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What should you get out of this?

* An understanding of the psychological basis for the
application of repetition to audio source separation

and identification

 Understanding a new class of practical algorithms
that perform repetition-based source separation

* Understanding the relationship of these algorithms
to existing work in source separation



The Cocktail Party

A party, usually in the early evening, at which
cocktails are served.




The Cocktail Party Problem

How to listen to a single talker among a mixture
of conversations and background noises.




Audio Source Separation

e Separating out the individual sounds in an

audio mixture
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One mixture = underdetermined problem

Mix = Soundl + Sound2 + Sound 3
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An underdetermined problem

* Sounds can be segregated only with the aid of prior
assumptions about the world.

e We should infer sounds consistent with the acoustic
input and our knowledge of real-world sounds.




Assertions

* Repetition is a fundamental element in
generating and perceiving structure in music
(...and audio in general)

* Repeating acoustic structure provides a cue
that can be used to segment audio scenes



Questions

 What evidence is there that humans use
repetition to parse an auditory scene?

* Can we build source separation algorithms
based only on repetition cues?

* Can we leverage repetition to improve
existing approaches to source separation?
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Recovering Sound Sources From
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THE COCKTAIL PARTY PROBLEM

Natural auditory environments have many sound sources:
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Sound Segregation

Classic ill-posed problem in perception.

 To estimate sources, we need prior knowledge:

"She _ar— gues with her _sis— ter"
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But... How do we acquire prior knowledge of sources?

If most of our auditory input is mixtures, how do we get started?
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Need to know properties of individual sources to segregate them, but need to have
segregated them to learn their properties...

Spatial cues are not of great help.



|ldea: Perhaps if same source repeats, auditory system can detect repeating
structure, infer presence of sound source.

Mixtures are accidental, don’ t occur repeatedly
_, Repeating structure is likely to be a single source

To test, need a way to generate novel sound sources...

White noise is no good - all samples sound the same:
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Want stimuli to have some properties of natural sounds, so that they don’ t all sound
the same (cf. white noise).

But want them NOT to have strong bottom-up grouping cues, so that we can
examine how sounds might be recovered from mixtures BEFORE other grouping
cues have been learned.
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Time-frequency decompositions of real-world sounds exhibit correlations in both
time and frequency:
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We captured these correlations by modeling log-energy spectrograms as a
multivariate Gaussian random variable:
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Synthetic sources can be combined into mixtures:

Distractor Mixture

Frequency (Hz
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Present mixture, then probe sound:

Was the probe one of
the sounds in the
mixture?

Sounds have structure, but not enough to allow segregation.

McDermott, Wrobleski & Oxenham, PNAS 2011



Single mixtures are hard to segment:
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Performance not limited by discriminability:
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« Performance seems to be limited by ability to segregate sounds.

« Stimuli evidently contain few bottom-up segregation cues.

Can people recover these sources if they are repeated?
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Performance depends on number of different mixtures:
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Effect of multiple mixtures swamps that of asynchrony:
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Only variability of distractors mixed with targets matters:
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Listeners are not simply using average spectrum:
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Jittering onset of distractors has similar effect to varying them:
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Auditory system seems to be tracking repeating structure.
Listeners can recover source when it occurs in multiple distinct mixtures.

Performance should be constrained by storage capacity: recognizing repeating
structure requires comparison of input at different time points.

Can test by varying ISlI:



Performance declines once targets are spaced by > ~400 ms:
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Suggests listeners
combine information
across presentations,
using short-term buffer.



Frequency (Hz)

o

Frequency (Hz)

Proof of concept: target can be extracted via cross-correlation.
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How does repetition compare to spatial separation?

0.8
0.75 - multiple mixtures
8 ' D single mixture
% 07
S 0.65
' Spatial cues (ITD) are useful for
0.6 localization, less so for
0.55 segregation.
’ (cf Summerfield, Culling, Darwin,
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Schwartz, McDermott, Shinn-Cunningham, JASA 2012



sListeners can recognize sound sources from mixtures, if presented more than
once across different mixtures.

*Repetition is not explicit in the auditory input, but iNComm
auditory system detects, uses to infer sources.

*Repetition can bootstrap sound segregation in the absence of bottom-up grouping
cues, knowledge of sounds.

There are lots of repeating sounds in natural auditory environments for which this
could be relevant, e.g. animal vocalizations.

O ©

Music perception may co-opt this mechanism.
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Coffee Break

http://coffee-urn-info.blogspot.com/2011/08/clean-his-coffee-cup-was.html
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REpeating Pattern Extraction
Technique (REPET)



Outline

. Introduction
. REPET
II. REPET-SIM

V. Conclusion

Zafar Rafii



Introduction

e Repetition is a fundamental element in
generating and perceiving structure

Repetition [...]
is the basis of
music as an art.

