Detecting Stealthy Spreaders Using Online Outdegree
Histograms

Yan Gao, Yao Zhao, Robert Schweller, Shobha Venkataramanf,
Yan Chen, Dawn Songt and Ming-Yang Kao,
Northwestern University, Evanston, IL 60208, USA,
tCarnegie Mellon University, Pittsburgh, PA 15213, USA

ABSTRACT

We consider the problem of detecting the presence of a suffi-
ciently large number of hosts that connect to more than a certain
number of unique destinations within a given time window, over
high-speed networks. We call such hosts stealthy spreaders. In
practice, stealthy spreaders can be symptomatic of botnet scans
or moderate worm propagation. Previous techniques have fo-
cused on detecting sources with an extremely large outdegree.
However, such techniques will fail to detect spreaders such as
bot scans in which each scanning host will scan only a moderate,
fixed number of destinations. In contrast, our scheme maintains a
small, fixed size memory usage, and is still able to detect stealthy
spreader scenarios by approximating outdegree histograms from
continuous traffic. To the best of our knowledge, we are the first
to study the efficient outdegree histogram estimation and stealthy
spreader detection problems. Evaluation based on real Internet
traffic and botnet scan events show that our scheme is highly ac-
curate and can operate online.

1. INTRODUCTION AND MOTIVATION

The ever-increasing link speeds and traffic volumes of the
Internet make monitoring and analyzing network traffic a
challenging but essential service for managing and securing
ISPs and enterprise networks. The basic goal of network
monitoring is to detect traffic changes, and indicate attacks,
misbehavior, victims in terms of change patterns.

There are two highly desirable performance features for
high-speed network monitoring: 1) a small amount of mem-
ory usage (to be implemented in SRAM); 2) a small number
of memory accesses per packet [1, 2]. Many data stream-
ing algorithms have been proposed to this end. For exam-
ple, online entropy estimation approaches [3, 4] are intro-
duced to detect if there exists unexpected changes in the
network traffic and report alarms if an anomaly is found.
However, entropy itself is an aggregated metric, which loses
some important information that describes the distribution
or histogram. In general, online histogram estimation, e.g.,
algorithms [5, 6], can provide more information on the fea-
tures of network traffic. However, these algorithms cannot
record the number of unique items in the data stream. For
instance, if a source has several parallel connections to the
same destination, its histogram will have no difference from
the one in which a spreader connects to multiple destina-
tions in the recording period.

Recently, streaming schemes [7, 8] have been proposed

to detect superspreaders, which are sources that connect to
a large number of distinct destinations. This work is moti-
vated by the observation that a compromised host doing fast
scanning for worm propagation often makes an unusually
high number of connections to distinct destinations within
a short time.

Nowadays, botnets, each being an army of compromised
hosts, dominate the Internet attack landscape. A botnet
is controlled by a botmaster and usually scans at a much
slower rate in order to evade detection. Bots engaging in
such activities constitute stealthy spreaders. In general,
stealthy spreaders are characterized by a number of sources
sending a certain number of connection requests (often un-
successful) to different destinations within a short time pe-
riod. The number of scans by any single source is lower
than the heavy hitter threshold, but a great number of
such sources combined together can constitute a large scale
attack. Stealthy spreaders can be responsible for mod-
erate worm propagation, or botnet scanning. Therefore,
early detection is extremely important. As analyzed in Sec-
tion 4.3, existing superspreader schemes will be too expen-
sive to detect such stealthy scans. In general, the su-
perspreader detection problem is a special case of spreader
detection. Stealthy spreader detection in particular poses a
much greater challenge and currently no quality streaming
methods exist for high speed networks.

In this paper, we study the problem of detecting stealthy
spreaders with constant small memory and few memory
accesses per packet, in real time. Our algorithms detect
stealthy spreaders by approximating the outdegree histogram
from continuous traffic. The outdegree histogram is a his-
togram of the number of hosts that connect to a certain
number of distinct destinations. By using the outdegree
histogram as the feature, we argue the change of approxi-
mate histograms observed in flow traces reveals the presence
of anomalies, which may be caused by stealthy spreaders.

Our spreader detection system consists of two phases:
the data recording phase and the spreader detection phase.
For the former, we propose two algorithms: sampling and
coupon collecting-based. For the latter, we use linear regres-
sion to estimate the average outdegree of a spreading event
(e.g., a botnet scan) and the number of unique sources for
this event. To the best of our knowledge, we are the first to
estimate the distribution of host outdegree online and use
it for stealthy spreader detection.

We evaluate the detection accuracy and performance of

our approaches with real Internet traffic traces from an
0OC48 network collected by the Cooperative Association
for Internet Data Analysis (CAIDA) and real botnet scan
events observed in a class B network. Our experimental re-
sults show that when the scan flows constitute more than
2% of the total number of flows in the traffic, our detection
algorithm can accurately identify the scan intensity as well
as the average scanning outdegree of the scanners. As for
the real scan event, we can accurately detect it with less
than a 10% error on the scan outdegree and intensity when
buried in most of the normal CAIDA traffic traces.

The outline for the rest of the paper is as follows. In
Section 2 we dicuss related work. In Section 3 we present
our problem formulation and the system architecture. In
Section 4 we present our detection algorithms. In Section 5
we discuss the evaluation methodology and show the results.
Finally, we conclude in Section 6.

