Bits and Bytes
Why don’t computers use Base 10?

- **Base 10 number representation**
 - “Digit” in many languages also refers to fingers (and toes)
 - Decimal (from latin decimus) means tenth
 - A position numeral system (unlike, say Roman numerals)
 - Natural representation for financial transactions (problems?)
 - Even carries through in scientific notation

- **Implementing electronically**
 - Hard to store
 - ENIAC (First electronic computer) used 10 vacuum tubes / digit
 - Hard to transmit
 - Need high precision to encode 10 signal levels on single wire
 - Harder to implement digital logic functions
 - Addition, multiplication, etc.
Binary representations

- **Base 2 number representation**
 - Represent 15213_{10} as 11101101101101_2
 - Represent 1.20_{10} as $1.0011001100110011[0011]…_2$
 - Represent 1.5213×10^4 as $1.1101101101101_2 \times 2^{13}$

- **Electronic Implementation**
 - Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires
 - Straightforward implementation of arithmetic functions
Byte-oriented memory organization

- Programs refer to virtual addresses
 - Conceptually very large array of bytes (byte = 8 bits)
 - Actually implemented with hierarchy of different memory types
 - SRAM, DRAM, disk
 - Only allocate for regions actually used by program
 - In Unix and Windows NT, address space private to particular “process”
 - Program being executed
 - Program can manipulate its own data, but not that of others

- Compiler + run-time system control allocation
 - Where different program objects should be stored
 - Multiple mechanisms: static, stack, and heap
 - In any case, all allocation within single virtual address space
How do we represent the address space?

- **Hexadecimal notation**
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - E.g., \(\text{FA1D37B}_{16} \)
 - In C, 0xFA1D37B or 0xfa1d37b
 - Each digit unpacks directly to binary
 - \(\text{A9} \) unpacks to 1010 1001

- **Byte = 8 bits**
 - Binary: 00000000\(_2\) to 11111111\(_2\)
 - Decimal: 0\(_{10}\) to 255\(_{10}\)
 - Hexadecimal: 00\(_{16}\) to FF\(_{16}\)
Checkpoint
Checkpoint
What about Octal?

- Octal notation:
 - Digits 0 through 7, e.g., 7120
 - In C, C++, Java, Javascript…, signaled with leading 0, e.g., 077
 - Source of surprise in things like `new Date(09/11/2011)`
 - Encodes 3 bits at a time
 - Like hex, unpacks directly to binary
 - Unlike hex, no extra digit characters needed

- Used to be a serious competitor to hex
 - Unix `od` command stands for "octal dump"
 - Older architectures had word sizes divisible by 3, e.g., 24, 36, 60

- Octal needed to understand this riddle:
 - Why do programmers confuse Halloween and Christmas?
 - Because 31 OCT = 25 DEC
Machine words

- Machine has “word size”
 - Nominal size of integer-valued data
 - Including addresses
 - A virtual address is encoded by such a word
 - Most current machines are 32 bits (4 bytes)
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
 - High-end systems are 64 bits (8 bytes)
 - Potentially address $\approx 1.8 \times 10^{19}$ bytes
- Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Word-oriented memory organization

- Addresses specify byte locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

<table>
<thead>
<tr>
<th>Addr.</th>
<th>Bytes</th>
<th>32-bit Words</th>
<th>64-bit Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td></td>
<td>Addr = 0000</td>
<td>Addr = 0000</td>
</tr>
<tr>
<td>0001</td>
<td></td>
<td>Addr = 0004</td>
<td></td>
</tr>
<tr>
<td>0002</td>
<td></td>
<td>Addr = 0008</td>
<td></td>
</tr>
<tr>
<td>0003</td>
<td></td>
<td>Addr = 0012</td>
<td></td>
</tr>
<tr>
<td>0004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0015</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wednesday, September 28, 2011
Data representations

- Sizes of C Objects (in Bytes)

<table>
<thead>
<tr>
<th>C Data type</th>
<th>Compaq Alpha</th>
<th>Typical 32b</th>
<th>Intel IA32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Long int</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Long double</td>
<td>8</td>
<td>8</td>
<td>10/12</td>
</tr>
<tr>
<td>Char * (any pointer)</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

- Portability:
 - Many programmers assume that object declared as int can be used to store a pointer
 - OK for a typical 32-bit machine
 - Not for Alpha
Byte ordering

- How to order bytes within multi-byte word in memory
- Conventions
 - Sun’s, Mac’s are “Big Endian” machines
 - Least significant byte has highest address (comes last)
 - Alphas, PC’s are “Little Endian” machines
 - Least significant byte has lowest address (comes first)
- Example
 - Variable x has 4-byte representation $0x01234567$
 - Address given by $\&x$ is $0x100$

Big Endian

```
0x100 0x101 0x102 0x103

01 23 45 67
```

Little Endian

```
0x100 0x101 0x102 0x103

67 45 23 01
```
Reading byte-reversed Listings

- For most programmers, these issues are invisible
- Except with networking or disassembly
 - Text representation of binary machine code
 - Generated by program that reads the machine code

