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Context 

• You are at a concert 

– You know the artist who is playing 

– You want to know about the song being played 

– You have a smart device (e.g., an iPhone) 
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Idea 

• You can use a music identification system 

– You record an excerpt using your smart device 

– It is processed and compared against a database 

– You get information about the song (e.g., title) 
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Principle 

• Audio fingerprinting systems 

– Transform the audio into a compact fingerprint 

– Compare the query against a database for a match 

– Typically index fingerprints to speed up matching 
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Limitations 

• Does not work with cover versions (e.g., live) 

– Variations in tempo (e.g., faster renditions) 

– Variations in key (e.g., higher pitch) 

– Variations in instrumentations, etc. 
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Solution 

• A novel system that can handle 

– Short excerpt quickly (i.e., less than 10 seconds) 

– Audio degradations (e.g., noise, encoding, etc.) 

– Audio variations (e.g., different tempo, key, etc.) 
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Approach 

• Fingerprinting stage 

– Constant Q Transform 

– Adaptive thresholding 

 

• Matching stage 

– Hamming similarity 

– Hough Transform 
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• Constant Q Transform (CQT) 

– We first transform the audio signal into a time-
frequency representation using the CQT 
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• Constant Q Transform (CQT) 

– The CQT has a log-frequency resolution, matching 
the notes of the chromatic scale (i.e., C, C#, etc.) 
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Fingerprinting 

• Constant Q Transform (CQT) 

– Unlike the FT, the CQT is more compact and better 
adapted to music (vertical shift = pitch shift) 
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https://ccrma.stanford.edu/~gautham/ 

Three notes played at different pitches in  
the FT-spectrogram (left) and the CQT-spectrogram (right) 
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Fingerprinting 

• Adaptive thresholding 

– We transform the CQT-spectrogram into a binary 
image using an adaptive thresholding method 
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• Adaptive thresholding 

– For each bin in the spectrogram, we assign 1 if the 
bin is higher than the median of the neighborhood 
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Fingerprinting 

• Adaptive thresholding 

– We get a fingerprint that reduces the spectrogram 
into 2 components, of locally low and high energy 
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Approach 

• Fingerprinting stage 

– Constant Q Transform 

– Adaptive thresholding 

 

• Matching stage 

– Hamming similarity 

– Hough Transform 
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Matching 

• Hamming similarity 

– We then compute a similarity matrix between the 
fingerprints of a query and each of the references 
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Matching 

• Hamming similarity 

– We use the Hamming similarity between all pairs 
of time frames (= percentage of bins that match) 
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Matching 

• Hamming similarity 

– We compute the similarity matrix for different 
pitch shifts between the query and the references 
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Matching 

• Hough Transform (HT) 

– We binarize the similarity matrix via a threshold to 
have pairs of time frames that match (1) or not (0) 
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Method 

• Hough Transform (HT) 

– We use the HT to identify the best alignment 
between the query and the reference fingerprints 
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Matching 

• Hough Transform (HT) 

– The HT helps to take into account potential tempo 
deviations, by trying different angles for a line 
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Evaluation 

• References 
– 10 different artists of varied genres 

– 389 full tracks from studio albums 

– Durations from 01’04’’ to 11’06’’ 

 

• Queries 
– 87 full tracks from live albums (experiment 1) 

– 87 audio tracks from smart devices (experiment 2) 

– 10 queries per tracks, 6 and 9 second length 
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Data set 
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artist genre #references #queries 

AC/DC hard rock 36 60 

Arcade Fire indie rock 33 100 

Bonobo electronic 42 100 

Eagles rock 32 90 

Foreigner rock 29 100 

Jefferson Airplane psychedelic rock 65 40 

Led Zeppelin rock 40 80 

Phoenix alternative rock 38 100 

Portishead electronic 33 100 

Suprême NTM French hip hop 41 100 

all - 389 870 



Live albums (9 seconds) 

Top-k matches k=1 k=2 k=3 k=4 k=5 

AC/DC 0.92 0.95 0.97 0.97 0.97 

Arcade Fire 0.84 0.92 0.94 0.96 0.97 

Bonobo 0.83 0.89 0.92 0.92 0.96 

Eagles 0.93 0.97 0.98 0.99 0.99 

Foreigner 0.88 0.93 0.93 0.95 0.97 

Jefferson Airplane 0.60 0.68 0.78 0.78 0.80 

Led Zeppelin 0.74 0.81 0.84 0.85 0.90 

Phoenix 0.88 0.92 0.93 0.97 0.98 

Portishead 0.92 0.93 0.93 0.93 0.93 

Suprême NTM 0.87 0.95 0.96 0.97 0.97 

all 0.86 0.91 0.92 0.94 0.95 
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Smart devices (9 seconds) 

Top-k matches k=1 k=2 k=3 k=4 k=5 

AC/DC 0.70 0.83 0.85 0.87 0.93 

Arcade Fire 0.79 0.86 0.89 0.91 0.93 

Bonobo 0.60 0.75 0.83 0.89 0.93 

Eagles 0.70 0.77 0.88 0.91 0.91 

Foreigner 0.68 0.83 0.86 0.86 0.88 

Jefferson Airplane 0.40 0.53 0.55 0.60 0.63 

Led Zeppelin 0.28 0.39 0.48 0.53 0.54 

Phoenix 0.67 0.76 0.82 0.86 0.87 

Portishead 0.80 0.86 0.87 0.87 0.87 

Suprême NTM 0.30 0.42 0.45 0.51 0.55 

all 0.61 0.71 0.76 0.79 0.81 
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