2. RELATED WORK

Recently there has been an interest in using entropy and
traffic distribution features for different networking mea-
surements and intrusion detection applications [9, 3]. Com-
puting the entropy of a distribution conceptually provides
much greater sensitivity than the pure volume based meth-
ods. Chakrabarti et al. [3] proposed an algorithm to esti-
mate “entropy norm” and entropy itself. Guha et al. [4] out-
lined algorithms estimating entropy and other information-
theoretic measures in the streaming context, but they re-
quire knowledge of the underlying distribution. Lall et
al. [9] used a similar algorithm as [3], but modified and
extended it with the sieving approach. They provide unbi-
ased estimates of the entropy, and do not make strong as-
sumptions regarding the underlying distribution. However,
entropy itself is an aggregated metric, which loses some con-
crete information that describes the distribution. Further,
entropy does not record the number of unique items in the
data stream.

Streaming algorithms have been used in the networking
area to estimate the frequency moments and flow size dis-
tribution, and to identify heavy-hitters or heavy-distinct-
hitters. For example, [7, 8] propose some good streaming
schemes to detect superspreaders, which are sources or des-
tinations that have communicated with a large number of
distinct destinations or sources during a small time interval.

Work has also been done on the problem of maintaining
approximate optimal online histograms [5, 6]. In particu-
lar, [6] provides provably efficient online algorithms. How-
ever, in this work the histograms considered are piecewise
constant approximations of the function mapping keys (IP
addresses) to traffic volume. As this type of histogram is
very different from the type considered in this paper, the
work is not directly applicable.

Our work makes use of previous distinct counting al-
gorithms [10, 11, 12]. With distinct counting algorithms,
for example, one can accurately count how many distinct
sources appear in a data stream with very little memory.
However, it is not a simple task to directly extend it to
detect stealthy spreaders, which is the focus of our paper.

3. ONLINE OUTDEGREE HISTOGRAM DE-
TECTION SYSTEM

In this section we introduce the problem definition of find-
ing outdegree histograms as well as describe the high level
architecture of the detection system.

3.1 Problem Definition

At a high level, we aim to solve two problems: (1) report
an approximation of the outdegree histogram of the input
data stream; (2) directly detect the presence of stealthy
spreaders without necessarily reporting the complete out-
degree histogram. Moreover, because of the large volume of
network traffic, constant-space and single-pass algorithms
are desirable. For both of these problems we design online
single-pass algorithms that obtain information about the
outdegree histogram of the data in constant space.

Formally, we describe our problem as follows. Let .S be an
input stream of source-destination pairs, and z be a positive
integer whose exponential powers define the buckets of the
histogram (z = 2 by default in our implementation). For
bucket i, let W; be the set of sources such that a source s is
in W; if and only if the number of unique destinations that
s connects to is at least z* and at most 271 — 1. Let m; =
|W;| and let ¢, be the number of sources that connect to r

P
distinct destinations. Then m; = Z qr. The problem
r=z"%

of creating an approximate histogram is to estimate m; for
0 <17 < d. We note that our algorithm can be easily adapted
to other forms of dividing buckets, not just buckets of an
exponential series. However, this division ensures that a
small (logarithmic) number of buckets is sufficient to cover
all ranges of outdegree.

In this paper, to accurately detect stealthy spreaders,
we work in the context of change detection. In practice,
network traffic changes constantly, making the outdegree
histogram of the network traffic, i.e., the absolute values
of m;, change as well. Therefore we may not able to tell
whether stealthy scans occur simply from the outdegree his-
togram. Change detection is a common approach used to
detect anomalous activities. We consider the change of the
outdegree histogram of two time intervals for detecting a
stealthy scan.

Let m; ; denote the number of distinct sources that con-
nect to n € [z%,z*T1 — 1] distinct destinations within the
first of two temporally adjacent data streams. Similarly we
define mg; for the second stream. We are interested in the
value mj = mq ; — mo,.

In this paper, we mainly focus on the application of coop-
erative stealthy scan detection. Experimental evidence has
shown that the outdegree of a cooperative stealthy scan typ-
ically follows a quasi-normal distribution (See Section 5.3.3).
Thus, in practice a scan constitutes a large surge within
a single bucket, with relatively little contribution in other
buckets. Therefore, we assume that in the absence of a co-
operative scan, the change histogram value m/ should be
below some small threshold ¢;. In contrast, in the presence
of an attack within bucket ¢, the change value m; should
be large, above some threshold c¢;,. Our goal is to detect

|
|
Real Online | Detection
traffic histogram | daftack jSurrent Fo;ﬁ%a,ﬂ Results
stream computing
/ 5/ .
| | —.
| | — /-Eoreca_st
| UpdateL intensity /
~— A -)
Y | v

Recording phase

Detection phase

Figure 1: System architecture

when some m/ exceeds ¢, while ignoring the normal case
in which each m/ is below ¢.

3.2 System Architecture

As the first step, we aim to detect classical TCP stealthy
spreaders, such as worms and scans. We choose to build
the histogram for unsuccessful connections as the basis for
detection. In current network traffic, hot spots in P2P
networks, web servers and game servers all exhibit simi-
lar characteristics as scanning in that one source IP may
send out a large number of connections to different desti-
nation IPs. However, most of the connections of P2P su-
per nodes, web servers or game servers are successful. On
the contrary, (random) scanners usually have a large num-
ber of unsuccessful connections due to unused IPs or fire-
walls. Therefore, to avoid false alarms, we only consider
unsuccessful connections. To deterministically determine if
a connection is successful or not, one needs to store some
state information while receiving a SYN packet and wait-
ing for the SYN_ACK packet. This may consume a large
volume of memory, even if sampling approaches are intro-
duced. Therefore, we instead build two approximate his-
tograms. One is used for all the connections (CHIS) (in-
cluding both successful connections and unsuccessful con-
nections). This is constructed by counting distinct SYN
packets. The other is only used for successful connections
(SHIS), i.e., the connection includes a SYN_ACK packet as
well as SYN packet. This is constructed by counting the
distinct SYN_ACK packets. If there are no spreaders in the
traffic, the histograms of these two data streams are close
to each other. In contrast, anomalies will cause different
changes in the histogram. For example, superspreaders will
introduce changes in large buckets, while stealthy spreaders
will make changes in middle buckets of the histogram.