Heinrich Schenker (1868-1935)

10/08/12 Zafar Rafii
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Introduction

* |n music, pieces are often characterized by an
underlying repeating structure over which
varying elements are superimposed

Propellerheads - History Repeating

time (s)
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Introduction

* |n music, pieces are often characterized by an
underlying repeating structure over which
varying elements are superimposed

Propellerheads - History Repeating

time (s)
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Introduction

* This means there should be patterns that are
more or less repeating in time and frequency

Mixture Spectrogram
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Introduction

ting patterns could be

 The (more or less) repea
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Introduction

* The t-f mask could then be applied on the
mixture to extract the repeating patterns

Repeating Spectrogram

1.15

20 1.1

1.05

- -~

BER S RRL IR I B S o ph L Eb b Rl ERL bR e bR ke
,[f-,;'"'_-__- S F R HE R B EE ey R Eb R B bRl (1 >

~----_—’

0.95
10.95 11 11.05 11.1 11.15

frequency (kHz)

High energy

Low energy

10/08/12 Zafar Rafii 47



Introduction

 REpeating Pattern Extraction Technique!

1.

2. Derive a repeating model

3. Extract the repeating structure

Mixture Signal
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Introduction

* Simple music/voice separation method!
— Repeating structure = musical background
— Non-repeating structure = vocal foreground

Repeating Structure

Mixture Signal 4
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Introduction

* Assumptions:
— The repeating background is dense & low-ranked
— often true for music in a mixture of music + voice

Music Spectrogram

Music + Voice
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Introduction

* Assumptions:
— The repeating background is dense & low-ranked
— low-ranked = repetitions at some period rate

Music Spectrogram

Music + Voice
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Introduction

* Assumptions:

— The non-repeating foreground is sparse & varied
— often true for voice in a mixture of music + voice

Music + Voice

Voice Spectrogram

frequency (kHz)
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Introduction

* Practical advantages:
— Does not depend on special parameterizations
— Does not rely on complex frameworks

— Does not require prior training

Zafar Rafii



Introduction

* Practical interests:
— Audio post processing
— Melody extraction
— Karaoke gaming

10/08/12 Zafar Rafii
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Introduction

* Intellectual interests:
— Music perception
— Music understanding
— Simply based on repetition!

10/08/12 Zafar Rafii
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Introduction

* Parallel with background subtraction in vision

— Compare frames to estimate a background model
IS s RN RRENOERNENOOEE

10/08/12 Zafar Rafii 56



Introduction

* Parallel with background subtraction in vision

— Extract the background from the foreground
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Introduction

* Parallel with background subtraction in vision

— In audio, we also nelwextdretsc_?qniglentify the repetitions!

time (s)
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Introduction

* Parallel with background subtraction in vision
— In audio, we also need to identify the repetitions!

Vocal Foreground
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Musical Background
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Method
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1. Repeating Period
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frequency (kHz)

amplitude

1. Repeating Period

 We compute the autocorrelations of the rows
of the spectrogram to find periodicities

Mixture Spectrogram Autocorrelation Plots
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frequency (kHz)

1. Repeating Period

 We take the mean of the autocorrelations
(rows) and obtain the beat spectrum

Mixture Spectrogram Autocorrelation Plots
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1. Repeating Period

* The beat spectrum reveals the repeating
period p of the underlying repeating structure

Mixture Signal
1
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time (s)
Beat Spectrum

p lag (s)
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1. Repeating Period

* We assume here that the background is more
dense and low-ranked than the foreground

Mixture Signal
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2. Repeating Segment

Mixture Spectrogram V

Beat Spectrum b

Mixture Signal x

Step 1

Eoal . = : i
e | R i 0 L i

B3k £ B fiE - E P~ a ] - s >
- E = S ; |-y S
- o e e R e e ]

Median_

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
J

<

Repeating Segment S

" Step2

‘.----‘

'.I---------------------------—

Vv Repeating Spectrogram W Time-Frequency Mask M_

[ ol
> 1|

Step 3

I TN TSR SO RS LR S

o= min min Zafar Rafii o7




frequency (kHz)

correlation

2. Repeating Segment

* The repeating period is then used to segment
the mixture spectrogram at period rate

Mixture Spectrogram Segmented Spectrogram
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frequency (kHz)

2. Repeating Segment

* The repeating segment model is calculated as

the element-wise median of the segments

Segmented Spectrogram

Mixture Spectrogram
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frequency (kHz)

2. Repeating Segment

* The median helps to derive a clean repeating
segment, removing the non-repeating outliers
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frequency (kHz)

2. Repeating Segment

* We assume here that the foreground is more
sparse and varied than the background
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2. Repeating Segment

Mixture Spectrogram V

Beat Spectrum b
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3. Repeating Structure

 We take the element-wise minimum between
the repeating segment and the segments

Mixture Spectrogram Repeating Spectrogram
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frequency (kHz)

3. Repeating Structure

 We obtain a repeating spectrogram model for
the repeating background

Mixture Spectrogram Repeating Spectrogram
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frequency (kHz)

3. Repeating Structure

* The repeating spectrogram cannot have
values higher than the mixture spectrogram

