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Combining Rhythm-Based and Pitch-Based Methods
for Background and Melody Separation

Zafar Rafii, Student Member, IEEE, Zhiyao Duan, Member, IEEE, and Bryan Pardo, Member, IEEE

Abstract—Musical works are often composed of two character-
istic components: the background (typically the musical accom-
paniment), which generally exhibits a strong rhythmic structure
with distinctive repeating time elements, and the melody (typically
the singing voice or a solo instrument), which generally exhibits
a strong harmonic structure with a distinctive predominant pitch
contour. Drawing from findings in cognitive psychology, we pro-
pose to investigate the simple combination of two dedicated ap-
proaches for separating those two components: a rhythm-based
method that focuses on extracting the background via a rhythmic
mask derived from identifying the repeating time elements in the
mixture and a pitch-based method that focuses on extracting the
melody via a harmonic mask derived from identifying the predom-
inant pitch contour in the mixture. Evaluation on a data set of song
clips showed that combining such two contrasting yet complemen-
tary methods can help to improve separation performance—from
the point of view of both components—compared with using only
one of those methods, and also compared with two other state-of-
the-art approaches.

Index Terms—Background, melody, pitch, rhythm, separation.

I. INTRODUCTION

T HE ability to separate a musical mixture into its back-
ground component (typically the musical accompani-

ment) and its melody component (typically the singing voice
or a solo instrument) can be useful for many applications, e.g.,
karaoke gaming (need the background), query-by-humming
(need the melody), or audio remixing (need both components).
Existing methods for background and melody separation focus
on modeling either the background (e.g., by learning a model
from the non-vocal segments) or the melody (e.g., by iden-
tifying the predominant pitch contour), or both components
concurrently (e.g., via joint or hybrid methods).

A. Melody-Focused Methods

Panning-based methods focus on modeling the melody by ex-
ploiting the inter-channel information in the mixture, assuming
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a two-channel mixture with a center-panned melody. Sofinanos
et al. used a framework based on Independent Component Anal-
ysis (ICA) [1]. Kim et al. used a framework based on Gaussian
Mixture Models (GMM) with inter-channel level differences
and inter-channel phase differences [2].
Pitch-based methods focus on modeling the melody by iden-

tifying the predominant pitch contour in the mixture and infer-
ring the harmonic structure of the melody. Meron et al. used
prior pitch information to separate singing voice and piano ac-
companiment [3]. Zhang et al. used a framework based on a
monophonic pitch detection algorithm [4]. Li et al. used a pre-
dominant pitch detection algorithm [5]. Hsu et al. used that same
framework, additionally separating the unvoiced singing voice
[6]. Hsu et al. then used a framework where singing pitch esti-
mation and singing voice separation are performed jointly and
iteratively [7]. Fujihara et al. also used a predominant pitch de-
tection algorithm [8]. Cano et al. too [9], then additionally using
prior information and additivity constraint [10]. Ryynänen et al.
used a multi-pitch detection algorithm [11]. Lagrange et al. used
a framework based on a graph partition problem [12].
Harmonic/percussive separation-based methods focus on

modeling the melody by using a harmonic/percussive separa-
tion method on the mixture at different frequency resolutions,
assuming the melody (typically the singing voice) as a har-
monic component at low frequency resolution and a percussive
component at high frequency resolution. FitzGerald et al. used
a framework based on multiple median filters [13]. Tachibana et
al. used a framework based on Maximum A Posteriori (MAP)
estimation [14].

B. Background-Focused Methods

Adaptation-based methods focus on modeling the back-
ground by learning a model from the non-vocal segments in the
mixture, which is then used to estimate the melody. Ozerov et
al. used a framework based on GMM with Maximum Likeli-
hood Estimation (MLE) [15] and MAP estimation [16]. Raj et
al. used a framework based on Probabilistic Latent Component
Analysis (PLCA) [17]. Han et al. also used PLCA [18].
Repetition or rhythm-based methods focus on modeling the

background by identifying and extracting the repeating patterns
in the mixture, assuming the background as a repeating compo-
nent and the melody as a non-repeating component. Rafii et al.
used a beat spectrum to first identify the periodically repeating
patterns and a median filter to then extract the repeating back-
ground [19]. Liutkus et al. used a beat spectrogram to further
identify the varying-periodically repeating patterns [20]. Rafii
et al. then used a similarity matrix to also identify the non-peri-
odically repeating patterns [21]. FitzGerald instead used a dis-
tance matrix [22].
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C. Joint Methods