The system as a whole consists of two key phases, the
recording phase and the detection phase, as Figure 1 shows.
In the recording phase, we propose two efficient algorithms,
as mentioned in Section 4.1, to build two interim data struc-
tures online. One is the distinct counting structure for all
the connections (CDC), the other is the distinct counting
structure for successful connections (SDC). These two in-
terim data structures can be used to construct the outde-
gree histogram for CHIS and SHIS respectively. Our basic
scheme is to detect anomalous stealthy spreaders by mea-
suring the distribution change of hosts’ outdegree in real
time. In practice, to reduce memory consumption and de-
tection speed, we can alternatively use the interim data
structure directly for detection without loss of accuracy. We
show the relationship between the interim data structure
and the outdegree histogram in Section 4.2.1.

Therefore, at the end of each time interval, we subtract
SDC from CDC to form the distinct counting structure for
unsuccessful connections (UDC). We then use our stealthy
spreader detection scheme to get the estimation of outde-
gree and intensity (the product of the number of scanners
and their outdegree) of the spreader. By considering the
possible background noise of the traffic, a time series anal-
ysis method is applied to obtain the forecast change of the
spreader intensity. If the error between the current spreader
intensity and the forecast spreader intensity is larger than
the threshold, and the outdegree is larger than our lower
bound, there may exist stealthy spreaders, and vice versa.

4. DETECTION ALGORITHMS

In this section we describe our algorithms for the detec-
tion of cooperative stealthy spreaders. As the first step, we
aim to detect some classical spreaders, such as TCP worm
propagation and scans.

Our detection algorithm has two phases; the recording
phase and the spreader detection phase. In the record-
ing phase, the detector captures consecutive packets at a
peering point in each interval and creates a detection data
structure. Our algorithms for this phase are described in
Section 4.1. In the spreader detection phase, we apply lin-
ear programming, linear regression, or other heuristics to
extract approximate outdegree histogram information from
the sampling data structure. Our spreader detection al-
gorithms are described in Section 4.2. These include algo-
rithms for reporting approximate histograms (Section 4.2.1)
and for directly detecting stealthy spreaders (Section 4.2.2).

4.1 Recording Phase

In the recording phase our system creates a vector of
values [; using either a sampling algorithm or a coupon col-
lecting based algorithm. From this vector, approximate his-
togram and spreader detection information can be obtained
in the spreader detection phase. Both algorithms achieve a
vector with the same expected value and thus can be used
interchangeably in the spreader detection phase. Both tech-
niques also use the same amount of memory.

However, there is a tradeoff between speed and accuracy.
The sampling algorithm updates a smaller number of coun-
ters per packet in the data stream and is thus faster. How-
ever, the coupon collecting algorithm creates a vector of val-
ues whose variance from expectation is smaller, creating a
better approximation interim structure. The description of
the two algorithms is as follows. We note that in our exper-
imentation we focus on the coupon collecting algorithm as
the improvement in accuracy is substantial and the speed,
while slower than sampling, is fast enough in practice.

So S1

1 27 22 2

&

2-d

! e !

(sre, go(dst))
(src g1(dst)
(src gz(dst)
(src, g,(dst))
(sre gd(dst)

(sre, dst)

Figure 2: Example recording process of the sampling algo- Figure 3: Example recording process of the coupon collecting

g 8 &
& A &
(sre, dst)
23< h(src)<22
rithm
Let F be a (¢/,¢')-approximate distinct counting algo-
rithm, i.e., given a stream that contains X unique ele-

ments, the algorithm F' outputs an estimate X for X , and
Pr|X — X| < €X] >1-4¢". Let h be a uniform random
hash function that maps (src,dst) pairs to [0,1). That is,
each input is equally likely to map to any value in [0, 1).

4.1.1 Sampling Algorithm

Figure 2 shows an example how the sampling algorithm
works. Within each time interval, when a packet with a
source-destination pair (src,dst) arrives, we first compute
x = h(src,dst). For 0 < i < d, if < z7%, we insert the
source src into the substream S;. In this way, we sample
each packet and create d+1 substreams Sy, ..., Sg. We then
use the (¢’,0’)-approximate distinct counting algorithm F
to estimate the number of distinct sources in each substream
S;, denoted as [;. Our algorithms are based on extracting
information about the histogram vector m; from the vector
l;. These techniques include either computing a complete
approximation to the m; vector, or detecting the presence
of a substantial change in m;.

Let L denote the vector of (lg,...,lq), and let M denote
the vector of (myg,...,mg). We denote the expected value
of I; as I;, and denote the vector of (ly,...,lq) as L.

Assume a source s connects to r unique destinations within
the given time interval. Thus, s will be sampled into the

substream S; with probability 1 — (1 — %) and variance
1 1
1——=)"(1-(1—--=)"). 1
(=== 1)

Therefore,

=Yl - (-2

Based on the relationship between m; and ¢, , we have:

S om0 <hs Y om-0-)7
0<j<d
3)

0<j<d &

From this analysis, we see that the [; vector and the m;
vector are closely related. To compute approximate his-
tograms, we can use linear programming to obtain feasible
approximations for each m;. However, in practice this tech-
nique yields a wide space of values for each bucket. In Sec-
tion 4.2 we discuss heuristic methods for effectively obtain-
ing information about the m; distribution for the detection
of anomalies. Further analysis on the effect of spreaders on

(2)

algorithm

the sample values [; are given in the Appendix A.