Mixture Spectrogram Repeating Spectrogram Non-repeating Spectrogram
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frequency (kHz)

3. Repeating Structure

 We divide the repeating spectrogram by the
mixture spectrogram, element-wise

Mixture Spectrogram Repeating Spectrogram
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frequency (kHz)

 We obtain a soft time-frequency mask (with

3. Repeating Structure

valuesin [0,1])

Mixture Spectrogram
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frequency (kHz)

3. Repeating Structure

* |n the soft t-f mask, the less/more a t-f bin is
repeating, the more it is weighted toward 0/1

Mixture Spectrogram Repeating Spectrogram Time-frequency Mask
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frequency (kHz)

3. Repeating Structure

* A binary t-f mask can be further derived by

Mixture Spectrogram
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3. Repeating Structure

 We multiplied the t-f mask with the mixture
STFT to extract the repeating background STFT
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frequency (kHz)

3. Repeating Structure

* The repeating background is obtained by
inverting its STFT into the time domain

Mixture Spectrogram Background Spectrogram
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-1

3. Repeating Structure

 The non-repeating foreground is obtained by
subtracting the background from the mixture
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Method

* Repeating background = music component

* Non-repeating foreground = voice component
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»

Zafar Rafii
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1

1

0l

1

Background Signal

2 4 6 8 10
time (s)

12

Foreground Signal

2 4 6 8 10
time (s)
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Extensions

* REPET works well on excerpts with a relatively
stable repeating background (e.g., 10 s verse)

Mixture

Verse

REPET

4

Repeating background

T
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Extensions

* For full-track songs, the repeating background
is likely to vary over time (e.g., verse/chorus)

Full mixture

Full repeating background
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1. Prior Segmentation

 We could do a prior segmentation of the song
and apply REPET to the individual sections

Full mixture

| |
. Full repeating background :

10/08/12 Zafar Rafii
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 We could apply REPET to local sections of the

2. Sliding Window

song over time via a fixed sliding window

10/08/12

Full mixture

Zafar Rafii
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3. Adaptive REPET

 We could adapt REPET along time by locally
modeling the repeating background

Full mixture

Adaptive REPET

Full repeating background

10/08/12 Zafar Rafii
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Step 1

Step 2

Adaptive REPET

Mixture Spectrogram V Beat Spectrogram B
Mixture Signal x B e e T '
S = Te= ST SRR EEIO L P,

\VK N Median Repeating Spectrogram U

»

|1p i |+1pI
I I B -------L----

T|me Frequency Mask M

Repeating Spectrogram W




Adaptive REPET

Mixture Spectrogram V Beat Spectrogram B
i Mixture Signal x iy PR30 T
Q. : =
@ ‘»
ofd 2l

_Me_‘,j'a"_ RepeatlngSpectrogra m U
Q. »  :
) .
o B
L c—H M) -4 . B OB o bieer . Pl
i-1p, i i+lp, i-1p, i i+1p, o
I I I . --d----- B N B B B B B B B N B B B |

Repeating Spectrogram W Tlme Frequency Mask M




Original REPET

Mixture Spectrogram V
Mixture Signal x FE oh Bha 35

Beat Spectrum b

: wa,thp o wﬂtj

Step 1

e 74 07 S

Median_

Repeating Segment S

Step 2

»

I DI DN DN DN N N N N S D D DN DN DN N D BN D B D B D D B B B e
S

Repeating Spectrogram W

Time-Frequency Mask M

Step 3




Adaptive vs. original REPET

 REPET assumes a stable repeating background
with repetitions occurring at fixed period rate

Fixed periodically Fixed periodically
repeating source repeating estimate

w\;

A

Mixture

|

|

Non-repeating » “% Non-repeating
source | " estimate

L

REPET
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Adaptive vs. original REPET

 The original REPET shows limitations when the
repeating background varies over time

Varying periodically Varying periodically
repeating source repeating estimate

l

0

Mixture

Ml
Non-repeating » Non-rgpeating
source -~ estimate
TN
Yae
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Adaptive vs. original REPET

 The adaptive REPET can handle varying
repeating structures (e.g., in full-track songs)

Varying periodically Varying periodically
repeating source repeating estimate

Non-repeating Non-repeating

source estimate
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Music/Voice Separation

* Music/voice separation systems generally
first identify the vocal/non-vocal segments
and then use a variety of techniques to
separate the music and voice components

Music

H »l Music/Voice
Separation Voice
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Music/Voice Separation

* Non-negative Matrix Factorization (NMF)

— |terative factorization of the mixture spectrogram
into non-negative additive components

Mixture spectrogram  Bases Activations Music & voice spectrograms

—> Need to know the number of components
—> Need a proper initialization
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Music/Voice Separation

 Accompaniment modeling

— Modeling of the musical accompaniment from the
non-vocal segments in the mixture