Non-negative Matrix Factorization (NMF)-based methods
model both components concurrently by decomposing the
mixture into non-negative elements and clustering them into
background and melody. Vembu et al. used NMF (and also
ICA) with trained classifiers and different features [23]. Chan-
rungutai et al. used NMF with rhythmic and continuous cues
[24]. Zhu et al. used multiple NMFs at different frequency
resolutions with spectral and temporal discontinuity cues [25].
Durrieu et al. used a framework based on GMM [26] and
an Instantaneous Mixture Model (IMM) [27] with an uncon-
strained NMF model for the background and a source-filter
model for the melody (typically the singing voice). Joder et
al. used the same IMM framework, additionally exploiting
an aligned musical score [28]. Marxer et al. used the same
IMM framework, with a Tikhonov regularization instead of
NMF [29]. Bosch et al. used that same framework, additionally
exploiting a misaligned musical score [30]. Janer and Marxer
used that same framework, additionally separating the unvoiced
fricatives [31] and the voice breathiness [32].
Robust Principal Component Analysis (RPCA)-based

methods model both components concurrently by decomposing
the mixture into a low-rank component and a sparse compo-
nent, assuming the background as low-rank and the melody as
sparse. Huang et al. used a framework based on RPCA [33].
Sprechmann et al. also used RPCA, introducing a non-negative
variant of RPCA and proposing two efficient feed-forward
architectures [34]. Yang also used RPCA, including the incor-
poration of harmonicity priors and a back-end drum removal
procedure [35]. Yang then used RPCA, computing the low-rank
representations of both the background and the melody [36].
Papadopoulos et al. also used RPCA, incorporating music
content information to guide the decomposition [37].
Very recently, Liutkus et al. used a framework based on local

regression with proximity kernels, assuming that a component
can be modeled through its regularities, e.g., periodicity for the
background and smoothness for the melody [38].

D. Hybrid Methods

Hybrid methods model both components concurrently by
combining different methods. Cobos et al. used a panning-based
method and a pitch-based method [39]. Virtanen et al. used a
pitch-based method to first identify the vocal segments of the
melody and an adaptation-based method with NMF to then
learn a model from the non-vocal segments for the background
[40]. Wang et al. used a pitch-based method and an NMF-based
method with a source-filter model [41]. FitzGerald used a
repetition-based method to first estimate the background and a
panning-based method to then refine background and melody
[42]. Rafii et al. used an NMF-based method to first learn a
model for the melody and a repetition-based method to then
refine the background [43].

E. Motivating Psychological Research

Perceptual psychologists have been studying the ability of hu-
mans to attend to and process meaningful elements in the audi-
tory scene for decades. In this literature, following the seminal
work of Bregman [44], separation of the audio scene into mean-
ingful elements is referred to as streaming. When humans focus
attention on some part of the auditory scene they are performing

streaming, as focus on one element necessarily requires parsing
the scene into parts corresponding to that element and parts that
do not correspond to it.
Studies have shown humans are able to easily focus on the

background or the melody when listening to musical mixtures,
by allocating their attention to either the rhythmic structure or
the pitch structure [45], [46]. Recent work [47] in the Proceed-
ings of the National Academy of Science has also documented
human ability to isolate sounds based on regular repetition and
treat these as unique perceptual units, and has even proposed
that the human system could use a mechanism similar to that
used in rhythm-based source separation methods.
Perceptual studies have shown that rhythm and melody are

two essential dimensions inmusic processing, with the rhythmic
dimension arising from temporal variations and repetitions and
the melodic dimension arising from pitch variations [45], [48],
[49]. Most studies have found that rhythm and melody are not
treated jointly, but rather processed separately and then later in-
tegrated to produce a unified experience of the musical mixture
[45], [46], [48]–[54]. In particular, some of those studies have
suggested that rhythm and melody are processed by two sepa-
rate subsystems and a simple additive model is sufficient to ac-
count for their independent contributions [46], [49]–[52]. These
findings are supported by case studies of patients suffering from
amusia, where some were found impaired in their processing of
melody with preserved processing of rhythm (amelodia) [48],
[50]–[52] and others were found impaired in their processing of
rhythm with preserved processing of melody (arrhythmia) [50],
[51], [53], [54].

