
Automatic Vulnerability Checking of IEEE 802.16
WiMAX Protocols through TLA+

Prasad Narayana, Ruiming Chen, Yao Zhao, Yan Chen, Zhi (Judy) Fu†, and Hai Zhou
Northwestern University, Evanston IL, USA
†Motorola Labs, Schaumburg IL, USA

Abstract— Vulnerability analysis is indispensably the first step
towards securing a network protocol, but currently remains
mostly a best effort manual process with no completeness guaran-
tee. Formal methods are proposed for vulnerability analysis and
most existing work focus on security properties such as perfect
forwarding secrecy and correctness of authentication. However,
it remains unclear how to apply these methods to analyze more
subtle vulnerabilities such as denial-of-service (DoS) attacks. To
address this challenge, in this paper, we propose use of TLA+to
automatically check DoS vulnerability of network protocols with
completeness guarantee. In particular, we develop new schemes
to avoid state space explosion in property checking and to model
attackers’ capabilities for finding realistic attacks. As a case
study, we successfully identify threats to IEEE 802.16 air interface
protocols.

1. INTRODUCTION

Security of network protocols is critical in ensuring avail-
ability and provisioning of network services to customers.
Exploiting and attacking a vulnerable network protocol can
cause devastating effects to networks and service providers.
For example, a simple black hole attack to a routing protocol
caused much of the Internet to halt for 20 minutes to more
than two hours in April 1997. Fully aware of the importance
of network protocol security, for years, industry and research
community have conducted vulnerability analysis as an indis-
pensable first step towards securing a network protocol.

Currently, vulnerability analysis of network protocols isa
manual and lengthy process, mostly based on human heuristic
and reasoning. In IETF, it is now required to include a “Se-
curity Consideration” section in every network protocol draft
or RFC containing heuristic threat analysis and recommended
security solutions. Manual threat analysis, which may or may
not involve security experts, represents human best effortthat,
which “hopefully” can uncover major potential attacks. There
are no rigorous processes or evaluation criteria to ensure
completeness or thoroughness of the manual threat analysis.

However, in many cases it is indeed difficult for the human
mind to thoroughly analyze potential threats of a protocol.
Nowadays, protocols are increasingly complex and a pro-
tocol standard can be hundreds or even a thousand pages
long (for some wireless standards). Providing mechanisms
for interactions of different components, a network protocol
can be intrinsically a complex and concurrent system. In
the vulnerability analysis, we need to further consider the
concurrent interaction of an attacker. Checking a concurrent
system works correctly is an extremely difficult task, let alone
the robustness of a concurrent system under the attacks of an
adversary. As observed by Owicki and Lamport [1], “There

is rather a large body of sad experiences to indicate that
a concurrent program can withstand very careful scrutiny
without revealing its errors. The only way we can be sure that
a concurrent program does what we think it does is to prove
rigorously that it does it.” In other words, formal methods
are essential for establishing the security and robustnessof a
network protocol.

It is highly desirable to have a formal method to auto-
matically check vulnerabilities of any general protocol with
completeness and correctness guarantees. Previous vulnera-
bility checking by formal methods mainly focus on security
protocols and security properties such as perfect forwarding
secrecy and correctness of authentication, using various lan-
guages and frameworks. For example, Lowe [2] used CSP and
FDR, Shmatikov and Stern [3] used Murφ, and Corinet al. [4]
used symbolic traces and PS-LTL. However, non-security
network protocols are mostly ignored. More importantly, it
remains unclear how to apply these methods to analyze more
subtle vulnerabilities such as the denial-of-service (DoS). For
example, in the latest related work [4], they admit that they
can only model some very primitive DoS attacks. A few
other formal analysis on DoS attacks [5], [6] mostly focus on
resource exhaustion attacks and ignore protocol malfunction
attacks where attackers cause protocol execution into a wrong
state so as to prevent users from accessing certain resources.

Thus, in this paper, we propose to use TLA+ [7] as the
formal framework for checking the vulnerability of network
protocols. In the TLA+ language, we specify a network
protocol, as well as an attack model and the security properties
to be checked. Then TLC will be run to search the entire
protocol state space and output any possible attacks it can
find. This can ensure completeness of our analysis. This
can identify not only attacks, but also faulty situations. By
using this process iteratively, TLA/TLC is also very helpful in
protocol design and enhancement as follows. Once a faulty or
vulnerable design is identified, a fix or modification will be
programmed into TLA and TLC will be rerun to verify if the
problem is really fixed.

