word size
– Byte ordering
– Representations

Boolean algebra is mathematical basis
– Basic form encodes “false” as 0, “true” as 1
– General form like bit-level operations in C

• Good for representing manipulating sets

Wednesday, September 28, 2011

