Bits and Bytes

Chris Riesbeck, Fall 2011

Why don't computers use Base 10 ?

- Base 10 number representation
- "Digit" in many languages also refers to fingers (and toes)
- Decimal (from latin decimus) means tenth
- A position numeral system (unlike, say Roman numerals)
- Natural representation for financial transactions (problems?)
- Even carries through in scientific notation
- Implementing electronically
- Hard to store
- ENIAC (First electronic computer) used 10 vacuum tubes / digit
- Hard to transmit

- Harder to implement digital logic functions
- Addition, multiplication, etc.

Binary representations

- Base 2 number representation
- Represent 15213_{10} as 11101101101101_{2}
- Represent 1.20_{10} as $1.0011001100110011[0011] \ldots 2$
- Represent 1.5213×10^{4} as $1.1101101101101_{2} \times 2^{13}$
- Electronic Implementation
- Easy to store with bistable elements
- Reliably transmitted on noisy and inaccurate wires

- Straightforward implementation of arithmetic functions

EECS 213 Introduction to Computer Systems

Byte-oriented memory organization

- Programs refer to virtual addresses
- Conceptually very large array of bytes (byte = 8 bits)
- Actually implemented with hierarchy of different memory types
- SRAM, DRAM, disk
- Only allocate for regions actually used by program
- In Unix and Windows NT, address space private to particular "process"
- Program being executed
- Program can manipulate its own data, but not that of others
- Compiler + run-time system control allocation
- Where different program objects should be stored
- Multiple mechanisms: static, stack, and heap
- In any case, all allocation within single virtual address space

How do we represent the address space?

- Hexadecimal notation
- Base 16 number representation
- Use characters ' 0 ' to ' 9 ' and ' A ' to ' F '
- E.g., FA1D37B ${ }_{16}$
- In C, 0xFA1D37B or 0xfald37b
- Each digit unpacks directly to binary
- A9 unpacks to 10101001
- Byte $=8$ bits
- Binary: 00000000_{2} to 11111111_{2}
- Decimal: 0_{10} to 255_{10}
- Hexadecimal: 00_{16} to FF_{16}

$\lambda^{e^{t}} \theta^{e^{i}} \beta^{n^{2}} n^{2}$		
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
B	11	1011
C	12	1100
D	13	1101
E	14	1110
F	15	1111

Checkpoint

Checkpoint

What about Octal?

- Octal notation:
- Digits 0 through 7, e.g., 7120
- In C, C++, Java, Javascript..., signaled with leading 0, e.g., 077
- Source of surprise in things like new Date (09/11/2011)
- Encodes 3 bits at a time
- Like hex, unpacks directly to binary
- Unlike hex, no extra digit characters needed
- Used to be a serious competitor to hex
- Unix od command stands for "octal dump"
- Older architectures had word sizes divisible by 3, e.g., 24, 36, 60
- Octal needed to understand this riddle:
- Why do programmers confuse Halloween and Christmas?

Machine words

- Machine has "word size"
- Nominal size of integer-valued data
- Including addresses
- A virtual address is encoded by such a word
- Most current machines are 32 bits (4 bytes)
- Limits addresses to 4GB
- Becoming too small for memory-intensive applications
- High-end systems are 64 bits (8 bytes)
- Potentially address $\approx 1.8 \times 10^{19}$ bytes
- Machines support multiple data formats
- Fractions or multiples of word size
- Always integral number of bytes

Word-oriented memory organization

- Addresses specify byte locations
- Address of first byte in word
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Addr. Bytes

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014 EECS 213 Introduction to Computer §ystems
0008
0009
0010
0011
0012
0013
0014
EECS 213 Introduction to Computgr §ystems

32-bit Words

64-bit Words

Addr
0000

Data representations

- Sizes of C Objects (in Bytes)

C Data type	Compaq Alpha	Typical 32b	Intel IA32
Int	4	4	4
Long int	8	4	4
Char	1	1	1
Short	2	2	2
Float	4	4	4
Double	8	8	8
Long double	8	8	$10 / 12$
Char * (any pointer)	8	4	4

- Portability:
- Many programmers assume that object declared as int can be used to store a pointer
- OK for a typical 32-bit machine
- Not for Alpha

