
36th International Conference on Acoustics, Speech and Signal Processing (ICASSP 2011) May 22-27, 2011, Prague, Czech Republic

DEGENERATE UNMIXING ESTIMATION TECHNIQUE
USING THE CONSTANT Q TRANSFORM

Zafar RAFII

Northwestern University
EECS Department
Evanston, IL, USA

zafarrafii@u.northwestern.edu

Bryan PARDO

Northwestern University
EECS Department
Evanston, IL, USA

pardo@northwestern.edu

ABSTRACT

The Degenerate Unmixing Estimation Technique (DUET) is
a Blind Source Separation (BSS) algorithm for stereo audio.
DUET depends on an amplitude-phase 2d histogram built
from the differences between the two channels, where peaks
in the histogram indicate sources in the mixture. If peaks
overlap, separation becomes unfeasible. This is often the
case for music mixtures. We propose to improve peak sepa-
ration by building histograms from time-frequency represen-
tations based on the Constant Q Transform (CQT) instead of
the Fourier Transform (FT). The CQT has a logarithmic fre-
quency resolution matching the geometrically spaced notes of
the Western music scale. We also adaptively resize histogram
bins and use Wiener filtering to improve peak resolving and
source reconstruction. Results on mixtures of harmonic mu-
sical instruments show improvement in separation, especially
at low frequencies and for closely spaced sources.

Index Terms— Blind Source Separation, Degenerate Un-
mixing Estimation Technique, Constant Q Transform

1. INTRODUCTION

Blind Source Separation (BSS) is the separation of sources
from mixtures without prior knowledge [1]. BSS finds uses
in many audio-oriented tasks [1], such as speech/speaker
recognition, vocalist/instrument identification, audio post-
production, etc. For example, Independent Component Anal-
ysis (ICA) is a well-known family of BSS techniques which
assumes that the sources are statistically independent [1].
However, ICA cannot be used when there are more sources
than mixtures, a case referred to as “degenerate” [2].

Assuming that the sources can be represented sparsely in
a given basis, sparse methods such as the Degenerate Unmix-
ing Estimation Technique (DUET) can separate an arbitrary
number of sources given a single stereo mixture [3]. DUET
builds a 2d histogram from the ratio of the time-frequency
representations between channels. Given a relatively ane-
choic mixture where time-frequency bins of different sources

do not overlap too much, the histogram forms one peak for
each source with peak location corresponding to the relative
amplitude and phase parameters for that source. The mixture
can then be partitioned by assigning each time-frequency bin
to the source with the closest mixing parameters [2].

If there are too many time-frequency bins overlapping be-
tween different sources, the histogram cannot resolve peaks.
This is often the case for music mixtures when using the
Short-Time Fourier Transform (STFT). We improve peak
separation by using a time-frequency representation based
on the Constant Q Transform (CQT). The CQT’s logarithmic
frequency resolution matches the geometrically spaced notes
of the Western music scale [4]. This leads to fewer overlap-
ping time-frequency bins between sources, especially in the
lower octaves. We couple this with adaptive bin resizing for
the histogram to further improve peak resolving and the use
of Wiener filtering to improve source reconstruction.

Section 2 presents a review of the DUET and CQT meth-
ods. The contributions to the original DUET algorithm are
presented in Section 3. Evaluation on mixtures of musical
notes and harmonic instruments is conducted in Section 4.
Finally, conclusion and perspectives are given in Section 5.

2. REVIEW

2.1. DUET

Given an anechoic stereo mixture recorded by two omni-
directional microphones, if a source k has a unique spatial
location then it has a unique amplitude ratio αk and phase
difference δk between channels. Provided that the sources
have sparse and disjoint time-frequency representations, the
mixture can be partitioned by assigning each time-frequency
bin to the source with the closest mixing parameters (αk, δk).

To estimate the mixing parameters for each source, DUET
computes for every time-frequency bin (τ, ω), the amplitude
ratio α(τ, ω) and phase difference δ(τ, ω) between the STFTs
of the stereo mixture. If many time-frequency bins share sim-
ilar values of α and δ, they are likely to come from the same
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source. The most common amplitude ratio and phase differ-
ence between channels are found by building a 2d histogram
H(α, δ) from α(τ, ω) and δ(τ, ω). Each peak in H(α, δ) in-
dicates a source with peak location corresponding to the es-
timated mixing parameters (αk, δk) for that source. Binary
time-frequency masks are then built to partition the STFTs of
the mixture by assigning each time-frequency bin to the esti-
mated (αk, δk) which is closest to the local mixing parameters
(α, δ) extracted for that bin. For more, see [5].

This method is particularly well suited to speech signals
since their STFTs are sparse enough not to overlap too much
when mixed, sufficiently for DUET to achieve good demix-
ing results [6]. However, when too many time-frequency bins
overlap between sources, peaks fuse in the 2d histogram so
that peak/source separation becomes unfeasible. This is gen-
erally the case for music mixtures, simply because the STFT
is not a time-frequency representation well adapted to music.