Mixture spectrogram  Vocal/non-vocal segmentation Music spectrogram

—> Need an accurate vocal/non-vocal segmentation
— Need a sufficient amount of non-vocal segments
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Music/Voice Separation

e Pitch-based inference

— Separation of the vocals using the predominant
pitch contour extracted from the vocal segments

Mixture spectrogram Predominant pitch detection Voice spectrogram

—> Need an accurate predominant pitch detection
— Cannot extract unvoiced vocals
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Evaluation

 REPET [Rafii et al., 2012]

— Automatic period finder
— Soft time-frequency masking

 Competitive method [Durrieu et al., 2011]
— Source/filter modeling with NMF framework
— Unvoiced vocals estimation

 Data set [Hsu et al., 2010]
— 1,000 song clips (from karaoke Chinese pop songs)
— 3 voice-to-music mixing ratios (-5, 0, and 5 dB)
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Durrieu + High-pass

Durrieu et al.
R = REPET

R+H = REPET + High-pass

D
D+H

-
011
1L

-+

116

=P
IIFI:III =

=
2|2
1

o0

Evaluation
-
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1
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[ 17 s
T
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H+Y

H+d

H+d

H+d

H+d

H+d

odB

0dB
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Evaluation

e Conclusions

— REPET can compete with state-of-the-art (and
more complex) music/voice separation methods

— There is room for improvement (+ high-pass, +
optimal period, + vocal frames)

— Average computation time: 0.016 second for 1
second of mixture! (vs. 3.863 seconds for Durrieu)
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Example

e REPET vs. Durrieu et al.

Bearlin - Roads

2 4 6 8 10 12
time (s)

Music estimate (Durrieu)

1
0.
T2 4 6 8 10 12

time (s)
I
I
Music estimate (REPET)

1 ———
0

2 4 6 8 10 12
time (s)
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Voice estimate (REPET)
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Similarity

 REPET (and its extensions) assume
periodically repeating patterns

Mixture

REPET

¥

Periodically
repeating background

T
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Similarity

* Repetitions can also happen intermittently or

without a global (or local) period

10/08/12

Mixture

]

v

Non-periodically

repeating background

I

Zafar Rafii
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Similarity

* |nstead of looking for periodicities, we can
look for similarities, using a similarity matrix

Mixture

' | | ’ Similarity matrix

Beat spectrum/spectrogram
Non-periodically

repeating background

LLI I
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Similarity

* The similarity matrix is a matrix where each
bin measures the (dis)similarity between any
two elements of a sequence given a metric

Similarity matrix

Sequence

=

i

Je[lwis+

Je[lwissip+

Zafar Rafii



Similarity

* |n audio, the SM can help to visualize the time
structure and find repeating/similar patterns

Similarity Matrix

Spectrogram

Je[lwis+

N
o

frequency (kHz)
o

time (s)

o

> 4 6 8 10 12
time (s)

e[IuiIssIp+
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Similarity

e The SM can be built from different features:
spectrogram, chromagram, etc.

Similarity Matrix
Chromagram 12 (SR e ST
| 10 Sl __5..5_.'_.'_._1 il _1_i.. _IJ

Jejlwis+

time (s)

Al 1]
2 4 6 8 10 12
time (s)

N B~ OO
Jeiwissip+

2 4 6 8 10 12
time (s)
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Similarity

* The SM can be built using different metrics:
cosine similarity, Euclidean distance, etc.

Similarity Matrix

Spectrogram

)®)
o
JejlwissIp+

time (s)

o

frequency (kHz)
o

> 4 6 8 10 12
time (s)

Je[lwis+

time (s)
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Similarity

 We choose to simply build the SM from the
spectrogram using the cosine similarity

Similarity Matrix

Spectrogram 12 O EE R

Je[lwis+

N
o

frequency (kHz)
o

o

> 4 6 8 10 12
time (s)

E|IWISSIP+

time (s)
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frequency (kHz)

Similarity

e Given a mixture, we (again) assume that:
— The repeating background is dense & low-ranked
— The non-repeating foreground is sparse & varied

Mixture Spectrogram Background Spectrogram Foreground Spectrogram
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Similarity

* By low-ranked, we now mean the background
is repeating, but not necessarily periodically

Mixture Spectrogram Background Spectrogram Foreground Spectrogram

o

frequency (kHz)
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frequency (kHz)

Similarity

* The SM of a mixture is then likely to reveal the
structure of the repeating background

Similarity Matrix

(@)

o

g v’ o e

time (s)

time (s)
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* REPET-SIM!

1.

Similarity

2. Derive a repeating model

3. Extract the repeating structure

Mixture Signal

ldentify the repeating/similar elements

Repeating Structure
1 .