Byte ordering

- How to order bytes within multi-byte word in memory
- Conventions
- Sun's, Mac's are "Big Endian" machines
- Least significant byte has highest address (comes last)
- Alphas, PC's are "Little Endian" machines
- Least significant byte has lowest address (comes first)
- Example
- Variable x has 4-byte representation 0×01234567
- Address given by $\& x$ is 0×100

Big Endian

| | 0×100 | 0×101 | 0×102 | 0×103 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Little Endian
$0 \times 100 \quad 0 \times 101 \quad 0 \times 102 \quad 0 \times 103$

Reading byte-reversed Listings

- For most programmers, these issues are invisible
- Except with networking or disassembly
- Text representation of binary machine code
- Generated by program that reads the machine code
- Example fragment

Examining data representations

- Code to print byte representation of data
- Casting pointer to unsigned char * creates byte array

```
typedef unsigned char *pointer;
void show_bytes(pointer start, int len)
{
    int i;
    for (i = 0; i < len; i++)
        printf("0x%p\t0x%.2x\n",
            start+i, start[i]);
    printf("\n");
}
```

Printf directives:
\%p: Print pointer
$\% x$: Print Hexadecimal

Checkpoint

Representing strings in C

- A null-terminated array of characters
- Final character $=0$
- Each character encoded in 7-bit ASCII format
- Other encodings exist, but char S[6] = "15213"; uncommon
- "0" has code 0x30
- Digiti has code 0x30+i
- Compatibility
- Byte ordering not an issue
- Data are single byte quantities
- Text files generally platform independent

- Except for different line termination character(s)!

Machine-level code representation

- Encode program as sequence of instructions
- Each simple operation
- Arithmetic operation
- Read or write memory
- Conditional branch
- Instructions encoded as bytes
- Alpha's, Sun's, Mac's use 4 byte instructions
- Reduced Instruction Set Computer (RISC)
- PC's use variable length instructions
- Complex Instruction Set Computer (CISC)
- Different instruction types and encodings for different machines
- Most code not binary compatible
- A fundamental concept:

Programs are byte sequences too!

Representing instructions

```
int sum(int x, int y)
{
    return x + y;
}
```

- For this example, Alpha \& Sun use two 4-byte instructions
- Use differing numbers of instructions in other cases
- PC uses 7 instructions with lengths 1,2 , and 3 bytes
- Same for NT and for Linux
- NT / Linux not fully binary compatible

Alpha sum

00
00
30
42
01
80
FA
$6 B$

Sun sum

81
C 3
E 0
08
90
02
00
09

Different machines use totally different instructions and encodings

Boolean algebra

- Developed by George Boole in 19th Century
- Algebraic representation of logic
- Encode "True" as 1 and "False" as 0
Not ~A
And A \& B
Or A|B
Xor ${ }^{\wedge}{ }^{\wedge} \mathrm{B}$

Application of Boolean Algebra

- Applied to Digital Systems by Claude Shannon
- 1937 MIT Master's Thesis
- Reason about networks of relay switches
- Encode closed switch as 1, open switch as 0

Connection when
A\&~B | A\&B
$=A^{\wedge} B$

Integer Boolean algebra

- Integer Arithmetic
$\left\langle Z,+,{ }^{*},-, 0,1\right\rangle$ forms a mathematical structure called "ring"
- Addition is "sum" operation
- Multiplication is "product" operation
- - is additive inverse
- 0 is identity for sum
- 1 is identity for product
- Boolean Algebra
$\langle\{0,1\}, \mid, \&, \sim, 0,1\rangle$ forms a mathematical structure called "Boolean algebra"
- Or is "sum" operation
- And is "product" operation
- ~ is "complement" operation (not additive inverse)
- 0 is identity for sum
- 1 is identity for product