4.1.2 Coupon Collecting Algorithm

The variance of the random variables [; in the first al-
gorithm is high relative to expectation. This potentially
leads to inaccurate estimations. The second sampling algo-
rithm provides a modified technique designed to reduce the
variance and provide better estimations.

When a packet with a source-destination pair (sre,dst)
arrives, we first use d uniform random hash functions (i.e.,
gi(dst)) each hashing dst to an integer in [1,2¢],0 < i < d.
We create d empty substreams 5;, 0 < ¢ < d. For 0 <1 < d,
we get D; = g;(dst) and concatenate src and D; into a
new number SrcD, and then insert SrcD into substream
S;. Figure 3 visualizes how the coupon collecting algorithm
processes every input. We then use an (€, §’)-approximate
distinct counting algorithm F' to estimate the number of dis-
tinct sources in each substream S;, denoted as k;. Assume
the number of sources that communicate with r different
destinations is ¢,.. We then have a relationship between k;
and ¢, . Consider a source src which has r distinct desti-
nations. For substream S; and the r destinations, we insert
at least 1 and at most min(z?,r) different SrcD numbers
into S;. Let X, be the random variable that shows how
many different numbers will be added into S;. Counting
X, is actually a variant of the classical coupon collect-
ing problem [13]. One can imagine that a src has 2* kinds
of coupons and one g;(dst) is a kind of collected coupon.
Therefore, we have that [13]:

B(Xi) = 20— (1= 2)") 4
VAR(X;,) = (zé——2)(zi——1)(zéj I
(21—1)(ZZ:1) 1 (Z _1) (z;l)Zr—Q

Therefore, the expectation of k;, k; is:

Zr QTE(Xi,r))
a2 (1 (Z5))
= 2zt ll

From the above equation, we can see that the coupon
collecting algorithm and sampling algorithm have the same
expected output (if we ignore a constant factor). However,
the variance of the outputs of the two algorithms are differ-
ent (See Eq. 1 and Eq. 5). Numerically, the coupon collect-
ing algorithm has much smaller variance than the sampling
algorithm, making it a much more accurate estimator.

ki =

4.2 Spreader Detection Phase

In this section, we consider the two separate problems
of reconstructing the outdegree histogram and of directly
detecting stealthy spreaders. Our primary technique for
histogram reconstruction is to use linear programming. We
also discuss an alternate heuristic for reconstruction. For
stealthy spreader detection, we apply a linear regression
based heuristic to report information about any stealthy
spreaders present in the data stream.

4.2.1 Outdegree Histogram Construction

To reconstruct the outdegree histogram, we rely on solv-
ing a linear program. Additionally in this section we discuss
a possible alternate heuristic for histogram reconstruction.

Linear Programming Method.
From Eq 3, we have the linear inequality system:

B x M <L < Ax M,where (7)
1 4 1 L+l
A= [aij] = (1 ;) - (- ;) s (8)
B=lb]=(01-)" (- L1y (9)
= Mgl = i S

Due to the sampling error and counting error from the
(€', ¢')-approximate distinct counting algorithm F', the val-
ues of I; deviate from the expected value [; slightly, for
0 < i < d. However, from [; we can estimate the lower
and upper bound of /; [10]. Thus, we have an additional
linear inequality system for L:

R
1+e)14+e) "~ (1—€)(1—¢)

where €; = \/M,forogigd.

This linear inequality system from Eq. (7) and Eq. (10),
together with the constraints ; > 0, m; > 0, for 0 < i < d,
defines a convex hull. We can use linear programming to
find a bound on this convex hull, by finding lower and up-
per bounds for m; for 0 < ¢ < d. In particular, for each
1 we can solve the problem with the objective function set
to minimize m;, and denote the output lower bound for m;
as u;, and the output upper bound for m; as v;. A natural
heuristic is to compute the mean of the upper and lower
bound derived for each m;. Our experiments show that
this heuristic approach obtains a reasonably accurate his-
togram estimation for normal network traffic, but it fails to
accurately estimate the outdegree histogram for anomalous
traffics (See Section 5.2).

Jfor 0 <4 <d, (10)

Minimum Distance Method.

Another approach is to find a vector M such that the
distance between AM and the input L is minimized. This
effectively discards the error factor introduced by sampling.
The intuition here is that by discarding this error factor, we
restrict our set of possible M to those that, in expectation,
generate a L that is close to the input L.

However, the matrix A is an ill-conditioned matrix whose
condition number,i.e., the ratio of the largest to smallest

18000
—Ki
16000 .
— Regression
14000
12000
10000
8000
6000
4000
2000

Value of counting

2000L1 2 % 4 5 6 7 8 9 10 11 12

-4000

Bucket 1 to bucket 12

Figure 4: Example of linear regression.

singular value in the singular value decomposition, is very
large [14]. Therefore, even when very small amounts of
noise are introduced, the solution of the linear equations
may differ a lot from the true values [15]. In other words,
the estimation of M could be sensitive to noises and hence
very inaccurate.

4.2.2 Sealthy Soreader Detection

As shown in Eq. 6, the expectation of k; is determined
by the outdegree distribution (i.e., ¢;) of the sources. We
assume that in the change between two intervals of normal
traffic, all ¢; are 0 or very close to 0; while in the change
between one interval of normal traffic and anomalous traffic,
most ¢; are close to 0 but have a peek around ¢;. For
example, a real scan event from a class B honeynet shows
this feature (see Figure 7(a)). Therefore, we consider the
ideal case that only one g; is nonzero and propose this linear
regression approach. However, it is worth mentioning that
this approach works quite well for real cases.

