

Scalable Deterministic Overlay Network Diagnosis

Yao Zhao, Yan Chen, David Bindel {yzhao,ychen}@cs.northwestern.edu, dbindel@eecs.berkeley.edu http://list.cs.northwestern.edu/

1. Motivation

- Internet measurement and diagnosis are important
- Hard to get these vital measures directly
- Solution: Do it by end user
- Difficulty: Internet is an underconstrained system

Z. Previous work insufficient

- Router based approaches [SOSP03]
 - Mostly ICMP based, ICMP rate limiting
 - Unscalable for simultaneous diagnosis
 - Cannot deterministically separate forward/backward path loss
- Statistical approaches [MINC, INFOCOM03]
 - Inference based on temporal correlation in a multicast tree
 - Have to compromise for unicast, then sensitive to cross traffic
 - Optimization based on assumptions: # of lossy links are small
 - Unscalable: iterative refinement slow to converge for large networks

$\mathbf{\mathcal{3}}$. Problem formulation

- Definition of Determinability
 - Identify the properties of links or link sequences with 100% accuracy when there is no measurement noise.
- Problem
 - Given an overlay of *N* end hosts and O(*N*²) paths, to what granularity can we deterministically diagnosis the network fault?

4. Our solution

- Minimal identifiable link sequence (MILS)
 - Identifiable
 - Consecutive
 - Indecomposable
- Linear algebraic approach to achieve
 - Determinability
 - Scalability
 - Fine-grained diagnosis
 - No router support needed

${\it 5.}$ Linear algebraic model

Path loss rate p, link loss rate l: $1 - p_1 = (1 - l_1)(1 - l_2)$

6. Examples of MILSes

Real links (solid) and all of the overlay paths MILS (dotted) traversing them

MILS in undirected graph

- An identifiable vector is in the row space of G
- Exhausted check if a link sequence a MILS
- $O(L^2)$ potential MILSes in a path of length L

ð. Another story for directed graph

- A MILS can't start from or end at any router
- No MILS shorter than a whole path exist
- For any interior routing node:

${f 9.}$ Good path algorithm

- Undirected graph
 - Topology only
- Directed graph
- E2E loss rate
- Link property constrains
- Internet feature: many good paths
- Assumption:
 - All the links in a good path are good links

10. Internet experiments

- Planetlab
- 135 end hosts
- Topology measured by Traceroute
 Avg path length is 14.7
- Path loss rate by active UDP probing
- 300 40-byte UDP packets per measured path in 90 sec
- Validation
 - Cross validation
 - IP spoofing based consistency check

Experiment result

End-to-end Path	18,090
Avg Path Length	14.7
Avg bad path length after	9.0
good path algorithm applied	(11.5)
# of MILSes	1009
Avg length of MILSes	3.0(4.3)
Avg diagnosis Granularity	2.7(4.0)