The reasons behind of our selection of TLA+ is as follows.
First, TLA+ is a language based on normal mathematics, not
on any specific programming language. It gives us the advan-
tage of specifying the protocol at the appropriate abstraction
level. We can easily focus on the details that is relevant
and abstract away the irrelevant parts. Second, TLA+ has a
uniform mathematical language to specify both a system and
its properties. There is no need to establish the semantics for
a system. Finally, TLA+ has tools that support the analysis

and checking of the specifications. The most important one is
the model checker TLC, which will be used in our automatic
vulnerability checking.

There are several challenges for applying TLA+ to auto-
matically check for network protocol vulnerabilities.

• How to avoid state space explosion in the protocol
specification and property checking?

• How to model attacker capabilities to find realistic at-
tacks?

To the best of our knowledge, we are thefirst to apply
TLA+ to examine the general DoS vulnerabilities of network
protocols. To address the aforementioned challenges, we make
the following contributions.

• We propose several techniques to reduce the size of
state space. When specifying protocol, we (1) combine
similar states, (2) replace random variables with constants
with some additional properties to simulate the effects of
randomness, and (3) use symmetric principals to reduce
the extra states caused by nondeterminacy of protocols.
When modeling attackers, we add more constraints to the
attackers to exclude uninteresting attacks.

• We propose dynamic modification of attacker model
which will lead to a complete robustness proof or a report
of a realistic attacks.

We apply our formal method to check potential vulnera-
bilities in the IEEE 802.16 standards [8]. The IEEE 802.16
technology (popularly called as WiMAX), with enormous
backing from the industry, is positioned to lead the wireless
broadband network space to build the high-speed Wireless
Metropolitan Area Networks (MAN). Security is crucial for
its functioning and growth, and many security problems asso-
ciated with WLAN IEEE 802.11 make it more than a necessity
to have careful threat analysis on 802.16. However, IEEE
802.16 standards have not been thoroughly scrutinized due
to fast evolution of the protocol and vastness of the standard
(close to a thousand pages).

We studied two key processes of the 802.16 standard - initial
ranging and authentication. Through automated analysis, we
found that one potential DoS scenario exists in initial ranging
process. The authentication process as given by PKMv2 is
invulnerable to any attack based on our attacker model. Note
that both conclusions are based on the assumptions that the
translation and abstraction process from the protocol specto
TLA is correct.

2. BACKGROUND AND RELATED WORK

2.1. TLA and TLC

TLA (the Temporal Logic of Actions) is a logic designed
by Lamport [9] for specifying and reasoning about concurrent
systems, and TLA+ [7] is a complete specification language
based on it.

TLA is a program logic that expresses both programs and
properties with a single language. TLA+ is based on nor-
mal mathematics with a simple extension to handle dynamic
state changes. All normal mathematics in a static world is
expressible in TLA+. It also employs primed variables such
as x ′ to represent the variables in the next state (relative
to the current state with unprimed variables). Without using

any programming language, TLA frees the specifications from
using a limited set of operations and constructs, and forcesthe
control flow to be explicitly stated. One obvious benefit is that
a programProg satisfying a propertyProp can be expressed as
a predicateProg ⇒ Prop. Furthermore, all important concepts
in programming can be expressed formally: nondeterminacy
is disjunction; program composition is conjunction, etc. More
importantly, the freedom from the restrictions of basic con-
structs in a specific programming language allows TLA to
enjoy a rich hierarchy of abstraction levels in mathematics. For
example, a large sequential program can always be specified
by one action in TLA.

TLA is a slightly extended version of the simplest form of
temporal logic [10]. Formulas can be built from elementary
formulas using only logical operators (¬,∨,∧, . . .) and the
one temporal operator2, which means “forever”. There are
two types of elementary formulas: ones of the form[A], where
A is anaction, andstate predicates. An action is a Boolean-
valued expression containing primed and unprimed variables,
such asx ′ = x + 1, and a state predicate only has unprimed
variables, such asx + y = 0. The canonical form of a TLA+
specification is

∃∃∃∃∃∃ y : Init ∧ 2[Next]〈x ,y 〉 ∧ Liveness (1)

wherex andy are tuples of variables,Init is the initial state
predicate,Next is an action, andLiveness is a conjunction
of fairness conditions on actions. This formula essentially
represents a dynamic system where there exist values for the
variablesy (possibly different values for different states in
the system) such thatInit holds in the initial state, every
successive pair of states satisfies relationNext or leavesx

andy unchanged (a stuttering step), andLiveness is satisfied.
TLC is a tool implemented by Y. Yuet al.to find the errors in