Take Figure 4 as an example, which is computed from
two continuous traffic intervals of CAIDA data (See Sec-
tion 5.1 for details of the data). Using the algorithm de-
scribed in 4.1.2 we obtain the values of k;(0 < i < d). Let
MAXp be the maximum outdegree occurring in a stealthy
scan. For each 0 < j < MAXp, we use linear regression
to find the g; that fits to the values of k; best. We use the
mean squared error as the fitting metric, i.e.,

) 21 . 9
MSE;j= " (ki —q;-2'(1 - (——))*

Zl
0<i<d

(11)

We take j such that MSE; = min; MSE; as our detection
result and report that the spreaders have j outdegree on
average.

We can also consider more complicated cases, e.g., when
there are two peeks in ¢;’s distribution. With a simple ex-
tension, we can compute the j; and jo that have the best
linear regression in the sense of mean squared error. Gen-
erally, the best mean squared error becomes smaller as we
allow more ¢; to be nonzero. However, we are solving an
ill-conditioned inverse problem, and the best mean squared
error does not mean the best solution even when little noise
is introduced. Once we allow many nonzero g¢; values, the
best linear regression result is very inaccurate. In prac-
tice, we believe most of the time there is one cooperative
stealthy scan. Therefore we only try linear regression for
one nonzero ¢; and two nonzero ¢;. If we do not see obvi-

ous improvement from using two nonzero g; over using one
nonzero ¢;, we take the result of one nonzero ¢;.

4.3 Memory Usage for Recording and Spreader
Detection

Assuming the number of buckets and the source/destination

space is a constant, our algorithms use constant memory.
A (¢, 4’)-approximate distinct counting algorithm typically
uses O(clog(m)) memory where ¢ is a constant related to €’
and 0’ and m is the maximum number of possible distinct
elements (in our case 24, the total number of all possi-
ble source-destination pairs). In particular, 1KB memory
is enough to achieve within 5% standard error using the
probabilistic counting algorithm introduced in [10]. We use
2(d+ 1) (d = 12 in our experiments) data structures for
distinct counting, and therefore we use constant memory
which is O(c-d-log(m)) (i.e., about 24KB in experiments).

In contrast, schemes such as [16] maintain for each source
a distinct counting data structure. This yields a memory
usage of O(Sb), where b is the size of the distinct counting
data structure and S is the number of distinct sources in
the data stream. In the worst case, S can be as large as N,
the size of the entire data stream.

A second technique for detection of stealthy spreaders is
to use the superspreader technique [7] set at a threshold
small enough to detect stealthy attacks. This technique is

capable of reporting each key that contacts between % and

% with probability at least 1 — § using memory at most

O(%ln%). However, to detect stealthy attacks requires
setting k£ to be small, making the memory usage closer to
N. Thus, this technique is infeasible for the detection of

stealthy spreaders.

5. EVALUATION
5.1 Evaluation Methodology

In this section, we evaluate our detection system with
0OC-48 backbone traffic traces collected by the Cooperative
Association for Internet Data Analysis (CAIDA) on Au-
gust 14th, 2002. The data contains packet headers collected
at large peering points, and consists of about 3-hour 100G
anonymized tcpdump records. The average packet rate is
191K/s. The average flow rate is 3.75K/s, and standard
deviation is 0.16K/s.

We also consider a real scanning event collected from one
class B honeynet. The scanning event happens on Jan 7th,
2006, and targets port 23. It lasts 2.5 hours, and has 1,607
unique sources, and 1,700,236 scan sessions. On average,
each source sends 7 scans/min.

We have set the time interval to be 5 minutes and 1
minute in the experiments. Due to the difference of length
between the two time intervals, the outdegree we are inter-
ested for stealthy spreader detection is different. For ex-
ample, the outdegree we are interested in for the 5 minutes
interval is from 2% to 219, while it changes to 22 to 2° for the
1 minute interval. Since there is no substantial change in
the accuracy of the detection results, unless denoted other-
wise, the default time interval for the following evaluations
is 5 minutes. We apply two methods to simulate stealthy

7000 : =)
coupon collection based ——
sampling based -=--%---
6000 | ground truth s |
¢ 5000 R
e
3
Q 4000 B
S
g 3000 | g
£
3
Z 2000 - R
1000 | R
0
0 2 4 6 8 10 12

Buckets

Figure 5: Comparison of the real outdegree histogram with

the estimated outdegree histogram by two algorithms

spreaders in evaluation section. With the background nor-
mal traffic traces from CAIDA, the first method is to syn-
thetically inject different intensities of scanning events into
CAIDA traces. The second method is to insert a real scan-
ning event collected from one class B honeynet into the
CAIDA traces.

For both the sampling based and coupon collecting algo-
rithms, we set z = 2, and d = 12. In our evaluation, we
also try different settings for the parameter z and d, such
as z = V2, d = 24, and z = v/2, d = 48. The detection
accuracy is almost the same for these parameter changes.
Thus we use d = 12 as the default setting to demonstrate
the results below. The data recording phase of the system
builds online the CDC and SDC structures for each time
interval. At the end of each interval, we subtract SDC from
CDC, and obtain a UDC structure. Stealthy spreader de-
tection is performed to estimate the outdegree and intensity
of spreaders. We then apply the method of exponentially
weighted moving average (EWMA) to estimate the fore-
cast error and determine whether there exists a stealthy
spreader.

The evaluation metrics we used in this section include
the histogram reconstruction accuracy, detection accuracy,
and online performance. In particular, for detection accu-
racy, we consider relative error to measure the accuracy of
outdegree estimation and the intensity estimation. The on-
line performance metric consists of memory consumption,
memory accesses per packet, and recording and detecting
speed.