[ ||
-1 . . . . ! .
2 4 6 8 10 12
mp| REPET- i 6
i
SI M Non-repeating Structure
1
N
T4 6 8 10 12
time (s)
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Similarity

* Simple music/voice separation method!
— Repeating structure = musical background
— Non-repeating structure = vocal foreground

Repeating Structure

Mixture Signal

X avj@j £ @ %’
)Y 5

Zafar Rafii



Similarity

 Advantages compared with REPET:
— Can hand

— Can hand

— Can hand

Mixture Signal
@ @ 4

*k £ % V?
= Ik
WL L »
AW S
V) Y G5
’\<: /i

e intermittent repeating elements

e fast-varying repeating structures

e full-track songs
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Step 1

Step 2

Step 3

REPET-SIM

Mixture Spectrogram V B T
B b NS AR v ko B Sk EanieE B4 j :

‘hh

Mixture Signal x

]

AV4 S aAecian Repeating Spectrogram U

3 : ; g% H
£ [ 3 £ i ; i
r vy H B : : [ i [
5 z ! z-JE i 1 e i £ i
L | I [ £ L | ] il ]
SRR RS ! i = : A : i :
E = e - E E &

= H BERTE

et ik

Vb

bis-Ea = ME - M- - - b cEL

g T

Vv Repeating Spectrogram W

Time-Frequency Mask M




Step 1

Step 2

Adaptive REPET

Mixture Spectrogram V Beat Spectrogram B
Mixture Signal x B e e T '
S = Te= ST SRR EEIO L P,

\VK N Median Repeating Spectrogram U

»

|1p i |+1pI
I I B -------L----

T|me Frequency Mask M

Repeating Spectrogram W




REPET-SIM vs. adaptive REPET

 The adaptive REPET can handle varying

periodically repeating structures

Varying periodically Varying periodically
repeating estimate

repeating source
I I
Mixture
“«
Non-repeating ﬂﬁ Non-repeating
source ‘ estimate

10/08/12 123

Adaptlve
REPET
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REPET-SIM vs. adaptive REPET

 The adaptive REPET shows limitations when
the repeating background is not periodical

Non-periodically
repeating source

10/08/12

e e

2

Zafar Rafii

Mixture

Adaptive

~
I “~ ‘. 2k
Non-repeating - b a Non-repeating
source B o N o estimate

Non-periodically
repeating estimate

4L

—’.‘-“-— | —

||1|
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REPET-SIM vs. adaptive REPET

 REPET-SIM can also handle non-periodically
repeating structures (e.g., in complex songs)

Non-periodically
repeating source

I

N\

«
] [

Non-repeating

source

10/08/12

Mixture

l# \:

D
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Non-periodically
repeating estimate

L1l |

Non-repeating
estimate
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Method
SiIri atri S

Mixture Spectrogram V B T
B b NS AR v ko B Sk EanieE B4 j :

‘hh

Mixture Signal x

]

Step 1

_ A4 Median Repeating Spectrogram U

i i :
E pe -
Hi B

s

bis-Ea = ME - M- - - b cEL

g T

et ik

R

Step 2

Vv Repeating Spectrogram W

Time-Frequency Mask M

Step 3




Step 1

‘----..

2

Step

Step 3

1. Repeating Elements

‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIllllllllsmlhrlwman)!glll

Mlxture Spectrogram V

Mixture Signal x

E = : | B B S ERE 2o
= t i P ; ek b
[ = - i i R i + |
R e LT 2 3 i e 2
B e § i i £ v 7 i
foEE Lok 3 B = . 5 | 1
|2 : e 1 I8

L Bl ; , — i
bizcmoo—iL Ml B R — E

'.I--------------I

I\Vf\ Median Repeating Spectrogram U

et ik
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= [ —
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V Repeating Spectrogram W Time-Frequency Ma;k M
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1. Repeating Elements

* We take the cosine similarity between any
two pairs of columns and get a similarity
'm@bﬂtxg ram Similarity Matrix

B Ry B R =] i3
[ o-El o ]SSy T TR e = -L = i 1w

- - 14 S -
- =

frequency (kHz)

2 4 6 10 12
I, time(s) I,
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frequency (kHz)

1. Repeating Elements

* The SM reveals for every frame i, the frames j,
that are the most similar to frame i

Mixture Spectrogram Similarity Matrix Mixture Spectrogram

0 R T

"2 4 6 8 10 12
Ji ), time(s) J3

2 4 6 8 10 12
I time (s)
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frequency (kHz)

1. Repeating Elements

 We assume here that the background is more
dense and low-ranked than the foreground

Mixture Spectrogram Similarity Matrix Mixture Spectrogram
; 1 2 _’L____;; - !: - s ._—'H#'i'!;-.ills'l!;;:i:ll—--L-;I. 1. i.aE;-_.a e

frequency (kHz)
o

"2 4 6 8 10 12
Ji ), time(s) J3

2 4 6 8 10 12
I time (s)

2 4 6 8 10 12
I time (s)
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Step 1

‘----..