2.2. CQT

In modern Western music, the most common tuning system is
the chromatic equal-tempered scale, which divides the octave
into 12 logarithmically-spaced parts called semitones, with
two adjacent semitones separated by a constant ratio of 2
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Hz. This is in line with the human auditory system which
has a logarithmic frequency resolution [7]. Although highly
efficient, the FT has frequency components separated by a
constant difference. This forces a tradeoff: the Fourier Trans-
form (FT) cannot get the needed frequency resolution at lower
frequencies without significantly losing time resolution.

We need a transform with frequency components logarith-
mically spaced so that they match the notes of the twelve-tone
equal-tempered scale. To be able to resolve adjacent notes
played simultaneously, a quarter-tone spacing is needed (i.e.
24 frequency bins per octave). Unlike the FT, this transform
should have a constant ratio Q of center frequency to resolu-
tion, leading to a logarithmic frequency resolution.

The Constant Q Transform (CQT) has these properties
[4]. A fast implementation of the CQT exists, which makes
use of the Fast Fourier Transform (FFT) in conjunction with
a kernel, allowing the CQT to be as computationally efficient
as the FFT [8]. Being an efficient transform more adapted
to music mixtures, we therefore decided to use the CQT in
combination with DUET. Note that, although the CQT has no
inverse unlike the FT, it is needed only to build the 2d his-
togram. After estimation of the mixing parameters, synthesis
is performed using the standard invertible STFT.

3. CONTRIBUTIONS

3.1. Contribution 1: Short-Time constant Q Transform

Similar to the way the STFT is built, we compute the Short-
Time constant Q Transform (STQT) from the CQT of local
segments using a sliding window of a fixed step size.

Fig. 1. 2d histograms of the mixture of the 3 piano notes A2,
B[2 & B2, using DUET with STFT (left) and STQT (right).

Figure 1 shows the 2d histograms of the mixture of the 3
piano notes A2, B[2 & B2, built using DUET with a STFT
and default parameters detailed in [5] on the left, and DUET
with STQT on the right. While the left histogram shows one
gross peak because of the poor resolution of the FT at low
octaves, the right histogram shows 3 clear peaks thanks to the
log frequency resolution of the CQT, which can resolve peaks
for adjacent pitches equally well in low and high octaves.

3.2. Contribution 2: Adaptive Boundaries

In [5], the 2d histogram is built using predefined boundaries
and fixed-size bins. We propose the use of Adaptive Bound-
aries (AB) to automatically improve peak resolution when
sources get too close to each other. To do so, we adjust the
ranges of the α and δ values by analyzing their distributions
and discarding outliers, on a case-by-case basis.

Fig. 2. 2d histograms of the mixture of the 3 piano notes A6,
B[6 & B6, using DUET with STFT + fixed boundaries (left)
and DUET with STFT + AB (right)

Figure 2 shows the 2d histograms of the mixture of the
3 piano notes A6, B[6 & B6, built using DUET with STFT
+ fixed boundaries on the left, and DUET with STFT + AB
on the right. This time, the mixture has been synthesized by
spacing the 3 sources closer to each other, so that the reso-
lution needs to be refined. While the left histogram has one
gross peak because of overly large boundaries/bins, the right
histogram shows 3 clear peaks thanks to a finer resolution.

3.3. Contribution 3: Wiener Filtering

In [5], sources are reconstructed directly after partitioning the
STFTs of the mixture, with the DC component discarded.
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This will create masking artifacts, which can be mostly elimi-
nated by adding back a little bit of the mixture to the demix, as
suggested in [5]. However, that method creates interferences
from unwanted sources in each estimated source. We propose
to reconstruct the estimated sources by using a method based
on a generalization of the Wiener Filtering (WF) for source
estimation [9]. The method takes the magnitude spectrogram
of the estimated sources and reconstruct the DC component,
the symmetric part and the phase using the original STFTs
of the mixture, giving a perceptually better and conservative
separation, and reducing the interferences.

4. EVALUATION

4.1. Evaluation 1: Mixtures of Piano Notes

To evaluate the contributions proposed for DUET, we created
two sets of mixtures of piano notes. The source recordings
were from a SoundFont file provided by SONiVOX entitled
“SB Stereo Piano V3.sf2”. We used 85 half notes of 2 sec
length from a grand piano sampled at 44,100 Hz, with pitches
ranging from A0 (= 27.50 Hz) to A7 (= 3520 Hz).