Boolean Algebra \approx Integer Ring

Commutativity	$\begin{aligned} A \mid B & =B \mid A \\ A \& B & =B \& A \end{aligned}$	$\begin{aligned} A+B & =B+A \\ A * B & =B * A \end{aligned}$
Associativity	$\begin{gathered} (\mathrm{A} \mid \mathrm{B})\|\mathrm{C}=\mathrm{A}\|(\mathrm{B} \mid \mathrm{C}) \\ (\mathrm{A} \& \mathrm{~B}) \& \mathrm{C}=\mathrm{A} \&(\mathrm{~B} \& \mathrm{C}) \end{gathered}$	$\begin{aligned} (\mathrm{A}+\mathrm{B})+\mathrm{C} & =\mathrm{A}+(\mathrm{B}+\mathrm{C}) \\ (\mathrm{A} * \mathrm{~B}) * \mathrm{C} & =\mathrm{A} *(\mathrm{~B} * \mathrm{C}) \end{aligned}$
Product distributes over sum	$\mathrm{A} \&(\mathrm{~B} \mid \mathrm{C})=(\mathrm{A} \& \mathrm{~B}) \mid(\mathrm{A} \& \mathrm{C})$	$\mathrm{A} *(\mathrm{~B}+\mathrm{C})=\mathrm{A}^{*} \mathrm{~B}+\mathrm{A} * \mathrm{C}$
Sum and product identities	$\begin{aligned} & \mathrm{A} \mid 0=\mathrm{A} \\ & \mathrm{~A} \& 1=\mathrm{A} \end{aligned}$	$\begin{gathered} \mathrm{A}+0=\mathrm{A} \\ \mathrm{~A} * 1=\mathrm{A} \end{gathered}$
Zero is product annihilator	A \& $0=0$	$\mathrm{A}^{*} 0=0$
Cancellation of negation	$\sim(\sim \mathrm{A})=\mathrm{A}$	$-(-A)=A$

EECS 213 Introduction to Computer Systems

Boolean Algebra = Integer Ring

Boolean, not Ring: Sum distributes over product	$A \mid(B \& C)=(A \mid B) \&(A \mid C)$	$\begin{aligned} & A+\left(B{ }^{*} C\right) \neq \\ & (A+B)^{*}(B+C) \end{aligned}$
Boolean, not Ring: Idempotency	$\begin{gathered} \mathrm{A} \mid \mathrm{A}=\mathrm{A} \\ \mathrm{~A} \& \mathrm{~A}=\mathrm{A} \end{gathered}$	$\begin{aligned} & A+A \neq A \\ & A * A \neq A \end{aligned}$
Boolean, not Ring: Absorption	$\begin{aligned} & \mathrm{A} \mid(\mathrm{A} \& \mathrm{~B})=\mathrm{A} \\ & \mathrm{~A} \&(\mathrm{~A} \mid \mathrm{B})=\mathrm{A} \end{aligned}$	$\begin{aligned} \mathrm{A}+(\mathrm{A} * \mathrm{~B}) & \neq \mathrm{A} \\ \mathrm{~A} *(\mathrm{~A}+\mathrm{B}) & \neq \mathrm{A} \end{aligned}$
Boolean, not Ring: Laws of Complements	$\mathrm{A} \mid \sim \mathrm{A}=1$	$\mathrm{A}+-\mathrm{A} \neq 1$
Ring, not Boolean: Every element has additive inverse	$\mathrm{A} \mid \sim \mathrm{A} \neq 0$	$\mathrm{A}+-\mathrm{A}=0$

Properties of \& and ${ }^{\wedge}$

- Boolean ring
$\left\langle\{0,1\},^{\wedge}, \&, I, 0,1\right\rangle$
- Identical to integers mod 2
- I is identity operation: $I(A)=A$
- $A^{\wedge} A=0$
- Property: Boolean ring
- Commutative sum $A^{\wedge} B=B^{\wedge} A$
- Commutative product $\quad A \& B=B \& A$
- Associative sum $\left(A^{\wedge} B\right)^{\wedge} C=A^{\wedge}\left(B^{\wedge} C\right)$
- Associative product $(A \& B) \& C=A \&(B \& C)$
- Prod. over sum $\quad A \&\left(B^{\wedge} C\right)=(A \& B)^{\wedge}(B \& C)$
- 0 is sum identity $A^{\wedge} 0=A$
- 1 is prod. identity $A \& 1=A$
- 0 is product annihilator $\quad A \& 0=0$
- Additive inverse $\mathrm{A}^{\wedge} \mathrm{A}=0$