2

Step

Step 3

1. Repeating Elements

‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIllllllllsmlhrlwman)!glll

Mlxture Spectrogram V

Mixture Signal x
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2. Repeating Model

Mixture Spectrogram V
Mixture Signal x EE RS RRAL e B BB

Step 1

A4S nAectan Repeating Spectrogram U

s

R

LEs = g i = Ak 779_»_ 11

4

]

1 »
A

1 o) = i ¢ -

1 N

’

'll---A#;-3-----jl-jhjh------_.h___-
Vv Repeating Spectrogram W

Time-Frequency Mask M

Step 3
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frequency (kHz)

2. Repeating Model

* For every frame i, we take the median of the
corresponding most similar frames j,

Mixture Spectrogram Mixture Spectrogram

o

4 6 8 10 12
I time (s) ji J, time(s) 3

2 4 6 8 10 12
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frequency (kHz)

2. Repeating Model

 We obtain an initial repeating spectrogram
model

Mixture Spectrogram Mixture Spectrogram Repeating Spectrogram
: , . ~ S — ~
T 20 T
S5 S5
> >
2 10 =
(O} o}
-} -}
;F—F' .r.:". i ot ] 9 0 ] ] ; = O | 9 0 L L 1 ! 1 {1
2 4 6 8 10 12 - 2 4 6 10 12 - 2 4 6 8 10 12
I time (s) Ji ), time (s) J5 i time (s)
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frequency (kHz)

2. Repeating Model

* The median helps to derive a clean repeating
spectrogram, removing non-repeating outliers

Mixture Spectrogram Mixture Spectrogram Repeatlng Spectrogram

N

o
o
—

o

frequency (kHz)
o

2 4 6 8 10 12 4 6 8 10 12 24 6 8 10 12
I time (s) Jq jz time (s) j; i time (s)
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frequency (kHz)

o

2. Repeating Model

* We assume here that the foreground is more
sparse and varied than the background

Mixture Spectrogram

2 4 6 8 10 12
I time (s)

10/08/12

Mixture Spectrogram Repeating Spectrogram

frequency (kHz)
o

o

"2 4 6 8 10 12 24 6 8 10 12
)i ), time(s) J3 i time (s)
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2. Repeating Model

Mixture Spectrogram V
Mixture Signal x EE RS RRAL e B BB

Step 1

A4S nAectan Repeating Spectrogram U

s

R

LEs = g i = Ak 779_»_ 11
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]

1 »
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1 N
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Time-Frequency Mask M
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3. Repeating Structure

Mixture Spectrogram V
Mixture Signal x EE RS RRAL e B BB

Step 1

_ A4 Median Repeating Spectrogram U

i i :
E pe -
Hi B

Step 2

s

Lir-EE =N :7_*.1 ‘_-széa_:;.:g e 0

i = 3 it

et ik

o
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Vv Repeating Spectrogram W Time-Frequency Mask M

Step 3
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3. Repeating Structure

 We take the element-wise minimum between
the repeating and mixture spectrograms

Mixture Spectrogram
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frequency (kHz)

3. Repeating Structure

 We obtain a refined repeating spectrogram
model for the repeating background

Mixture Spectrogram Repeating Spectrogram
=3 L
>, H
O kgL
c i
() 4
> A
9 0 B : = '-F_' ! iy 'FZ' ral .F' F :‘
- 2 4 6 8 10 12
time (s) min time (s)
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frequency (kHz)

3. Repeating Structure

* The repeating spectrogram cannot have
values higher than the mixture spectrogram

Mixture Spectrogram Repeating Spectrogram Non-repeating Spectrogram
S5 S5
> h >
O ! o
c ] c
() " ()
-} 4 -}
1} L AN : ] o (O LEaw g e 20 5 oo AR W B 0
2 4 6 8 10 12 - 2 4 6 8 10 12 - 2 4 6 8 10 12
time (s) time (s) time (s)
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frequency (kHz)

3. Repeating Structure

 We divide the repeating spectrogram by the
mixture spectrogram, element-wise

Mixture Spectrogram Repeating Spectrogram
X T TR R T i N 20N
I VA = - W T i
;1.,-1:‘:.'1.5{':-41" > ! '
1050 2
: ()
: >
2 4 6 8 10 12 -

time (s) — tme () divides
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frequency (kHz)

o

3. Repeating Structure

 We obtain a soft time-frequency mask (with
valuesin [0,1])

Mixture Spectrogram

ST I ET TN

10/08/12

2 4 6 8 10 12

time (s)

Repeating Spectrogram

N
o

........

frequency (kHz)
frequency (kHz)
o
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Time-frequency Mask
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frequency (kHz)

frequency (kHz)

3. Repeating Structure

* We multiplied the mask with the mixture STFT
to extract the repeating background STFT

Mixture Spectrogram Background Spectrogram
jr\:j T
S5
> L
O i
c ]
(O} el
S
o 4 ShLEL EECaElE
9 0 i P.."-F' i iy 'P" P i |
- 2 4 6 8 10 12

time (s)
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2 4 6 8 10 12 Zafar Rafii e
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frequency (kHz)

frequency (kHz)

20

10

3. Repeating Structure

* The repeating background is obtained by
inverting its STFT into the time domain