F. Motivation and Rationale for our Approach

We take inspiration from the psychological literature (see
Section I-E) to guide potential directions for our system devel-
opment. We do not wish to perform cognitive modeling, where
the goal is to exactly duplicate the mechanisms by which hu-
mans parse the auditory scene. Instead, we draw broad direc-
tions from this body of knowledge to guide our system design.
Since multiple studies indicate that humans use rhythm and

pitch as independent elements that are then integrated to seg-
ment the audio scene into streams, we propose to use a simple
combination of a rhythm-based and a pitch-based method to
separate foreground from background. Since there is no broad
agreement in the psychological literature about how rhythm and
pitch based processing may be combined, we compare the two
simplest approaches (serial and parallel combinations). While
many other combinations are possible, exploring all possible
combination methods would lengthen the work excessively and
overwhelm the reader with experimental variations.
We are not performing cognitive modeling, therefore we

favor the simplicity of using standard signal representations
used in audio source separation (e.g., magnitude spectrograms),
rather than a representation based on a faithful model of the ear
[55] or auditory cortex [56].
This choice of a standard signal representation lets us use

a standard approach to creating system output from both the
rhythm and the pitch-based systems: time-frequency masking.
Since both systems output time-frequency masks, this makes
for a simple, modular approach to combining systems by com-
bining masks. It also lets other researchers easily duplicate our
combination work as it is simple to understand and replicate.
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Our choices of systems for rhythm and pitch-based source
separation approaches were pragmatic. We selected simple sys-
tems that have been published within the last few years, that
showed good results in comparative studies, and to which we
have access to the source code so we could ensure each system
outputs a time-frequency mask in a compatible format. Since
the focus of the study is to explore how a simple combina-
tion of simple rhythm and a pitch-based methods may affect
source separation, we did not compare multiple pitch or repe-
tition-based separation systems, although we are aware many
excellent pitch-based and rhythm-based systems exist (see Sec-
tions Section I-A and Section I-B for an overview).
In testing our systems we focus on two questions. First: Is it

better to combine rhythm and pitch-based methods for source
separation in series or in parallel? How does the performance
of a simple combination of rhythm and pitch separation com-
pare to existing state-of-the-art systems that combine multiple
approaches to source separation. Therefore, we separate our ex-
perimental into these two sections. Our choice of data sets and
error measures were made to favor broadly-used data and error
measures.
The rest of the article is organized as follows. In Section II, we

describe the rhythm-based and the pitch-based method, and pro-
pose a parallel and a series combination of those two methods.
In Section III, we analyze the parallel and the series combina-
tion on a data set of 1,000 song clips using different weighting
strategies. In Section IV, we compare the rhythm-based and
pitch-based methods, and the best of the parallel and series com-
binations with each other, and against two other state-of-the-art
methods. In Section V, we conclude this article.

II. METHODS

In this section, we describe the rhythm-based and the pitch-
based method, and propose a parallel and a series combination
of those two methods.

A. Rhythm-based Method

Studies in cognitive psychology (see Section I-E for the full
overview) have shown that humans are able to focus on the
background in musical mixtures by allocating their attention to
the rhythmic structure that arises from the temporal variations
[45], [46], [48], [49]. Drawing from these findings, we propose
to extract the background by using a rhythm-based method that
derives a rhythmic mask from identifying the repeating time el-
ements in the mixture.
Assuming that the background is the predominant repeating

component in the mixture, repetition-based methods typically
first identify the repeating time elements by using a beat spec-
trum/spectrogram or a similarity/distance matrix, and then re-
move the non-repeating time elements by using a median filter
at repetition rate [19]–[22] (see Section I-B).
In this work, we chose a repetition-based method that is re-

ferred to as REPET-SIM. REPET-SIM is a generalization of
the REpeating Pattern Extraction Technique (REPET) [19] that
uses a similarity matrix to identify the repeating elements of the
background music [21].
The method can be summarized as follows. First, it identifies

the repeating elements by computing a similarity matrix from
the magnitude spectrogram of the mixture and locating the time

frames that are the most similar to one another. Then, it derives a
repeating model by median filtering the time frames of the mag-
nitude spectrogram at their repetition rate. Finally, it extracts the
repeating structure by refining the repeating model and deriving
a rhythmic mask. For more details about the method, the reader
is referred to [21].