5.2 Histogram Reconstruction Evaluation

While it is not necessary to build the outdegree histogram
from the network data stream to perform stealthy spreader
detection, we believe accurate histogram approximation is
still important and may have other applications. In this
section, we compare the accuracy of reconstructed outde-
gree histograms for our two proposed algorithms with the
ground truth.

Since traffic trends are similar for all intervals of nor-
mal traffic, we only show one interval example in Figure 5.
From this figure, we observe that two estimated outdegree
histograms are close to the real one, and estimation er-
ror of reconstruction for both algorithms is quite small for

0.6 100

100

attack intensity = 1% ——
£ 3%
2 05¢| 5%
o 10% —_ 80 - —_ 80
s g g
g 0.4 o o
g g g
o1 -] 60 - T 60
g o3
5 2 g
2 02r g g
8 - Z 40 2 40 -
c = =
S
S o1l E E
5 - S 5
o O 20} o . 1 ° 20t itensi 1
g & scan intensity of 1% —+— scan intensity of 1% —+—
0 i scan intensity of 3% - scan intensity of 3% -
Lt scan intensity of 5% - ~ scan intensity of 5% -
o e i scan intensity of 10% 0 S) scan intensity of 10%
0.6 0.8 12 1.4 16 0.6 0.8 1 12 1.4 16

Relative error

Relative error

Relative error

(a) The relative error of scan outdegree estima- (b) CDF of relative error for outdegree estima- (¢) CDF of relative error for spreader intensity

tion tion

estimation

Figure 6: The effect of scan intensity ratio to detection accuracy for synthetic scans.

normal traffic. In order to show the accuracy of recon-
struction, we further introduce Kullback-Leibler divergence

Dl
Du(P||Q) = ZP(i)lOgQZ;, which is a natural distance

measure from a probability distribution P to a probability
distribution Q. We calculate the divergence between the es-
timated histogram obtained from the sampling based algo-
rithm and the real histogram obtained from accurate count-
ing in all the intervals within 3-hour CAIDA data. As a
result, the mean of divergence is 0.063, and the standard
deviation is 0.023. Similarly, we calculate the divergence
between the estimated histogram obtained from the coupon
collecting algorithm and the real histogram. The mean of
divergence is 0.049, and the standard deviation is 0.0028.
This illustrates that the reconstruction works well for both
algorithms within normal traffic, and the coupon collect-
ing algorithm is more accurate than the sampling based al-
gorithm. Moreover, the detection results based on interim
structures also confirm that the coupon collecting algorithm
is much better than the sampling based algorithm. There-
fore, to save space, in the following evaluation we focus on
the results for the coupon collecting algorithm.

While histogram reconstruction works well for normal
traffic, it has large estimation errors when applied to anoma-
lous traffic. Therefore, to improve speed and accuracy, we
use the interim structures to detect spreaders, instead of es-
timating the values for the outdegree histogram in practice.

5.3 Evaluation of Spreader Detection

5.3.1 Threshold Setting of Change Detection

We apply the EWMA forecast model for change detec-
tion. By default, we use spreader intensity, which is the
product of the number of scanners and their outdegree, as
the forecast value for EWMA. We apply the same detec-
tion scheme to 33 5-minute intervals of normal CAIDA data
traces. We remove three intervals with obvious changes and
keep 30 intervals as a training dataset. According to the
statistics of this training dataset, we set the threshold for
intensity as 5000, which is the upper bound of intensity in
this training dataset. On average, there are 1.1M flows in 5
minutes, and our threshold accounts for 0.45% of the total
traffic flows in each interval. If the difference of the spreader
intensity between the current interval and the previous in-
terval is larger than our threshold, we will further use the
outdegree estimation value. We mainly focus on anomalies,

which have outdegree larger than 2%, and ignore the smaller
spreaders, which may not be anomalies.

5.3.2 Smulation with Synthetic Stealthy Scan

In this section we show the relationship between detec-
tion accuracy and the injected scan intensity ratio. We
define the scan intensity ratio as the ratio of total scan
flows to the total flows of normal traffic in that interval.
In order to show the detection accuracy affected by scan
intensity ratio, we synthetically inject scanning flows into
CAIDA traffic with scan intensity ratios from 1% to 10%,
and change the spreader degree from bucket 5 (the lower
bound 2%) to bucket 10 (the upper bound 21°). We show
the effect of scan intensity ratio in Figure 6(a). Here the
relative error is defined as the ratio of the estimated out-
degree to the real spreader outdegree. From the figure, we
can see that the accuracy for a 3% scan intensity ratio is
much better than for a 1% scan intensity ratio. Since we
choose the threshold of intensity as 5000, there is no false
positive in our detection. The false negative rate for a 1%
scan intensity is 17.8%, while that for a 2% scan intensity
is 0. Combined with the concrete statistics in Table 1, with
the scan intensity ratio increasing from 1% to 3%, probabil-
ity of outdegree estimation error within 20% increases from
33.9% to 76.1%. In fact, when the scan intensity ratio is
around 2%, we already achieve the satisfied accuracy.

Figure 6(b) and (c) show our detection results using linear
regression. In Figure 6(b), the x axis is the relative error
for outdegree estimation, and the y axis is the cumulative
distribution of the relative error. With the scan intensity
ratio increasing from 1% to 3%, the percentage of cases with
relative error range of [0.8, 1.2] increases from about 30% to
90%. In Figure 6(c), the relative error ratio is defined as the
ratio of the estimated spreader intensity to the real spreader
intensity. With the scan intensity ratio increasing from 1%
to 3%, the percentage of cases with relative error range [0.9,
1.1] increases from about 35% to 80%. These three figures
show that our spreader detection approach can accurately
detect the outdegree and the spreader intensity, when the
spreader intensity ratio is larger than 2%.

