
Cerebus: A Higher-Order Behavior-Based System
Ian Horswill, Northwestern University Computer Science Department
1890 Maple Avenue, Evanston IL, 60201, USA
ian@cs.northwestern.edu

To appear in AI Magazine.

Cerebus is an attempt to scale behavior-based robots directly to higher-level cognitive
tasks without adjoining a traditional planning system. Cerebus combines a set of
behavior-based sensory-motor systems with a marker-passing semantic network, a simple
parser, and an inference network, to form an integrated system that can both perform
tasks and answer questions about its own ability to perform those tasks. For the 2001
AAAI/IJCAI Robotics Exhibition, Cerebus’ demonstration task was to give a formal
technical talk on itself, complete with PowerPoint slides and interactive demos.

Cerebus is structured as a parallel network of logic gates and finite-state machines.
Inference rules in Cerebus are compiled into a feed-forward logic network. This gives
Cerebus’ knowledge-base circuit semantics: the inputs of the network monitor the truth-
values of premises as generated by the sensory systems and the outputs of the network
track the truth-values of conclusions in real-time as the premises change. In effect, the
entire rule base is rerun from scratch to deductive closure at sensory frame-rates.
Although this sounds inefficient, the Cerebus rule engine can run a base of 1000 Horn
rules with 10 conjuncts each, updating at 100Hz (100 complete reevaluations of the KB
per second), using less that 1% of the CPU. Using a generalization of deictic
representation called role passing, the network is able to implement a limited form of
quantified inference – a problem for previous behavior-based systems. Rules may be
quantified over the set of objects in short-term memory, provided they are restricted to
unary predicates (predicates of one argument).

Cerebus implements reflective knowledge – knowledge of its own structure and
capabilities – through two mechanisms: a marker-passing semantic network provides a
simple mechanism for long-term declarative memory, while role passing allows variables
within inference rules to be bound to behaviors and signals within the system. The
former allows the system to answer questions about its own capabilities, while the latter
allows it to answer questions about its current state and control processes.

Cerebus can follow simple textual instructions. When a human types a command like
“drive until the turn,” its simple parser, which is formed as a cascade of simple finite-
state machines, examines each individual word as it is typed, binding the appropriate
words to the appropriate roles. In this case, the parser binds the drive behavior to the
role activity and the turn? sensory signal to the role destination . When it
detects a stop (a pause or period), it triggers the handle-imperative behavior,
which implements the rules:

• If the signal bound to destination is false, activate the behavior bound to
activity .

• If destination is bound to a sensory signal and that signal is true,
deactivate activity and myself.

• If activity deactivates itself, also deactivate myself.

Since this behavior is parameterized by other behaviors, we call it a higher-order
behavior, in analogy to the higher-order procedures of functional programming
languages. Other examples are the explain behavior, which walks the subtree of the
semantic network that describes its argument behavior, to produce a natural language
explanation of the behavior, and the demo behavior, which both explains and runs the
behavior. Role passing and higher-order behaviors are easily implemented using parallel
networks of gates and finite-state machines, making them a natural choice for the kind of
distributed, parallel processing environments often found on mobile robots. They are
implemented in GRL, a functional programming language for behavior-based systems
that provides many of the amenities of LISP while statically compiling programs to a
network of parallel finite-state machines.

When Cerebus gives a talk, it uses a COM interface to open the specified PowerPoint
presentation, then reads the text of each bullet-point and keyword matches it to an
appropriate node in its semantic network. It uses a novel distributed representation of a
discourse stack to resolve ambiguities using only SIMD marker-passing operations.
Having determined the node to which the bullet point refers, it uses spreading activation
to mark the subtree rooted at the selected node as being relevant. It then improvises
banter about the topic by continually selecting and explaining the “highest priority”
relevant, unexplained, node. Priorities are computed off line using a topological sort so
that if topic A is required to understand topic B, A will always have higher priority.

By continually reselecting the highest priority relevant unexplained node using circuit
semantics, Cerebus can respond instantly to changes in relevance when, for example, an
unexpected contingency during a demonstration opens up an opportunity to explain a
feature. It also allows Cerebus to cleanly respond to and return from interruptions
without replanning. However, such topic shifts require the generation of transition cues
such as “but first …” or “getting back to …”. Cerebus detects these abrupt topic shifts
by tracking the current semantic net node, its parent node, and the previous node and
parent. By comparing these, Cerebus can determine whether it has moved locally up,
down, or laterally in the hierarchy, or whether it has made a non-local jump to an
unrelated node. It then generates the appropriate transition phrase.

Cerebus is far from fluent. It is not intended to demonstrate that behavior-based systems
should be the implementation technique of choice for natural language generation.
Instead, it shows that parallel, finite-state networks are much more powerful than
previously believed. Moreover, by implementing as much of a robot’s control program
as possible with these techniques, we get efficiency, easy parallelization, and flawless
synchronization of the knowledge base with the environment. And all for free.