B. Pitch-Based Method

Studies in cognitive psychology (see Section I-E for the
full overview) have also shown that humans can focus on the
melody in musical mixtures by attending to the pitch structure
of the audio [45], [46], [48], [49]. Drawing from these findings,
we chose to extract the melody by using a pitch-based method
that derives a harmonic mask from identifying the predominant
pitch contour in the mixture.
Assuming that the melody is the predominant harmonic com-

ponent in the mixture, pitch-based methods typically first iden-
tify the predominant pitch contour by using a pitch detection
algorithm, and then infer the corresponding harmonics by com-
puting the integer multiples of the predominant pitch contour
[3]–[12] (see Section I-A).
In this work, we chose a pitch-based method that will be re-

ferred to as Pitch. Pitch uses a multi-pitch estimation approach
[57] to identify the pitch contour of the singing voice. Although
originally proposed for multi-pitch estimation of general har-
monic mixtures, the algorithm has been systematically evalu-
ated for predominant pitch estimation and shown to work well
compared with other melody extraction methods [18]. In this
work, we modified the method in [57] to better suit it for melody
extraction. While other excellent approaches to melody extrac-
tion exist (e.g., Hsu et al. [7]), the focus of this work is on com-
bining a simple and clear pitch-based method with a simple
and clear rhythm-based method, rather than a comparison of
pitch-based methods for source separation. Therefore, we se-
lected a known-good method for which we have a deep under-
standing of the inner workings and access to the source code.
The method can be summarized as follows. First, it identifies

peaks in every spectrum of the magnitude spectrogram of the
mixture using the method in [58], also defining non-peak re-
gions, and estimates the predominant pitch using the method in
[57], from the peaks and non-peak regions. Then, it forms pitch
contours by connecting pitches that are close in time (in adja-
cent frames) and frequency (difference less than 0.3 semitone).
Small time gaps (less than 100 milliseconds) between two suc-
cessive pitch contours are filled with their average pitch value
so that the two contours are merged into a longer one, if their
pitch difference is small (less than 0.3 semitone). Shorter pitch
contours (less than 100 milliseconds) are removed. This is to
remove some musical noise caused by pitch detection errors in
individual frames [59].
Since some estimated pitches may actually correspond to

the accompaniment instead of the melody, we used a simple
method to discriminate pitch contours of melody and accom-
paniment, assuming that melody pitches vary more (due to
vibratos) than accompaniment pitches [60]. More specifically,
we calculated the pitch variance for each pitch contour, and
removed the ones whose variance is less than 0.05 square
semitones. The remaining pitch contours are supposed to be
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Fig. 1. Diagram of the parallel combination (see Section II-C).

those of the melody. Finally, we computed a harmonic mask
to extract the melody. All the thresholds in this algorithm are
set through observation of several songs. No optimization was
performed to tune them.

C. Parallel Combination

Studies in cognitive psychology have further shown that hu-
mans process rhythm and melody separately to then later inte-
grate them in order to produce a unified experience of the mu-
sical mixture [45], [46], [48]–[54]. Drawing from these find-
ings, we propose to separate the background and the melody by
using a parallel combination of the rhythm-based method and
the pitch-based method.
The method can be summarized as follows. Given a mixture

spectrogram , REPET-SIM derives a background mask
—and the complementary melody mask ,

and Pitch derives a melody mask )—and the com-
plementary background mask , concurrently.
The final background mask and the final melody
mask ) are then derived by weighting and Wiener fil-
tering (WF) the masks , , , and , appropriately so
that (see Fig. 1). Here, 1 represents a matrix of all
ones.
We use two weight parameters, and ), when

combining the background masks, and , and the melody
masks, and , obtained from REPET-SIM and Pitch, re-
spectively (see Equation (1)). We will analyze the separation
performance using different values of and for deriving
the final background mask and the final melody mask (see
Section III-D). Here, and represent the element-wise
multiplication and the element-wise division, respectively, be-
tween the matrices and .

