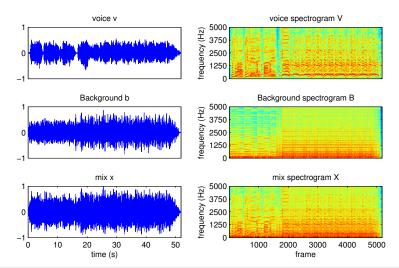
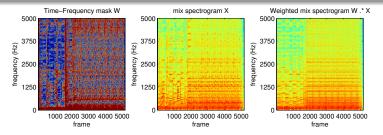
Adaptive Filtering for Music/Voice Separation Exploiting the Repeating Musical Structure Adaptive REPET

Antoine Liutkus¹, Zafar Rafii², Roland Badeau¹, Bryan Pardo², Gaël Richard¹


¹ Telecom ParisTech. CNRS LTCI, Paris, France ²Northwestern University, EECS Department, Evanston, USA

•0 000 Notation

Time-Fequency masking


Source separation: notation

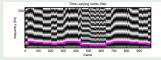
Time-Fequency masking

Separation as an adaptive filter

- Separating a source = filtering the mixture
- Time-varying filter w_t : different for each frame t
- Element-wise weighting of the STFT
- Here: $W \in [0\,1]$

Time-frequency masks

Time-Fequency masking

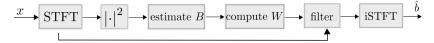

Time-Frequency masks

interpretation

- $W(f,t) \in [0\,1]$: Proportion of the source of interest in the mix.
- $W(f,t) \approx 1 \Rightarrow \text{TF bin } (f,t)$ mostly comes from source of interest
- $W(f,t) \approx 0 \Rightarrow \text{TF bin } (f,t)$ mostly comes from **other sources**

Comb filter

■ Given a pitch contour $f_0(t)$, keep multiples of $f_0(t)$


000

Time-Fequency masking

Beyond the harmonic model

Modeling the accompaniement

- Most studies focus on harmonic voice models:
 - Voice assumed harmonic and predominant
 - pitch is estimated
 - Filtering e.g. through comb filters
- Problems:
 - breathy voices ? Consonants ?
 - Loud accompaniement ?
- We focus on a model for the background B!

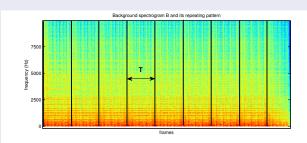
000

Time-Fequency masking

Filtering given the model

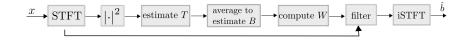
From the B to the mask

Mask from B alone


Imagine X and B are available. What is W?

- X(f,t) close to $B(f,t) \rightarrow W(f,t) \approx 1$
- X(f,t) far from $B(f,t) \rightarrow W(f,t) \approx 0$
- Binary Mask: 0 or 1 based on a thresholding of $\frac{B}{V}$
- Soft mask:

$$W(f,t) = \exp\left(-\frac{\left(\log X(f,t) - \log B(f,t)\right)^2}{\lambda^2}\right)$$


Repeating patterns in music modeling B

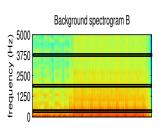
Musical background is repetitive!

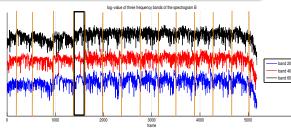
- Given several repetitions, average to estimate B
- and filter it out!

REpeating Pattern Extraction Technique (REPET)

Original REPET algorithm

- Estimate a fixed repeating period T
- Estimate the fixed repeating pattern through averaging
- Compute W as a binary mask

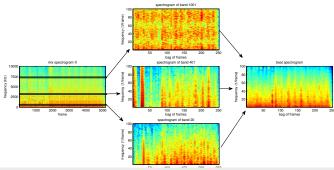

Advantages and limitations of REPET


- Advantages
 - Fast
 - Efficient for constant rythmic patterns (electro, short excerpts)
- Limitations
 - Repeating pattern is changing over time
 - Binary masking leads to artifacts
- We extend REPET to varying repeating patterns

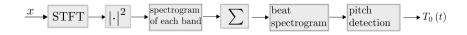
Time-varying period

Pseudo-periodic patterns

- Patterns are not fixed:
 - period may vary
 - pattern may vary
- Frequency bands of B are assumed pseudo periodic, with the same period


Varying patterns

Time-varying period

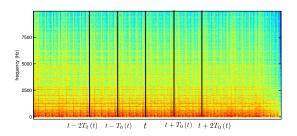

Beat-spectrum estimation

Estimating the period (1/2)

- Perform a short-term analysis of each band
- Add them all together
- Beat spectrogram : rythmic content of the signal

Pseudo-period estimation

- Compute the beat spectrogram
- Estimate the time-varying repeating period
- Any frequency-based pitch detector will do!

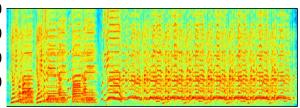

Model and estimation

Background model given $T_0(t)$

Background model

 $\forall t$, accompaniement is periodic for 2K periods around t:

$$B(f, t) = B(f, t + kT_0(t)), k = -K \cdots K$$


Model and estimation

Voice model

Voice model

voice V is assumed to be sparse

voice spectrogram V

Background estimation estimation of B given X and $T_0(t)$

- Sparsity of *V*
 - Most of the time, $V \approx 0 \Rightarrow X \approx B$
 - Sometimes, V active \Rightarrow **outliers**

mix spectrogram X

5000
3750
2500
1250
0

$$\hat{B}(f,t) = \text{median}\left[X(f,t+kT_0(t))\right]_{k=-K\cdots K}$$

000

Model and estimation

Adaptive REPET Block diagram

Demonstration

Demonstration on different musical genres

Conclusion

- Adaptive algorithms for complete recordings
- Fast (approx. reading time)
- Extensions : from repetitivity to self-similarity