TLA+ specifications. TLC transforms the finite state machine
specified by TLA+ into a directed graph with the vertices rep-
resenting states, and the edges representing transitions.There
are two ways to use TLC: simulation and model checking.
The simulation mode builds the graph like the depth-first-
search and the maximal number of the depth is specified by
users, while the model-checking mode builds the graph like the
propagation of the wavefront. Thus, the model-checking mode
checks all the reachable states, while the simulation mode may
miss some reachable states because of the limit of the depth.

2.2. Related Work on Protocol Analysis with Formal Methods

In addition to the work mentioned in Section 1, C.-F
Yu et al. proposed a formal specification and verification
method for prevention of DoS in the absence of failures
and integrity violations [11]. Mahimkaret al. used game-
based formal methods to study availability-related security
properties [12]. Meadows’s classical work [5], [6] introduced
a cost-based framework for analysis of denial of service in
network protocols. In her framework, the success of an attack
depends on the cost of the attackers and the tolerance functions
of defenders, which provides a smooth tradeoff between these
factors and the amount of attacks. However, all these works
mainly target resource exhaustion DoS attacks. While this
stands for a large portion of traditional DoS attacks, there
also exist some protocol malfunction attacks as described

in Section 1. On the other hand, TLA+ has much richer
expressive power. It can detectboth of the exhaustive attacks
and malfunction attacks.

3. PROTOCOL VULNERABILITY CHECKING BY TLA+

3.1. General Flow

In TLA+, a network protocol, as any other concurrent
reactive system, can be specified as a state transition system:

Protocol
∆

= Init ∧ 2[Next]x ∧ Fair .

If a protocol is specified as a combination of multiple princi-
pals, such as a BS (Base Station) and some SSes (Subscriber
Stations), its TLA+ specification can be done accordingly as:

Protocol
∆

= BS ∧ (∀ i ∈ N : SS (i))

whereBS andSS (i) are specified as systems with their own
initial conditions and state transition actions. The communica-
tion between these components are done by shared variables.
However, if you want to also take the communication channels
and mechanisms into consideration, they can be modeled and
specified as other components that will be conjuncted with the
above spec.

The difference between vulnerability checking and correct-
ness verification is that in vulnerability checking we generally
assume that the protocol is correct in an ideal environment
but may have problems under attacks. In order to check for
vulnerability, we need to model hostile attackers. It can be
shown that given an appropriate capability, one attacker isat
least as powerful as a set of cooperating attackers. Therefore,
we need only to specify an attacker byAttacker in TLA+.
The issues and considerations for attacker specification will
be discussed in the next section.

We also need to formally state what are the requested
properties of the protocol. Usually, all the correctness prop-
erties (in the traditional correctness verification) should be
checked to show that the protocol is robust under attacks.
Security properties such as secrecy and authentication are
only meaningful when there is an attacker (they are trivial
true without it). Different from previous work focusing on
formal checking of security properties, the properties we focus
on in this paper are mainly correctness properties, especially
non-existence of DoS. More discussions will be provided in
Section 3.4.

Assume the requested property is specified in TLA+ as
Property, the robustness of protocol under attack is stated
as:

Protocol ∧ Attacker ⇒ Property.

The general flow of our approach is to first specify the
protocol, the attacker, and the property, and then to use TLC
(which is a model checker for TLA+) to automatically prove
the above formula. The benefit of such an approach is that the
checking is totally automatic and if there is any violation,a
trace will be produced by the TLC. Such a trace can be used to
either weaken the attacker (in the case where the attack trace
is unrealistic) or correct the protocol (in the case we find a
vulnerability).

Figure 1 shows the flow of our approach. In each case, the
following procedure was followed:

TLA+ Protocol
Specification

Attacker TLA+
Specification

TLC
Model

Checking

Stop

Find
vulnerability

No

Yes

Weak
attacker

Analyze
severity

Property TLA+
Specification

Fig. 1. TLA modeling process.