-

and

(1)

Since REPET-SIM focuses on extracting the background and
Pitch focuses on extracting the melody, we hypothesize that
the best separation performance will be obtained when the final
background mask is derived by mostly using the background
mask from REPET-SIM (i.e., ) and the final melody
mask is derived by mostly using the melody mask from Pitch
(i.e., ) (see Section III-D).

Fig. 2. Diagram of the series combination (see Section II-D).

D. Series Combination

Additionally, a musical mixture can be understood as the
sum of a pitched melody, a repeating background, and an extra
component comprising the non-repeating pitched elements of
the background. On this basis, we also propose to separate the
background and the melody by using a series combination of
the rhythm-based method and the pitch-based method. Since
REPET-SIM is more robust than Pitch when directly applied
on a mixture, we chose to first use REPET-SIM to separate the
components, and then Pitch to refine the estimates.
The method can be summarized as follows. Given a mixture

spectrogram , REPET-SIM first derives a background mask
—and the complementary melody mask

. Given the melody mask , Pitch then derives a re-
fined melody mask —and a complementary “left-
over” mask . The final background mask

and the final melody mask are then
derived by weighting and Wiener filtering (WF) the masks ,

, and , appropriately so that (see Fig. 2).
Here, represents a matrix of all ones.
We use a weight parameter, , when refining the

background mask, , and the melody mask, , obtained
from REPET-SIM and Pitch, respectively (see Equation (2)).
We will analyze the separation performance using different
values of for deriving the final background mask and the
final melody mask (see Section III-E). Here, and
represent the element-wise multiplication and the element-wise
division, respectively, between the matrices and .

-

(2)

Since REPET-SIM focuses on extracting the repeating back-
ground and Pitch focuses on extracting the pitched melody,
the extra leftover is most likely to comprise the non-repeating
pitched elements of the background, so we hypothesize that the
best separation performance will be obtained when the final
background mask and the final melody mask are derived by
mostly adding the leftover mask from Pitch to the background
mask from REPET-SIM (i.e., ) (see Section III-E).

III. EVALUATION 1

In this section, we analyze the parallel and the series combi-
nation on a data set of 1,000 song clips using different weighting
strategies.
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A. Data Set

The MIR-1K1 dataset consists of 1,000 song clips in the form
of split stereo WAVE files sampled at 16 kHz, with the back-
ground and melody components recorded on the left and right
channels, respectively. The song clips were extracted from 110
karaoke Chinese pop songs performed by amateur singers con-
sisting of 8 females and 11 males. The duration of the clips
ranges from 4 to 13 seconds [6].
We then derived a set of 1,000 mixtures by summing, for each

song clip, the left channel (i.e., the background) and the right
channel (i.e., the melody) into a monaural mixture.

B. Performance Measures

The BSS Eval2 toolbox consists of a set of measures that in-
tend to quantify the quality of the separation between a source
and its estimate. The principle is to decompose an estimate into
contributions corresponding to the target source, the interfer-
ence from unwanted sources, and the artifacts such as “mu-
sical noise.” Based on this principle, the following measures
were then defined (in dB): Source to Interference Ratio (SIR),
Sources to Artifacts Ratio (SAR), and Signal to Distortion Ratio
(SDR) which measures the overall error [61]. We chose those
measures because they are widely known and used, and also be-
cause they have been shown to be well correlated with human
assessments of signal quality [62]. These measures are broadly
used in the source separation community.
We then derived three measures, that will be referred to as
SIR, SAR, and SDR, by taking the difference between

the SIR, SAR, and SDR computed using the estimated masks
from a given method, and the SIR, SAR, and SDR computed
using the ideal masks from the original sources, respectively.
SIR, SAR, and SDR basically measure how close the sep-
aration performance can get to the maximal separation perfor-
mance given a masking approach. Values are logically negative
(i.e., , with higher values (i.e., closer to 0) meaning better
separation performance.