5.3.3 Smulation with Real Stealthy Scan

We also evaluate our detection scheme with real stealthy
scans from honeynet data. We insert the first 5-min data of
a real scanning event collected from one class B honeynet
into the normal CAIDA traces. Figure 7(a) shows the distri-

Scan intensity 1% 2% 3% 4% 5% 6% ™% 8% 9% 10%
Percentage within 10% error | 21.1% | 30.6% | 42.8% | 51.7% | 60.6% | 67.2% | 70.6% | 72.2% | 76.1% | 76.1%
Percentage within 20% error | 33.9% | 58.9% | 76.1% | 83.9% | 87.2% | 90% | 93.9% | 95% | 96.7% | 97.8%
Percentage within 30% error | 48.9% | 78.9% | 87.2% | 91.7% | 94.4% | 96.1% | 98.9% | 98.9% | 99.4% | 99.4%
Percentage within 40% error | 61.7% | 85% | 91.1% | 95.6% | 97.2% | 99.4% | 100% | 100% | 100% | 100%
Percentage within 50% error | 71.1% | 89.4% | 93.9% | 99.4% | 100% | 100% | 100% | 100% | 100% | 100%

Table 1: Effect of scan intensity ratio.

90

100

100

"Scans in /16‘Huney‘net LN
80

70t 80 L

60
0| 60 -
40 t

40
30

Number of scanners
Cumulative percentage (%)

20 -
20

10

e

0

Relative error of outdegree estimation ——

90 -
80 -
70
60 -
50 -
40 -
30 -

Cumulative percentage (%)

20

10

"GQ-product.txt" using 1:2 ——
0 Q-product ixt” using 1:2

0 20 40 60 80 100 120 140 160 180 200 09 095
Number of distinct destination

0.85

1 1.05 11
Relative error

115 12 0.8 085 09 0.95 1 1.05 11 115 12

Relative error

(a) The histogram of outdegree of scanners col- (b) CDF of relative errors of scan outdegree es- (¢) CDF of relative error of spreader intensity

lected in the honeynet timation

estimation

Figure 7: The effect of scan intensity ratio to detecting accuracy for real scan.

bution of the outdegree (i.e.number of distinct destinations)
of the scanners observed in the honeynet. It is clear that
most scanners have a similar outdegree, which is around
90. In fact, the median outdegree of all the scanners is 87.
Therefore, we define this event to be a stealthy spreader
with outdegree of 87.

Figure 7(b) and (c) shows our detection results using lin-
ear regression mentioned in 4.2.2. Figure 7(b) shows that
in about 80% of the cases, the relative error of outdegree
estimation is within the range [0.9, 1.1], and even in the
worst case the relative error is less than 20%. Figure 7(c)
shows that in about 90% of the cases, the relative error
of spreader intensity estimation is within the range [0.95,
1.05], and even in the worst case the relative error is less
than 11%. Therefore, we believe our spreader detection ap-
proach can accurately detect both outdegree and spreader
intensity for the stealthy spreader.

5.4 Online Performance Evaluation
5.4.1 Memory Consumption

It is very important to have small memory consumption
for online traffic recording over high-speed links in order to
make use of the fast SRAM, as well as to allow for poten-
tial implementation in specialized hardware, e.g., FPGA
or ASIC. In normal CAIDA traffic, on average there are
1M different source IPs within a five minute interval. By
using our detection method, we only need a total mem-
ory of about 24KB for traffic recording. We use the algo-
rithm introduced in [10] to do distinct counting. To achieve
the (¢/,0")-approximate distinct counting algorithm where
¢ = 0.05 and 6’ = 0.1, each distinct counting data structure
needs 1K' B memory. In total we keep 24 distinct counting
data structures for both CDC and SDC in our detection
algorithm. The detection phase does not use more memory,
and therefore we use about 24KB in total. On the other
hand, if we use a more naive method and keep distinct coun-
ters for each source IP, we need 2 x 1M x 1K B = 2G'B in

the extreme case. Thus, with the increase of unique source
IPs, the naive method will run out of memory very quickly
in this scenario.

5.4.2 Memory Access per Packet and Speed Results

Since we use the distinct counting algorithm introduced
in [10], we have 1 memory access per packet. Although we
have 24 distinct counting data structures, when establishing
these histograms in parallel or in pipeline, our system is
capable of online monitoring and stealthy scan detection.

In our experiments, we use a 3.2GHz Pentium 4 com-
puter for recording and stealthy spreader detection. For
each 5-min CAIDA data interval (about 1.1M packets), we
take about 200 seconds to parse the data and maintain the
data structures, and then take less than 0.1 seconds to de-
tect whether there is stealthy spreader. Based on our speed
results, we believe that the processing time can be substan-
tially reduced with the addition of some specialized hard-
ware (e.g. for fast hashing) and the application of paral-
lelization techniques.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we propose the stealthy spreader detection
problem and design an online outdegree histogram based
detection system. The system has two phases: the record-
ing phase and the spreader detection phase. In the record-
ing phase, we propose two randomized algorithms which
leverage distinct counting algorithms to estimate some ag-
gregate metrics of the outdegree histogram. Then, in the
detection phase, we propose the use of linear programming
to reconstruct the outdegree histogram. Based on large,
real network traces we show that the reconstructed outde-
gree histogram is quite accurate compared to the ground
truth. We further propose a linear regression based ap-
proach for stealthy spreader detection, which does not di-
rectly rely on the histogram reconstruction. Simulated with
real network traffic as the background traffic, our approach

can accurately find out both synthetic stealthy scans and
real scans extrapolated from honeynet data. Further, our
system requires a small, fixed size memory usage and has
fast processing speed, which is quite desirable for an online
monitoring and anomaly detection system.