Checkpoint

Relations between operations

- DeMorgan's Laws
- Express in terms of |, and vice-versa
- $A \& B=\sim(\sim A \mid \sim B)$
$-A$ and B are true if and only if neither A nor B is false
- $A \mid B=\sim(\sim A \& \sim B)$
- A or B are true if and only if A and B are not both false
- Exclusive-Or using Inclusive Or
- $A^{\wedge} B=(\sim A \& B) \mid(A \& \sim B)$
- Exactly one of A and B is true
- $A^{\wedge} B=(A \mid B) \sim(A \& B)$
- Either A is true, or B is true, but not both

General Boolean algebras

- We can extend the four Boolean operations to also operate on bit vectors
- Operations applied bitwise

$$
\begin{array}{r}
01101001 \\
\& 01010101 \\
\hline 01000001
\end{array} \frac{01101001}{01010101} \begin{array}{r}
01111101
\end{array} \stackrel{01101001}{ } \begin{aligned}
& 01010101 \\
&
\end{aligned} \frac{\sim 01010101}{10101010}
$$

- All of the Properties of Boolean Algebra Apply
- Resulting algebras:
- Boolean algebra: $\langle\{0,1\}(w), \mid, \&, \sim, 0(w), 1(w)\rangle$
- Ring: $\left\langle\{0,1\}(w),{ }^{\wedge}, \&, I, 0(w), 1(w)\right\rangle$

Representing manipulating sets

- Useful application of bit vectors - represent finite sets
- Representation
- Width w bit vector represents subsets of $\{0, \ldots, w-1\}$
$-\mathrm{a}_{\mathrm{j}}=1$ if $\mathrm{j} \in \mathrm{A}$
- 01101001 represents $\{0,3,5,6\}$
- 01010101 represents $\{0,2,4,6\}$
- Operations

0	1	1	0	1	0	0	1
7	6	5	4	3	2	1	0

- \& Intersection 01000001 \{ 0, 6 \}
- | Union $01111101\{0,2,3,4,5,6\}$
- ^ Symmetric difference $00111100\{2,3,4,5\}$
- ~Complement 10101010 \{ 1, 3, 5, 7 \}

Bit-level operations in C

- Operations \&, |, ~, ^ available in C
- Apply to any "integral" data type
- long, int, short, char
- View arguments as bit vectors
- Arguments applied bit-wise
- Examples (Char data type)

$$
\begin{aligned}
& \text { - ~0x41 --> 0xBE } \\
& \sim 01000001_{2} \quad-->\quad 10111110_{2} \\
& \text { - ~0x00 --> } 0 x F F \\
& \sim 00000000_{2} \quad-->\quad 11111111_{2} \\
& \text { - 0x69 \& 0x55 --> 0x41 } \\
& 01101001_{2} 01010101_{2} \text {--> } 01000001_{2} \\
& \text { - 0x69 | 0x55 --> 0x7D } \\
& 01101001_{2} \text { | } 01010101_{2} \text {--> } 01111101_{2}
\end{aligned}
$$

Logic operations in C - not quite the same

- Contrast to logical operators
- \&\&, ||,!
- View 0 as "False"
- Anything nonzero as "True"
- Always return 0 or 1
- Early termination (if you can answer looking at first argument, you are done)
- Examples (char data type)
- !0x41 --> 0x00
- !0x00 --> 0x01
- !!0x41 --> 0x01
- 0×69 \&\& 0×55--> 0×01
- 0x69 || 0x55 --> 0x01

Shift operations

- Left shift: $x \ll y$
- Shift bit-vector x left y positions
- Throw away extra bits on left
- Fill with 0's on right
- Right shift: $\mathrm{x} \ll \mathrm{y}$
- Shift bit-vector x right y positions

Argument x	01100010
$\ll 3$	00010000
Log. >> 2	00011000
Arith. >> 2	00011000

- Throw away extra bits on right
- Logical shift
- Fill with 0's on left
- Arithmetic shift
- Replicate most significant bit on right
- Useful with two's complement

Argument \times	10100010
$\ll 3$	00010000
Log. >> 2	00101000
Arith. >> 2	11101000

Main points

- It's all about bits \& bytes
- Numbers
- Programs
- Text
- Different machines follow different conventions
- Word size
- Byte ordering
- Representations
- Boolean algebra is mathematical basis
- Basic form encodes "false" as 0, "true" as 1
- General form like bit-level operations in C
- Good for representing manipulating sets