Example fragment

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00</td>
<td>cmpl $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

Deciphering Numbers

- Value: 0x12ab
- Pad to 4 bytes: 0x000012ab
- Split into bytes: 00 00 12 ab
- Reverse: ab 12 00 00
Examining data representations

- Code to print byte representation of data
 - Casting pointer to `unsigned char *` creates byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, int len)
{
    int i;
    for (i = 0; i < len; i++)
        printf("0x%p\t0x%.2x\n", start+i, start[i]);
    printf("\n");
}
```

Printf directives:
- `%p`: Print pointer
- `%x`: Print Hexadecimal
Representing strings in C

- A null-terminated array of characters
 - Final character = 0
- Each character encoded in 7-bit ASCII format
 - Other encodings exist, but uncommon
 - “0” has code 0x30
 - Digit i has code 0x30+i
- Compatibility
 - Byte ordering not an issue
 - Data are single byte quantities
 - Text files generally platform independent
 - Except for different line termination character(s)!

```c
char S[6] = "15213";
```

<table>
<thead>
<tr>
<th>Linux/Alpha</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>
Machine-level code representation

- Encode program as sequence of instructions
 - Each simple operation
 - Arithmetic operation
 - Read or write memory
 - Conditional branch
 - Instructions encoded as bytes
 - Alpha’s, Sun’s, Mac’s use 4 byte instructions
 - Reduced Instruction Set Computer (RISC)
 - PC’s use variable length instructions
 - Complex Instruction Set Computer (CISC)
 - Different instruction types and encodings for different machines
 - Most code not binary compatible

- A fundamental concept:
 Programs are byte sequences too!
Representing instructions

int sum(int x, int y) {
 return x + y;
}

- For this example, Alpha & Sun use two 4-byte instructions
 - Use differing numbers of instructions in other cases

- PC uses 7 instructions with lengths 1, 2, and 3 bytes
 - Same for NT and for Linux
 - NT / Linux not fully binary compatible

Different machines use totally different instructions and encodings
Boolean algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

<table>
<thead>
<tr>
<th>~A</th>
<th>A & B</th>
<th>A</th>
<th>A ^ B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0</td>
<td>1</td>
<td>0 1 0</td>
</tr>
<tr>
<td>1</td>
<td>1 0 1</td>
<td>1</td>
<td>1 1 0</td>
</tr>
</tbody>
</table>
Application of Boolean Algebra

- Applied to Digital Systems by Claude Shannon
 - 1937 MIT Master’s Thesis
 - Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0

\[A \& \sim B \quad \sim A \& B = A \wedge B \]

Connection when

\[A \& \sim B \mid \sim A \& B \]

\[= A \wedge B \]
Integer Boolean algebra

- **Integer Arithmetic**
 \[\langle \mathbb{Z}, +, *, -, 0, 1 \rangle \] forms a mathematical structure called “ring”
 - Addition is “sum” operation
 - Multiplication is “product” operation
 - \(- \) is additive inverse
 - 0 is identity for sum
 - 1 is identity for product

- **Boolean Algebra**
 \[\langle \{0,1\}, |, &, \sim, 0, 1 \rangle \] forms a mathematical structure called “Boolean algebra”
 - Or is “sum” operation
 - And is “product” operation
 - \(\sim \) is “complement” operation (not additive inverse)
 - 0 is identity for sum
 - 1 is identity for product

EECS 213 Introduction to Computer Systems
Boolean Algebra ≈ Integer Ring

<table>
<thead>
<tr>
<th>Property</th>
<th>Algebraic Exponentiation</th>
</tr>
</thead>
</table>
| **Commutativity** | $A | B = B | A$
| | $A & B = B & A$ |
| **Associativity** | $(A | B) | C = A | (B | C)$
| | $(A & B) & C = A & (B & C)$ |
| **Product distributes over sum**| $A & (B | C) = (A & B) | (A & C)$
| **Sum and product identities** | $A | 0 = A$
| | $A & 1 = A$ |
| **Zero is product annihilator** | $A & 0 = 0$ |
| | $A * 0 = 0$ |
| **Cancellation of negation** | $\sim (\sim A) = A$ |
| | $\neg (\neg A) = A$ |
Boolean Algebra ≠ Integer Ring

| Boolean, not Ring: Sum distributes over product | $A | (B \& C) = (A | B) \& (A | C)$ | $A + (B * C) \neq (A + B) * (B + C)$ |
|--|-----------------------------------|-----------------------------------|
| Boolean, not Ring: Idempotency | $A | A = A$ | $A + A \neq A$ |
| | $A \& A = A$ | $A \neq A$ |
| Boolean, not Ring: Absorption | $A | (A \& B) = A$ | $A + (A * B) \neq A$ |
| | $A \& (A | B) = A$ | $A * (A + B) \neq A$ |