C. Algorithm Parameters

Given the REPET-SIM algorithm3, we used Hamming win-
dows of 1024 samples, corresponding to 64 milliseconds at a
sampling frequency of 16 kHz, with an overlap of 50%. The
minimal threshold between similar frames was set to 0, the min-
imal distance between consecutive frames to 0.1 seconds, and
the maximal number of repeating frames to 50 [21].
Given the Pitch algorithm4, we used Hamming windows of

512 samples, corresponding to 32 milliseconds at a sampling
frequency of 16 kHz, with an overlap of 75%. The predominant
pitch was estimated between 80 and 600 Hz, and the minimal
time and pitch differences for merging successive pitches were
set to 100 milliseconds and 0.3 semitones, respectively [57],
[58].
The masks for REPET-SIM and Pitch were then derived from

their corresponding estimates, by using the same parameters that

1http://sites.google.com/site/unvoicedsoundseparation/mir-1k
2http://bass-db.gforge.inria.fr/bss_eval/
3http://music.eecs.northwestern.edu/research.php?project=repet
4http://music.eecs.northwestern.edu/research.php?project=mpitch

Fig. 3. Mean SIR for the final background estimates (left plot) and the final
melody estimates (right plot), for the parallel combination for different weights

and . Lighter values are better (see Section III-D).

Fig. 4. Mean SAR for the final background estimates (left plot) and the final
melody estimates (right plot), for the parallel combination for different weights

and . Lighter values are better (see Section III-D).

Fig. 5. Mean SDR for the final background estimates (left plot) and the final
melody estimates (right plot), for the parallel combination for different weights

and . Lighter values are better (see Section III-D).

we used for REPET-SIM, i.e., Hamming windows of 1024 sam-
ples, corresponding to 64 milliseconds at a sampling frequency
of 16 kHz, with an overlap of 50%.

D. Parallel Combination

Fig. 3, Fig. 4 and Fig. 5 show the mean SIR, mean SAR,
and mean SDR, respectively, for the final background esti-
mates (left plot) and the final melody estimates (right plot), for
the parallel combination for different weights and (from
0 to 1 in steps of 0.1). Lighter values are better.
Fig. 3 suggests that, for less interference in the final back-

ground estimates, the background mask from REPET-SIM,
, should be weighted more than the background mask from

Pitch, , and the melody mask from REPET-SIM, ,
and the melody mask from Pitch, , should be weighted
equally, when deriving the final background mask, ; for less
interference in the final melody estimates, and should
be weighted equally, and should be weighted less than

, when deriving the final melody mask, .
Fig. 4 suggests that, for less artifacts in the final background

estimates and the final melody estimates, and should
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Fig. 6. Mean SIR standard deviation for the final background estimates
(left plot) and the final melody estimates (right plot), for the series combination
for different weights . Higher values are better (see Section III-E).

Fig. 7. Mean SAR standard deviation for the final background estimates
(left plot) and the final melody estimates (right plot), for the series combination
for different weights . Higher values are better (see Section III-E).

be weighted more than and , when deriving and ,
respectively.
Fig. 5 suggests that, for less overall error in the final back-

ground estimates, should be weighted more than , and
and should be weighted equally when deriving ; for

less overall error in the final melody estimates, should be
weighted more than , and and should be weighted
equally, when deriving .
The results for the parallel combination show that the best

separation performance is obtained when the final background
mask is derived by using mostly the background mask from
REPET-SIM, and the final melody mask is derived by mixing
part of the melody mask from REPET-SIM with the melody
mask from Pitch. While the results for the SIR support our
hypothesis (see Section II-C), the results for the SAR do not,
probably because Pitch tends to introduce musical noise in its
estimates; this can be reduced by compensating with the esti-
mates of REPET-SIM, hence the results for the SDR.
The best parallel combination given the highest mean

SDR averaged over the final background estimates and the final
melody estimates is obtained for of 1 and of 0.3.