1) Convert the English language/flow-chart/finite state ma-
chine specification to TLA+ specification;

2) Model the attacker and specify it in TLA+;
3) Specify the properties we want to check;
4) Run TLC model-checker to check protocol vulnerability;
5) Analyze the violating trace to see whether the vulnera-

bility is realistic and document it if so;
6) Weaken attacker if vulnerability is not realistic and

repeat steps 2 through 5 until robustness is proved.

Next, we will discuss each step in detail.

3.2. Protocol Specification

The first phase of vulnerability analysis is identification
of critical parts of the standard and assessment of their
vulnerability levels. This is just to prepare for formal modeling
and verification phases and could be skipped altogether if the
target Standard is limited in scope and size. Once the target
parts are identified, the next step is to appropriately model
them based on their functionalities.

The process of converting a standard to TLA+ specification
can be either straightforward or quite involving based on the
format of the standard - a finite state machine gets easily
translated to a TLA+ behavior (which is a sequence of states,
where a state is an assignment of values to variables) whereas
a pure English language specification might have to be first
converted to a pseudo code or a flow-chart or a simple
sequence of states and transitions before it can be formally
specified using TLA+.

The first step of protocol specification is to identify princi-
pals or entities in the model. If it’s a communication process
being modeled, the communicating entities,e.g., clients and
servers, become principals. The behavior of each principal
can then be modularized using TLA+, with each module
comprising of a series of predicate formulae and next-state
relations. Each principal begins with an initial state and moves
through various states based on different sets of input triggers.
Triggers can be messages received, timeouts, exceptions etc.
The TLA+ specification would then be comprised of a set
of such modules with each having a series of states and
transitions.

The next step is to specify the flow of control between
principals. The simplest way is to follow a round robin
sequence, where each principal does its bit before passing
the control to the next one. More sophisticated specifications
would require complex flow control mechanisms involving
asynchronous interfaces. A note of caution: the more complex
the flow is, the harder it becomes to analyze output traces; also,
this can lead to significant expansion in state space. Hence,it
is worthwhile to explore ways to simplify control flow.

There are some significant challenges posed by this conver-
sion exercise as below.

Challenge: Vagueness in English specification and the cor-
rectness in its translation to TLA+.English, being a natural
language, cannot precisely and concisely specify system be-
haviors. Such specifications are often ambiguous. Furthermore,
the “correctness” of translation will always be questioned.

Solutions: With a natural language specification as a starting
point, there is no hope of a good solution: any translation
involves some interpretation and re-invention. Note that this
vagueness problem for natural language based specification
also exists for manual verification. If it is a newly developed
standard, it might prove worthwhile to approach the standards
committee to get answers. Consulting product implementation
teams might be beneficial at times. A better solution to this
problem is for a protocol to be designed and specified in a
formal language. In this aspect, we believe that TLA+ is a
good candidate of choice; there are many positive experiences
from both industry and academia [13], [14].

Challenge: State space explosion.This is one of the most
common issues faced during formal verification process. Too
many states and transitions coupled with the presence of
randomness in the system can cause the model-checking to
never stop or take an unreasonable amount of time and space
to complete.

Solutions: We propose several schemes to address this
problem. First, we combine similar states without loss of
functionality into one state, thereby reducing the number of
reachable states to minimum required.

Secondly, we replace some random variables with constants
with some additional properties to simulate the effects of ran-
domness to bring down the number of states in the state space
considerably. This scheme may not be generally applicable
to all random numbers in a protocol. But we believe it can
be used for most of them. For the parts of 802.16 protocols
studied in Section 4, we found all random numbers can be
replaced with constants plus some additional properties. For
example, nonce is widely used in the network security protocol
to avoid replay attack. If we model the nonces in a straight-
forward manner as random variables, we will have very large
or even infinite states. Our solution is to represent a nonce
as a set of constants that cannot be guessed by the attacker.
Such a change greatly reduces the state space. Another usage
of random number is to ensure the liveness of a key.

Thirdly, the nondeterminacy in the protocol also gives a
huge state space. For example, if a protocol has multiple
equivalent principalsA,B , etc., principal A taking an action
before B will generate a different state fromB taking the
action beforeA. In TLC, we define these principalssymmetric,
which will treat the different states as one common state.

While all these changes are effected to overcome state space
explosion, care should be taken the keep the overall behavior
of the system unchanged.