Mixture Spectrogram Background Spectrogram

Time-frequency Mask

|
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frequency (kHz)

3. Repeating Structure

 The non-repeating foreground is obtained by
subtracting the background from the mixture

Mixture Spectrogram Background Spectrogram

2 4 6 8 10 12
time (s)

Mixture Signal

ol il
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time (s)
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Method

* Repeating background = music component

* Non-repeating foreground = voice component

4 }
REPET-SIM [V

Mixture Signal

> 4 6 8 10 1
time (s)

2

1. Repeating elements
2. Repeating model

3. Repeating structure l
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Method

* Repeating background = music component

* Non-repeating foreground = voice component

»

Mixture Signal

> 4 6 8 10 1
time (s)

2

[
REPET

1. Repeating period

3. Repeating structur

\_

2. Repeating segment

»
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Evaluation

REPET-SIM [Rafii et al., 2012]
— Cosine similarity
— Soft time-frequency masking

Competitive method 1 [FitzGerald et al., 2010]

— Median filtering of the spectrogram at different frequency resolutions
to extract the vocals

Competitive method 2 [Liutkus et al., 2012]

— Adaptive REPET with automatic periods finder and soft time-frequency
masking

Data set
— 14 full-track real-world songs (from The Beach Boys)
— 3 voice-to-music mixing ratios (-6, 0, and 6 dB)
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FitzGerald et al.
Adaptive REPET
REPET-SIM

REPET+
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Evaluation

e Conclusions

— REPET-SIM can compete with a recent music/
voice separation method

— REPET-SIM can perform as well as the adaptive
REPET

— Average computation time: 0.563 second for 1
second of mixture (vs. 1.183 seconds for Adaptive)
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* REPET-SIM

Examples

Blackalicious - Alphabet Aerobics

time (s)

1 L L L L L [
0
-1 [ [ [ [ [ [
20 40 60 80 100 120
time (s)
[
— Music estimate
1 [ L L L L [
0
-1 [ [ [ [ [ [
20 40 60 80 100 120
+ time (s)
Voice estimate
1 [ L L L L [
0
-1 [ [ [ [ [ [
20 40 60 80 100 120
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* Adaptive REPET

Blackalicious - Alphabet Aerobics

Examples

time (s)

1 L L L L L [
0
-1 [ [ [ [ [ [
20 40 60 80 100 120
time (s)
[
— Music estimate
1 [ L L L L [
0
-1 [ [ [ [ [ [
20 40 60 80 100 120
+ time (s)
Voice estimate
1 [ L L L L [
0
-1 [ [ [ [ [ [
20 40 60 80 100 120
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Links to Other Source Separation
Methods

Bryan Pardo
Electrical Engineering & Computer Science
School of Music
Northwestern University



Closely related methods

* Nearest Neighbor Median Filtering

* Robust Principal Component Analysis



Nearest Neighbor Median Filtering
(Fitzgerald 2012)

* Essentially identical to REPET-SIM
differences include:
Squared Euclidean distance replaces Cosine similarity

No prohibition on using immediate temporal neighbor
frames as repetitions

Let’s see what allowing temporal neighbors as
repetitions does...



Robust Principal Component Analysis
(Candes 2009, Huang 2012)

Separate an
original
matrix M
into...

(We'll hear this example later)
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Robust Principal Component Analysis

A Sparse Matrix, S AND A Low-rank Matrix, L

How? Minimize I LI, +A IS

...subject to constraing L+S =M

Similar goals to REPET-SIM
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RPCA Assumptions

e Sparse matrix S must NOT be low rank

Translation: Non repeating elements must be distributed
throughout the audio.

Problematic example: Repeated funk riff with the occasional
“good god”
* Low rank matrix L must NOT be sparse

Translation: It works better if your accompaniment occupies
a lot of the spectrum (chords, snare drums)

Problematic example: Voice + Acoustic Bass



Slow

* Original approach used Iterative Thresholding.

* Converges extremely slowly
About 1074 iterations to converge

Each iteration requires one singular value
decomposition.

A matrix of m = 800, took 8 hours on a PC from 2009.
e Accelerated Proximal Gradient is 50x faster

About 10 minutes for the same matrix



Faster

Huang et al (ICASSP 2012) use the Augmented
Lagrange Multiplier (ALM) method for RPCA.

Not an exact method...but 250 times faster
than Iterative Thresholding

Approx real-time on 16 bit audio at 16 kHz

Let’s compare/contrast with

A periodic method (REPET)
A Similarity Matrix method (REPET SIM)



Example 1: Singer + Synthesizer

Background: (horizontal lines): low rank, aperiodic, not sparse

Foreground: (squiggly lines) : sparse, aperiodic, not low rank, broadly distributed

hIrnlsl loisl 11 Ilic.l 11 Ilisl 11 Iziol 11 Izisl L | iul 11 I3i5I 11 I4i‘:II 11 I“'isl LI} iul 11 lsisl »I 11 iul 11 IGiSI L) iul 11 I7isl L | iul 11 Isisl 11 I9[-CVI 11 IgiSI 11 Ilc;?l 1 Ilr‘!9 n 10'5 Seconds
& 16 bits
16 kHz
Processing

Time in sec.