E. Series Combination

Figs 6, Fig 7 and Fig 8show the mean SIR standard de-
viation, mean SAR standard deviation, and mean SDR
standard deviation, respectively, for the final background es-

timates (left plot) and the final melody estimates (right plot), for
the series combination for different weights (from 0 to 1 in
steps of 0.1). Higher values are better.
Fig. 6 suggests that, for less interference in the final back-

ground estimates, the leftover mask, , should be weighted

Fig. 8. Mean SDR standard deviation for the final background estimates
(left plot) and the final melody estimates (right plot), for the series combination
for different weights . Higher values are better (see Section III-E).

less with the background mask from REPET-SIM, , and
more with the melody mask from Pitch, , when deriving
the final background mask, ; for less interference in the final
melody estimates, should be weighted more with and
less with , when deriving the final melody mask, .
Fig. 7 suggests that, for less artifacts in the final background

estimates, should be weighted equally with and ,
when deriving ; for less artifacts in the final melody estimates,

should be weighted less with and more with , when
deriving .
Fig. 8 suggests that, for less overall error in the final back-

ground estimates, should be weighted less with and
more with , when deriving ; for less overall error in the
final melody estimates, should be weighted equally with
and , when deriving .
The results for the series combination show that the best sepa-

ration performance is obtained when the final background mask
and the final melody mask are derived by dividing the leftover
mask equally between the background mask from REPET-SIM
and the melody mask from Pitch. Rather than supporting our hy-
pothesis (see Section II-D), the results for the SIR show that
the leftover seems to represent an extra component that would
hurt both the final background estimates if added to the back-
ground estimates from REPET-SIM, and the final melody esti-
mates if added to the melody estimates from Pitch, hence the
results for the SDR.
The best series combination given the highest mean SDR

averaged over the final background estimates and the final
melody estimates is obtained for of 0.4.

IV. EVALUATION 2

In this section, we compare the rhythm-based and pitch-based
methods, and the best of the parallel and series combinations
with each other, and against two other state-of-the-art methods.

A. Competitive Methods

Durrieu et al. proposed a joint method for background
and melody separation based on an NMF framework (see
Section I-C). They used an unconstrained NMF model for
the background and a source-filter model for the melody, and
derived the estimates jointly in a formalism similar to the
NMF algorithm. They also added a white noise spectrum to
the melody model to better capture the unvoiced components
[27]. Given the algorithm5, we used an analysis window of 64

5http://www.durrieu.ch/research/jstsp2010.html
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Fig. 9. Distribution of the SIR for the background estimates (left plot) and
the melody estimates (right plot), for REPET-SIM, Pitch, the best parallel com-
bination, the best series combination, the method of Durrieu et al., and the
method of Huang et al. High values are better (see Section IV-B).

milliseconds, an analysis Fourier size of 1024 samples, a step
size of 32 milliseconds, and a number of 30 iterations.
Huang et al. proposed a joint method for background

and melody separation based on an RPCA framework (see
Section I-C). They used a low-rank model for the background
and a sparse model for the melody, and derived the estimates
jointly by minimizing a weighted combination of the nuclear
norm and the norm. They assumed that, in musical mixtures,
the background can be regarded as a low-rank component and
the melody as a sparse component [33]. Given the algorithm6,
we used the default parameters.

B. Comparative Analysis

Fig. 9, Fig. 10 and Fig. 11 show the distribution of the SIR,
SAR, and SDR, respectively.
Recall that SDR is an overall performance measure that

combines degree of source separation ( SIR) with quality of
the resulting signals ( SAR). Therefore, readers interested in
a synopsis of overall separation performance should focus on
the SDR plot in Fig. 11. Readers interested specifically in
how completely the background and foreground were separated
should focus on the SIR plot in Fig. 9. Readers interested
specifically in how many artifacts were introduced into the sep-
arated signals by the source separation algorithm should focus
on the SAR plot in Fig. 10.
Each figure shows the background estimates (left plot) and

the melody estimates (right plot), for REPET-SIM, Pitch, the
best parallel combination of REPET-SIM and Pitch, i.e., for

of 1 and of 0.3 (see Section III-C), the best series
combination of REPET-SIM and Pitch, i.e., for of 0.4 (see
Section III-D), the method of Durrieu et al., and the method of
Huang et al.On each box, the central mark is the median (whose
value is displayed in the box), the edges of the box are the 25th

6https://sites.google.com/site/singingvoiceseparationrpca/

Fig. 10. Distribution of the SAR for the background estimates (left plot)
and the melody estimates (right plot), for REPET-SIM, Pitch, the best parallel
combination, the best series combination, the method of Durrieu et al., and the
method of Huang et al., High values are better (see Section IV-B).