3.3. Attacker Model and Specification

The focus of our study was on the usage of over-the-
air communication channel used by the two communicating
entities - the BS and the SS and hence, we use the following
attacker capability modelsimilar to Dolev-Yao model [15] in
our analysis. Basically attackers can:

• Eavesdrop on and store messages.
• Replay old messages.
• Inject or spoof unprotected messages.
• Corrupt messages on the channel by causing collisions.
We also assume the ideal cryptography, which means un-

forgeable signatures, safe encryption and safe digest. For
example, SHA-1 message digest (used in 802.16) is collision
resistant and hence, cannot be calculated without the posses-
sion of the secret key. Also, it is a secure one-way function
and hence, attacks cannot reverse-engineer to get the key.

Here the challenge ishow to find realistic attacks under such
attacker model. Our solution is to start with an attacker model
that is very strong. When TLC model-checks the robustness
of the protocol under such an attacker, it may yield traces that
are unrealistic attacks. We then weaken the attacker model.As
an example, armed with the capability to corrupt messages on
the channel, the attacker can continuously corrupt a response
message from the BS. Since we are more interested in other
realistic attacks, we will put more restrictions on the attacker
behavior to weaken it.This dynamic modification of attacker
model will end up with a complete robustness proof or a report
of a realistic attack.

3.4. Property Specification in TLA+

Formally specifying the targeting property that we want the
protocol to satisfy is a critical and important issue. It will help
us to understand unambiguously what is the real requirement,
and it will enable us to mathematically prove that it is satisfied
by the protocol. Some traditional correctness properties are
easy to specify–simply because they have been studied for very
long time. For example, the absence of deadlock in a system
with the actionNext can be given by2ENABLED 〈Next 〉x .
However, it is not always easy to specify some properties. The
secrecy property may be specified as

Secrecy
∆

= 2(Sec 6∈ Attacker .Knowledge)

However, it does not exclude the situation where partial
information ofSec is learned by the attacker. The DoS attack
is such a subtle property that we are focusing on in this paper.

The attacker in DoS attacks occupies some/all resources
such that some/all normal parties cannot get the resources.
A generic TLA+ formula for the “non-existence of DoS”
property is as follows:

DoSProperty ,

∀msg ∈ Network : Party[msg.source].sentmsg = msg

which means that all the messages in the network should
be sent from normal parties. This is a very strong property:

the attacker cannot occupy any resource. In reality, even ifthe
attacker occupies some resources, the normal parties can still
get the service by several retries. A more reasonable property
is to directly check if normal parties can reach their objective
final state.

• If the final state is a fixed state, the property is:

DoSPropertyNew ,

3 � (∀ i ∈ PartySet : Party[i].state = ObjState)

• Sometimes, there is no such a fixed final state. Instead,
the parties can reach the objective state infinite times:

DoSPropertyNew ,

� 3(∀ i ∈ PartySet : Party[i].state = ObjState)

Another important issue here is that it is possible that normal
parties cannot reach the objective final state even without the
attacker. For example, if the signal is very weak, a cell phone
might not get the service. Since the TLC exhaustively searches
all the spaces, it eventually will find a trace to this kind of
state although the probability of occurrence of this trace may
be very low. So we always need to exclude this kind of trace
from the specification of normal parties.

3.5. Model Checking with TLC

When we have TLA+ specifications for the protocol, the
attacker, and the property, the model checker TLC can be used
to check that the protocol still satisfies the property even under
the attacker. Like any other model checker, TLC requests
that the system have finite states. Here the system includes
both the protocol and the attacker. Since many protocols are
naturally infinite-state, again, it is a big challenge to reduce the
state space to a small finite one. In addition to the schemes
in Section 3.2, we add more constraints to the attackers to
exclude uninteresting attacks. For instance, we restrict the
maximal number of messages that the attacker can corrupt.
The attack where the attacker continuously corrupts messages
can be easily detected in reality, so we ignore such scenarios.

4. CASE STUDIES

An SS, when powered up, has to perform certain initial-
ization activities to get it ready to carry user data (voice and
data) over the 802.16 communication link. These initialization
activities are listed below.

a) Scan for downlink channel and establish synchronization
with the BS

b) Obtain transmit parameters (from UCD message)
c) Perform ranging
d) Negotiate basic capabilities
e) Authorize SS and perform key exchange
f) Perform registration
g) Establish IP connectivity
h) Establish time of day
i) Transfer operational parameters
j) Set up connections
Based on the criticality of function and the probability

of vulnerability, initial ranging and authentication processes
were chosen for TLA modeling as discussed below. The

detailed protocol and property specifications of TLA for the
vulnerability checking are online at [16].