| Boolean, not Ring: Laws of Complements | $A | \sim A = 1$ | $A + \sim A \neq 1$ |
| Ring, not Boolean: Every element has additive inverse | $A | \sim A \neq 0$ | $A + \sim A = 0$ |

EECS 213 Introduction to Computer Systems
Properties of \& and ^

- **Boolean ring**
 \[\langle \{0,1\}, ^, \& , I, 0, 1 \rangle \]
 - Identical to integers mod 2
 - I is identity operation: I (A) = A
 - A \& A = 0

- **Property: Boolean ring**
 - Commutative sum \(A ^ B = B ^ A \)
 - Commutative product \(A \& B = B \& A \)
 - Associative sum \((A ^ B) ^ C = A ^ (B ^ C) \)
 - Associative product \((A \& B) \& C = A \& (B \& C) \)
 - Prod. over sum \(A \& (B ^ C) = (A \& B) ^ (B \& C) \)
 - 0 is sum identity \(A ^ 0 = A \)
 - 1 is prod. identity \(A \& 1 = A \)
 - 0 is product annihilator \(A \& 0 = 0 \)
 - Additive inverse \(A ^ A = 0 \)
Checkpoint
Relations between operations

- **DeMorgan’s Laws**
 - Express in terms of \(|\), and vice-versa
 - \(A \& B = \sim(\sim A \| \sim B)\)
 - \(A\) and \(B\) are true if and only if neither \(A\) nor \(B\) is false
 - \(A \| B = \sim(\sim A \& \sim B)\)
 - \(A\) or \(B\) are true if and only if \(A\) and \(B\) are not both false

- **Exclusive-Or using Inclusive Or**
 - \(A \wedge B = (~A \& B) \| (A \& ~B)\)
 - Exactly one of \(A\) and \(B\) is true
 - \(A \wedge B = (A \| B) \sim (A \& B)\)
 - Either \(A\) is true, or \(B\) is true, but not both
General Boolean algebras

- We can extend the four Boolean operations to also operate on bit vectors
 - Operations applied bitwise

 \[
 \begin{array}{ccc}
 01101001 & 01101001 & 01101001 \\
 \& 01010101 & \mid 01010101 & \wedge 01010101 & \sim 01010101 \\
 \hline
 01000001 & 01111101 & 00111100 & 10101010
 \end{array}
 \]

- All of the Properties of Boolean Algebra Apply

- Resulting algebras:
 - Boolean algebra: $\langle \{0,1\}(w), |, \&, \sim, 0(w), 1(w) \rangle$
 - Ring: $\langle \{0,1\}(w), \wedge, \&, I, 0(w), 1(w) \rangle$
Representing manipulating sets

- Useful application of bit vectors – represent finite sets

- Representation
 - Width w bit vector represents subsets of \{0, \ldots, w–1\}
 - \(a_j = 1\) if \(j \in A\)
 - 01101001 represents \{ 0, 3, 5, 6 \}
 - 01010101 represents \{ 0, 2, 4, 6 \}

- Operations
 - & Intersection 01000001 \{ 0, 6 \}
 - | Union 01111101 \{ 0, 2, 3, 4, 5, 6 \}
 - ^ Symmetric difference 00111100 \{ 2, 3, 4, 5 \}
 - ~ Complement 10101010 \{ 1, 3, 5, 7 \}
Bit-level operations in C

- Operations &, |, ~, ^ available in C
 - Apply to any “integral” data type
 - long, int, short, char
 - View arguments as bit vectors
 - Arguments applied bit-wise

- Examples (Char data type)
 - ~0x41 --> 0xBE
 - ~01000001₂ --> 10111110₂
 - ~0x00 --> 0xFF
 - ~00000000₂ --> 11111111₂
 - 0x69 & 0x55 --> 0x41
 - 01101001₂ 01010101₂ --> 01000001₂
 - 0x69 | 0x55 --> 0x7D
 - 01101001₂ | 01010101₂ --> 01111101₂
Logic operations in C – not quite the same

• Contrast to logical operators
 – &&, ||, !
 • View 0 as “False”
 • Anything nonzero as “True”
 • Always return 0 or 1
 • Early termination (if you can answer looking at first argument, you are done)

• Examples (char data type)
 – !0x41 --> 0x00
 – !0x00 --> 0x01
 – !!0x41 --> 0x01

 – 0x69 && 0x55 --> 0x01
 – 0x69 || 0x55 --> 0x01
Shift operations

- **Left shift: x << y**
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0’s on right

- **Right shift: x >>= y**
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate most significant bit on right
 - Useful with two’s complement integer representation

<table>
<thead>
<tr>
<th>Argument x</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td><< 3</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. >> 2</td>
<td>00011000</td>
</tr>
<tr>
<td>Arith. >> 2</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument x</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td><< 3</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. >> 2</td>
<td>00101000</td>
</tr>
<tr>
<td>Arith. >> 2</td>
<td>11101000</td>
</tr>
</tbody>
</table>
Main points

- It’s all about bits & bytes
 - Numbers
 - Programs
 - Text

- Different machines follow different conventions
 - Word size
 - Byte ordering
 - Representations

- Boolean algebra is mathematical basis
 - Basic form encodes “false” as 0, “true” as 1
 - General form like bit-level operations in C
 • Good for representing manipulating sets