Our work in this paper is primarily focused on detection
of anomalous traffic patterns. However, considering online
performance, e.g. memory usage, we do not keep per flow
information, thus there is no source information retained
for suspicious anomalies. Extending this work to consider
mitigation is an important direction for future work. Given
that our detection scheme can provide detailed information
about the outdegree histogram of a suspected spreader, in
particular the scan rate of a cooperative scan, it is plausi-
ble this information can be combined with offline correla-
tion analysis and further sampling to mitigate the potential
attack activities.

7. REFERENCES

[1] G. Cormode and S. Muthukrishnan, “What’s new: Finding
significant differences in network data streams,” in Proc. of
IEEE Infocom, 2004.

[2] C. Estan and G. Varghese, “New directions in traffic
measurement and accounting,” in Proc. of ACM SIGCOMM,
2002.

(3] A. Chakrabarti, K. D. Ba, and S. Muthukrishnan, “Estimating
entropy and entropy norm on data streams,” in Proceedings of
the 23rd International Symposium on Theoretical Aspects of
Computer Science (STACS), 2006.

[4] S. Guha, A. McGregor, and S. Venkatasubramanian,
“Streaming and sublinear approximation of entropy and
information distances,” in Proceedings of ACM Symposium on
Discrete Algorithms (SODA), 2006.

[5] P. B. Gibbons, Y. Matias, and V. Poosala, “Fast incremental
maintenance of approximate histograms,” in Proceedings of the
238rd VLDB Conference, 1997.

[6] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan,
and M. J. Strauss, “Fast, small-space algorithms for
approximate histogram maintenance,” in Proceedings of STOC,
2002.

[7] S. Venkataraman, D. Song, P. Gibbons, and A. Blum, “New
streaming algorithms for fast detection of superspreaders,” in
Proceedings of Network and Distributed System Security
Symposium (NDSS), 2005.

[8] Q. Zhao, A. Kumar, and J. Xu, “Joint data streaming and
sampling techniques for detection of super sources and
destinations,” in Proceedings of Internet Measurement
Conference (IMC), 2005.

[9] A. Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang, “Data
streaming algorithms for estimating entropy of network traffic,”
in Proceedings of ACM SIGMETRICS, 2006.

[10] P. Flajolet and G. N. Martin, “Probabilistic counting
algorithms for data base applications,” J. Computer and System
Sciences, vol. 31, pp. 182—209, 1985.

[11] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of
approximating the frequency moments,” J. of Computer and
System Sciences, vol. 58, pp. 137-147, 1999.

[12] Z. Bar-Yossef, R. Kumar, D. Sivakumar, and L. Trevisan,
“Counting distinct elements in a data stream,” in RANDOM
2002, 2002.

[13] W. Feller, An Introduction to Probability Theory and Its
Applications, 3rd ed. New York: Wiley, 1968.

[14] P. Hansen, Rank-deficient and discrete ill-posed problems.
Philadelphia: the Society for Industrial and Applied Math, 1998.

[15] A. Tarantola, Inverse Problem Theory. the Society for
Industrial and Applied Math, 2005.

[16] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for
counting active flows on high speed links,” in IMC ’03:
Proceedings of the 3rd ACM SIGCOMM conference on Internet
measurement. New York, NY, USA: ACM Press, 2003, pp.
153-166.

APPENDIX

A. ATTACK EFFECT ON SAMPLING DATA
STRUCTURE

To analyze when a change can be detected using the ap-
proximate histogram, we examine two quantities: (1) an
upper bound on the change in the value of I; when the
number of items in each bucket does not change by more
than ¢;, and (2) a lower bound on the change in the value
l; when the number of items in the buckets changes by at
least cp,. Together, these give bounds on how large c, needs
to be before an attack is guaranteed to be detected with
high probability.x

Let X; s be a random variable that denotes when source
s gets added to bucket i: if source s gets added to bucket
i, Xis = 1, otherwise, X; = 0. Then [; = > X;,, so
Elli] =3, E[Xis].

In this analysis, we first get a bound on E[l;], and then
we use Chernoff bounds to compute the e such that Pr{l; >
(14 €)E[l;] < 6, where ¢ is the acceptable probability of
error that is given as input.

Let source s contact 27 destinations. (For simplicity, in
the analysis, we will assume that all sources contact z* des-
tinations, for some integral value k). Note that

PriX;s=1=1-(1- %)27
Therefore, E[l;] < Z(mj(l Fe))(1-(1— é)zj)

J
We can now use the Chernoff bound to calculate an upper
bound on the change in /;, using

—E[i;]e?
Prili > (1 +e)ElL]] <e T, fore<2e— L

Note that eE[l;] is the deviation in I; above its expectation,
so we can solve for it to get the following:

We can do a similar analysis to get a bound on [; in the
presence of an attack, using the information of bucket i.
Now we use the Chernoff bound to calculate a deviation
below in [; from its expectation. The bound states that

(12)

—e2 B[]
P[ll < (1 — G)E[ZZH <e 2
Under the attack scenario, the E[l;] changes, increasing
from the previous value in the following manner:

1. i
B[L] > (m; +yjen)(1— (1 -)

J
where y; = 1 if bucket j contains an attack.

Using the Chernoff bound again, we can compute the mini-
mum value that [; will have with probability at least 1 — 4.

1
Therefore, (1 — €)E[l;] > E[l;](1 —

2ln -).
né)