Fig. 11. Distribution of the SDR for the background estimates (left plot)
and the melody estimates (right plot), for REPET-SIM, Pitch, the best parallel
combination, the best series combination, the method of Durrieu et al., and the
method of Huang et al., High values are better (see Section IV-B).

and 75th percentiles, and the whiskers extend to the most ex-
treme data points not considered outliers (which are not shown
here). Higher values are better.
Fig. 9 suggests that, for reducing the interference in the back-

ground estimates, the parallel combination and the series com-
bination, when properly weighted, can perform as well or better
than REPET-SIM and Pitch alone, and the competitive methods,
although REPET-SIM seems still better than the series combi-
nation; for reducing the interference in the melody estimates,
the method of Durrieu et al. still performs better than the other
methods, although it shows a very large statistical dispersion,
which means that, while it can do much better in some cases, it
also does much worse in other cases.
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Fig. 10 suggests that, for reducing the artifacts in the back-
ground estimates and the melody estimates, the parallel com-
bination and the series combination, when properly weighted,
can perform as well or better than REPET-SIM and Pitch alone,
and the competitive methods, with the series combination per-
forming better than the parallel combination for the background
estimates.
Fig. 11 suggests that, for reducing the overall error in the

background estimates and the melody estimates, the par-
allel combination and the series combination, when properly
weighted, can overall perform better than REPET-SIM or Pitch
alone, and the competitive methods, with the parallel combina-
tion performing slightly better than the series combination.
The results of the comparative analysis show that, when

properly weighted, the parallel and the series combinations of
a rhythm-based and a pitch-based method can, as expected,
perform better than the rhythm-based or the pitch-based method
alone, for background and melody separation. Furthermore,
a combination of simple approaches can also perform better
than (or at least as well as) state-of-the-art methods based on
sophisticated approaches that jointly model the background
and the melody.

C. Statistical Analysis

Since is an overall measure of system performance
that combines and , we focus our statistical anal-
ysis on . We used a (parametric) analysis of variance
(ANOVA) when the distributions were all normal, and a (non-
parametric) Kruskal-Wallis test when one of the distributions
was not normal. We used a Jarque-Bera test to determine if a
distribution was normal or not.
For the for the background estimates, the statistical

analysis showed that REPET-SIM parallel Pitch
Durrieu series Huang, where “ ” means that and
are not significantly different, and “ ” means that is

significantly higher than for the melody estimates, Durrieu
REPET-SIM parallel series Pitch Huang.
For the for the background estimates, the statistical

analysis showed that series parallel Durrieu andDurrieu
Huang, but parallel Huang, Huang REPET-SIM Pitch
for the melody estimates, REPET-SIM parallel series
Huang Durrieu Pitch.
For the for the background estimates, the statistical

analysis showed that parallel series REPET-SIM
Durrieu Huang Pitch for the melody estimates,
series parallel, and parallel Durrieu, but series Durrieu,
Durrieu REPET-SIM Huang Pitch.

V. CONCLUSION

Inspired by findings in cognitive psychology, we investi-
gated the simple combination of two dedicated approaches
for separating background and melody in musical mixtures:
a rhythm-based method that focuses on extracting the back-
ground by identifying the repeating time elements and a
pitch-based method that focuses on extracting the melody by
identifying the predominant pitch contour. Evaluation on a
data set of song clips showed that a simple parallel and series

combination, when properly weighted, can perform better than
the rhythm-based or the pitch-based method alone, but also
two other state-of-the-art methods based on more sophisticated
approaches.
The separation performance of such combinations of course

depends on how the rhythm-based method and the pitch-based
method are combined, and on their individual separation per-
formance regarding both the background component and the
melody component. Given the findings in cognitive psychology
and the results obtained here, we believe that further advance-
ment in separating background and melody potentially lies in
independently improving the analysis of the rhythm structure
and the pitch structure in musical mixtures.
More information, including source codes and audio exam-

ples, can be found online.
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