Each mixture in the first set is the combination of 2 simul-
taneous notes. The 1st pitch is always Ai and the 2nd pitch is
one of the 12 other higher pitches within the octave above it.
The 12 intervals were generated for octave number i ranging
from 0 to 6, for a total of 84 mixtures. Each mixture in the
second set is the combination of 3 simultaneous notes. The
1st pitch is always Ai, and the 2nd and 3rd pitches are such
as the number of semitones between each pitch and the 1st

pitch is one of the following: (0,1,2), (0,2,4), (0,3,6), (0,4,8),
(0,5,10), (0,6,12). Those 6 intervals were generated for octave
number i ranging from 0 to 6, for a total of 42 mixtures.

Each combination of notes was mixed 5 times, once each
with 5 different mixing angles between sources. The sources
were placed on a circle of unit radius whose center corre-
sponds to the location of two closely spaced microphones.
The mixing angles were (π − π

12j,
π
12j) for the first set and

(π− π
12j,

π
2 ,

π
12j) for the second set, with j ranging from 1 to

5. This resulted in a total of 420 different mixtures of 2 piano
notes and 210 different mixtures of 3 piano notes.

We evaluated the effectiveness of our contributions using
DUET with default parameters [5] as our benchmark. The 2d
histogram had 35 bins for α and 50 bins for δ, and weights
p = 1 and q = 0, as suggested in [5]. Since there is no single
appropriate technique for automatic peak location [5], we im-
plemented a local maximum detector using a sliding window
of size 3 by 3. We forced the peak enumeration to the highest
local maxima, knowing a priori the number of sources.

To evaluate peak separability in the 2d histogram, we
measured the mean Euclidean distance between ground truth
peak locations of the original sources and corresponding es-
timates. To evaluate source reconstruction, we measured the
mean Source to Distortion Ratio (SDR), Sources to Inter-

ferences Ratio (SIR) and Sources to Artifacts Ratio (SAR)
between original sources and corresponding estimates [10].

As expected, results showed that the STQT improves peak
and source separation, especially for octave numbers 0 to 2
(≤ 200 Hz): Figure 3 shows the boxplots of the Euclidean
distance as a function of the octave number. The AB improve
peak resolving, so source separation, especially for small
mixing angles (≤ π

6 rad): Figure 4 shows the SDR as a func-
tion of the angle between sources. The WF improves source
reconstruction, reducing distortion and interferences (not
shown here). A multivariate analysis of variance (MANOVA)
showed that the results between the standard DUET and the
enhanced DUET are statistically different.

Fig. 3. Boxplots of the Euclidean distance between ground
truth and estimated peak locations as a function of the octave
number using the standard DUET and DUET with STQT +
AB. Lower values are better. Outliers are not shown.

Fig. 4. Boxplots of the SDR as a function of the mixing angle
using the standard DUET and DUET with STQT + AB + WF.
Higher values are better. Outliers are not shown.
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4.2. Evaluation 2: Mixtures of Harmonic Instruments

We then evaluated the contributions proposed for DUET on
different sets of mixtures of harmonic instruments. We used
7 individual tracks of a classical recording of 14 sec length
sampled at 44,100 Hz, downloaded from ccMixter.org, a com-
munity music site providing samples licensed under Creative
Commons. The sources consist of synthesized instruments
including soft strings, horns, bass, cello, violin and flute.

We used those 7 sources to create 5 sets of
(
7
i

)
mixtures of

all the possible combinations of i sources, with i ranging from
2 to 6, for a total of 119 mixtures of harmonic instruments.
Each mixture was synthesized once assuming the i sources on
a circle of unit radius whose center corresponds to the location
of two closely spaced microphones, with the mixing angles
being jπ

i+1 , with j ranging from 1 to i.
As in Section 4.1, we evaluated the different contributions

using DUET with default parameters as our benchmark. This
time, the 2d histogram had 70 bins for α and 100 for δ, and
weights p = 0.5 and q = 0 [5]. We used a local maximum
detector with peak enumeration forced to the i highest local
maxima. We measured peak separability using the Euclidean
distance and source reconstruction using SDR, SIR and SAR.

Results confirmed that DUET with STQT + AB + WF
improves peak separation, peak resolving and source recon-
struction, for up to 6 sources: Figure 5 shows the Euclidean
distance and the SDR as a function of the number of sources.
MANOVA showed that the results between the standard
DUET and the enhanced DUET are statistically different.

Fig. 5. Boxplots of the Euclidean distance and SDR as a func-
tion of the number of sources using the standard DUET and
DUET with STQT + AB + WF. Outliers are not shown.

5. CONCLUSION

We proposed contributions to improve DUET. Experiments
on mixtures of piano notes showed that time-frequency rep-

resentations based on the CQT improve peak/source separa-
tion, especially up to low frequencies (≤ 200 Hz), adaptive
boundaries improves peak resolving, especially when sources
are closely spaced (≤ π

6 rad), and Wiener filtering improves
source reconstruction. Experiments on mixtures of harmonic
instruments confirmed those improvements, up to 6 sources.
Additional experiments showed that CQT gives equally well
results on mixtures of female and male speech.
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