RPCA  13.9
REPET 1.0

et SIM
r—— s gy REPET 0.8

ﬁ.—' . - - I~ ’~ :
s == ——

- —_— -

Bl IR
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Example 2: Clarinet + Guitar/Bass/Snare

Background: (short, horiz. lines making triangles): low rank, sparse, periodic

Foreground: (long horiz. lines): sparse, not periodic, not low rank, broadly distributed

15.4 seconds
16 bits
11.025 kHz

14.0 15.0
@ n

Processing
Time in sec.

RPCA  14.6

REPET 1.7
SIM

REPET 1.4

w;-o”..a— e gt o o 5»-'/.-0;1-,,? i
FEF BT Y FARRERENF F Y I RA A AT TR TR AAE L
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FOREGROUND

BACKGROUND

periodic
low rank
sparse

broadly distributed

periodic
low rank
sparse

broadly distributed

When to use...

REPET

hever
don’t care
helps

don’t care

required
implied by periodic
don’t care

don’t care

REPET-SIM

don’t care
never
helps

don’t care

don’t care
required
don’t care

don’t care

RPCA

don’t care
never
required

required

don’t care
required
never

helps



Repetition to Augment Separation

* Repetition is a powerful cue for source
separation

* |t works in isolation (e.g. REPET)

* How can we leverage repetition to improve
other approaches to source separation?



Independent Component Analysis (ICA)

e Assumes statistically independent sources

e Number of mixtures cannot be less than
the number of sources




Independent Component Analysis (ICA)

* Probably not how people do it
People have 2 ears. Scenes often have >2 sources.

* Not useful when there aren’t enough mics




ICA and Repetition

 Hedayiogl et al (ICASSP 2011) found a way to
leverage repetition for single-mixture ICA

1. Assume periodically repeating sources
(e.g. heart beat patterns)

2. Record the audio with a single microphone

3. Segment the audio at period of repetition

4. Call each segment a channel

5. Do ICA, just like usual



Nonnegative Matrix Factorization (NMF)

...and its probabilistic reframing, known as
Probabilistic Latent Component Analysis (PLCA)

. | Just find WH =X
Activation matrix H |
| andwe’re done

S S—— Spectral Dictionary W

]

| BEERE g 2

¥ it & d o I | 1 |

| § I8 f o i vy {7 § i B | ! | ; ! E ] i
CATCH: Without special care (setting priors, picking | | | 3 bl
good examples) dictionary elements often BN TRY n
i P 0 I O B
represent parts of sources and/or mixes of ; l ERNEEARE
sources. IE we didn’t actually do source isolation. | | b E :_ ; £ P }

. . . . [ 78 ;
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NMF & REPET

* Both assume a lower-rank encoding of (some of the)
data is possible

* NMF/PLCA assume a fixed size spectral dictionary
prior to processing
Picking a good dictionary size is a black art

 REPET’s “dictionary” size depends on the period of
the audio



Improving NMF with Repetition

* Could we find a good dictionary size for NMF
by finding the period of repetition prior to
processing?

* Could we seed the dictionary for NMF with

the repeating spectrum segment calculated by
REPET?



Using Spatial Cues: DUET

e Each source location has a unique cross-channel
amplitude scaling a,, and time-shift 0,

* Find those and you can separate your sources
with a mask (e.g. DUET)




Approach: Using Spatial Cues

* Translation: Sound closer to the left ear hits
it sooner and louder. Use that.




Approach: Using Spatial Cues

* Can have more sources than microphones
e Assumes sources don’t move
* Has great difficulty with reverberation

£ 3

-




Approach: Using Spatial Cues

Can have more sources than microphones
Assumes sources don’t move
Has great difficulty with reverberation

People don’t need 2 ears to follow sounds in a mix
;. €%
« : n
'F :J? ,x '(}
$,(7) ~

s5(1) i]\

\
@
| Still works!



Repetition and Duet

* Could the same game played with ICA be done
with DUET?

— Move a single microphone around
— Align the recordings at the period of repetition
— Run DUET

e Could we combine DUET and REPET to
overcome reverberation issues?



If you like any of those ideas...

....maybe you’d like to collaborate?

Our contact information is at the start of these
slides.
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Conclusions

Repetition is a fundamental element in generating
and perceiving structure in audio

Repeating structure can be used to effectively
segment audio scenes

Algorithms based on repetition are related to those
seeking low-rank decompositions

The assumptions they make are different than
existing approaches

Therefore, they complement existing approaches



Getting Source Code

* REPET

http://music.cs.northwestern.edu/research.php?project=repet

* REPET SIM

http://music.cs.northwestern.edu/research.php?project=repet

* RPCA

https://sites.google.com/site/singingvoiceseparationrpca/




Questions/Discussion
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