4.1. Initial Ranging

Initial ranging process is the first step in which an SS
communicates with a BS via message exchanges. In this
process, an SS acquires correct timing offset and power
adjustments such that the SS’s transmissions are aligned and
received within the appropriate reception thresholds. These
adjustments are critical to successful communication overthe
air-link between the BS and the SS located at reasonably long
distances from each other. Subsequent phases in the network
entry and initialization process, and eventually the ’actual’
data communication can happen only if the initial ranging
is successful. The request-response communication between
the SS and BS happens until the BS is satisfied with the
ranging parameters. If the SS is unable to satisfy the BS,
after a predetermined number of retries, the BS orders the SS
to move to another channel and initiate the ranging process
in that channel. Figure 2 shows the basic message exchange
during ranging process.

In the TLA model of the initial ranging process, we set the
correctness property as follows.

∃ i ∈ ContentionSlots : ∧ slot [i] 6= 〈 〉

∧ slot [i].type = “REQ”

⇒ slot [i].source.pendrequest = slot [i]

which means that there is at least one request in the allocated
slots with the corresponding SS having sent the same request,
which is our definition of “success of service”.

BS SS

UL - MAP

UL - MAP

RNG- RSP

R NG-R EQ

RNG- RSP

R NG-R EQ

Fig. 2. Initial ranging pro-
cess.

We also need to consider that the
attacker may affect the behavior of
the normal parties. We enforceSSs
to go to the “Done” state without
the attacker, so we can set another
correctness condition as follows:

23(SSstate = “Done”).

Without the enforcement,SSs may
go to the “Stop” state even without
the attacker. For example, the power
of the SSs is always too weak. So
without the enforcement, we cannot
tell if the “Stop” is caused by attack.

TLC model checking did find
some possible DoS attacks. For ex-
ample, The RNG-REQ is transmitted during the initial ranging
slot as advertised by the BS. Initial ranging slot is a contention-
based slot, which means every SS can put RNG-REQ message
in the same slot. Binary truncated exponent back-off algorithm
is designed to avoid possible collisions. By intentionallysend-
ing RNG-REQ frames in all the initial ranging slots, a rogue
SS can stop all new SSes connecting to the BS. We also notice
that in 802.16 OFDMA MAC layer, CDMA is introduced
to mitigate the chance of collision between legitimate users,
which makes this DoS attack harder.

On the other hand, TLC model checking exhaustively
searches all possible cases that lead SS to unexpected states,

and thus may generate some impractical attack possibilities.
For example, the other DoS attack found by TLC is to corrupt
all the RNG-RSP messages. But since the attacker cannot
predict when RNG-RSP message will be sent out by BS, this
kind of attack is not practical.

Finally, TLC finds no more vulnerabilities in this initial
ranging process. Note that since we assume that the attacker
can change the MAC layer, they can simply ignore the backoff
or retransmission and DoS attack the ranging requests. Thus
we did not model these parts in TLA+.

4.2. Authentication

In the authentication phase, both the SS and BS mutually
authenticate each other and exchange keys for use in data
encryption. This process is formulated as a key management
protocol called as PKM (Privacy Key Management) protocol.
Our focus was on the improved second version called PKMv2.

The working of PKMv2 is directed by two underlying
state machines running in the SS - the Authentication State
Machine, responsible for handling mutual authentication and
the TEK (Traffic Encryption Key) State Machine, responsible
for handling TEK exchanges and key refresh. PKMv2 provides
for two authentication procedures - RSA-based and EAP-based
authentication. Without the loss of generality, we chose the
RSA-based procedure for our model. Additionally, PKMv2
employs a SATEK-three-way-handshake for the BS and the
SS/MS (Mobile Station) to exchange the security capabilities
in general, and the actual TEK’s during handover.

BS SS/MS

Auth Response

SATEK Challenge

SATEK Response

Key Response

Au th Re q u e st

Au th ACK

SATEK Re q u e st

Ke y Re q u e st

Fig. 3. Overview of Authentica-
tion Process using PKMv2.

Figure 3 gives the high-
level view of PKMv2. The
PKMv2 works in three phases.
In the first phase, the SS and
the BS exchange signed mes-
sages containing their RSA cer-
tificates to mutually authen-
ticate each other. Once this
is successfully completed, they
perform the SATEK-three-way-
handshake procedure to ex-
change security capabilities. Fi-
nally, they exchange key re-
quest and response messages to
share Traffic Encryption Keys.
As each of the keys used by
them has a specific lifetime, the
above process repeats often.

The finite state machines were
converted to TLA+ specifica-
tion. The BS model was message-driven in that its actions
were mainly based on messages it received from the SS/MS
with minimal required state information about each SS (such
as Key expiry times, the next message it expects to receive
from the SS and so on). The model of the attacker mentioned
in the Section 3.3.

It is impossible for the attacker to occupy all the resources
since the attacker cannot inject its own message if the slot is
not empty. We specify that the BS does not send messages such
that the SSes go to the Silent state. Each authorization key has
a life time, so the SS needs to get authorized from time to time.

Thus, SSes should reach the “Authorized” state infinite times.
Therefore, we use the following as the correctness condition:

23(SSstate = “Authorized”). (2)

TLC encounters space explosion problem when checking
the complicate cases with this kind of liveness condition. In
addition to the techniques introduced in Section 3, we restrict
the SS can reach “Authorized” state at most a given number
of times.

With the above model of the attacker, the TLC model-
checking did not yield any suspicious trace. While we cannot
conclude that the PKMv2 is invulnerable to any attack, we
can safely claim that it is resistant to any attempt using our
attacker capability model.

5. CONCLUSION AND FUTURE WORK

Our existing work of specifying and validating ranging and
authentication part of IEEE 802.l6 standard represents our
modest first step towards our aspiration of automatic vulnera-
bility checking of any network protocols with completeness
and correctness guarantees. Our future work includes the
development of a rigorous process in protocol specification
using TLA+ language and modeling of inter-relationships
of processes/components. With these enhancements, we will
further check vulnerabilities in other parts of 802.16 standards
such as mobility support and handoff procedures.

REFERENCES

[1] S. Owicki and L. Lamport, “Proving liveness properties of concurrent
programs,”ACM TOPLAS, vol. 4, no. 3, pp. 455–495, July 1982.

[2] G. Lowe, “Breaking and fixing the Needham-Schroeder public-key pro-
tocol using CSP and FDR,” inInt’l Workshop on Tools and Algorithms
for the Construction and Analysis of Systems. Springer-Verlag, 1996.

[3] V. Shmatikov and U. Stern, “Efficient finite-state analysis for large
security protocols,” inIEEE Computer Security Foundations Workshop,
1998, p. 106115.

[4] R. Corin and A. Saptawijaya, “A logic for constraint-based security
protocol analysis,” inIEEE Symposium on Security and Privacy, 2006.

[5] C. Meadow, “A formal framework and evaluation method fornetwork
denial of service,” inIEEE Computer Security Foundations Workshop,
1999.

[6] ——, “A cost-based framework for analysis of denial of service in
networks,”Journal of Computer Security, vol. 9, no. 1-2, 2002.

[7] L. Lamport, Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley Publishing Com-
pany, 2002.

[8] “IEEE Std 802.16-2004: Standard for Local and Metropolitan Area Net-
works Part 16: Air Interface for Fixed Broadband Wireless Access Sys-
tems,” http://standards.ieee.org/getieee802/download/802.16-2004.pdf.

[9] L. Lamport, “The temporal logic of actions,”ACM TOPLAS, vol. 16,
no. 3, pp. 872–923, May 1994.

[10] A. Pnueli, “The temporal logic of programs,” inIEEE FOCS, 1977.
[11] C.-F. Yu and V. D. Gligor, “A formal specification and verification

method for the prevention of denial of service,” inIEEE Security and
Privacy Symposium, 1988.

[12] A. Mahimkar and V. Shmatikov, “Game-based analysis of denial-of-
service prevention protocols,” inIEEE Computer Security Foundations
Workshop, 2005.

[13] B. Batson and L. Lamport, “High-level specifications: Lessons from
industry,” in Formal Methods for Components and Objects, ser. Lecture
Notes in Computer Science, no. 2852, 2003, pp. 242–262.

[14] J. E. Johnson, D. E. Langworthy, L. Lamport, and F. H. Vogt, “Formal
specification of a web services protocol,” inInt’l Workshop on Web
Services and Formal Methods (WS-FM), Pisa, Italy, 2004, pp. 23–24.

[15] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Transactions on Information Theory, vol. 29, no. 2, 1983.

[16] “TLA Specification for Ranging and Authentication Process of IEEE
Std 802.16-2004,” http://list.cs.northwestern.edu/802.16/.

