
Load balanced and Efficient Hierarchical
Data-Centric Storage in Sensor Networks

Yao Zhao, Yan Chen
Northwestern University, Evanston IL, USA

{yzhao,ychen}@cs.northwestern.edu

Sylvia Ratnasamy
Intel Research, Berkeley CA, USA

sylvia@intel-research.net

Abstract—Several new sensor network applications build on
scalable, energy-aware data-centric storage. Data-centric storage
is typically achieved by hashing a high-level data name to a well-
known routable node address. Despite significant work on any-to-
any routing for sensor networks, most schemes do not provide a
node address space that is amenable to the needs of data-centric
storage. Our work focuses on the problem of designing a routing
primitive suitable for data-centric storage that also meets typical
sensor network goals of scalability, energy-efficiency and load-
balance. In this paper, we present a new Hierarchical Voronoi
Graph based Routing algorithm (HVGR) that simultaneously
achieves good scalability, efficiency in routing, and load balance
in both routing and data storage. The region oriented routing
scheme avoids overloading cluster headers by “short-cutting”
routes before they actually hit cluster headers. The storage load
balancing algorithm achieves uniform distribution of storage load.

I. INTRODUCTION

Recent engineering advances in the design of small energy-
efficient hardware and embedded systems have enabled large-
scale sensor networks. Early sensor network data access sys-
tems were built upon the idea of data-centric routing [1, 2],
while recently data-centric storage [3] was introduced and
widely used for in-network storage and processing. In data-
centric storage (DCS) [3], a node derives a high-level summary
event from the raw data it collects; it then stores information
summarizing the event at some other node that is selected
based on the name of the event. This allows information
about the event to be found in a scalable manner – a query
specifies the name of the event and is then forwarded to the
same associated node that stores the event. Further, data-centric
storage has been extended to support a variety of sophisticated
query primitives such as multidimensional range queries [4]
and approximate queries [5].

Generally, the routing primitive of data-centric storage re-
quires two functionalities: 1) a hash function (or other com-
putation methods) to map a name to a meaningful label of a
node in the network; 2) and the ability to route to the node that
owns a mapped label. For example, in GHT [6], the label is a
geographic location and the node closest to the location stores
the event summary to the label. As argued in [7], data-centric
storage does not have to rely on any-to-any routing. In fact,
pathDCS [7] is not an any-to-any routing, because in pathDCS
not all the nodes are routable. Meanwhile, many any-to-any
routing algorithms are not suitable for data-centric storage. For
example, it is unclear how to map a name to a high dimensional
virtual coordinate or a global ID of a wireless node in many
virtual coordinate based routing algorithms such as [8]–[10].

Since DCS was introduced, geographic routing is used
as a routing primitive for many data-centric storage appli-

cations [4]–[6]. The dependency on GPS or other location
devices is an extra limitation, and it may not be applicable
in some sensor network. Therefore, it is desirable to remove
the requirement of location devices. Meanwhile, data-centric
storage solutions in sensor networks must be self-organizing,
scalable (low per-node state), efficient (low routing stretch and
route construction overhead) and load-balanced (for robustness
and to avoid energy depletion). A desirable routing primitive
for data-centric storage should meet these challenges.

In this paper we present a routing primitive for data-centric
storage called hierarchical Voronoi graph routing (HVGR) that
simultaneously achieves good scalability, efficiency and load
balance. Hierarchies are desirable for the scalability they offer,
and hierarchical addressing is nature for the mapping of events
in data-centric storage [4, 5]. However, applying hierarchical
routing to large, self-organizing and resource-limited sensor
networks is non-trivial for three reasons:
• Efficiency problem: Hierarchical routing may elongate the

routing path. The challenge is designing the hierarchy and
the routing without global information that can conduct
close to shortest path routing on it.

• Load balancing in routing: A hierarchical routing for
sensor networks should avoid overloading the “leaders”
in the hierarchy. For example, the hierarchy routing [11]
from ad-hoc networks does not fit our requirements as
it overloads the cluster headers, quickly depleting their
energy.

• Load balancing in storage: Storage load balancing is very
important in DCS because of the primary power constraint
and limited storage space of sensor nodes. Balanced hier-
archical addressing decomposition is a key issue to ensure
load balanced storage in data-centric storage.

HVGR uses concepts from Voronoi graphs to construct and
maintain a virtual hierarchy that spans all sensor nodes and
does so in a manner that is self-organizing and does not require
the use of GPS or other geo-location devices. The region
oriented routing is specially designed for the hierarchy to avoid
overloading landmarks by “short-cutting” routes before traffics
actually hit landmark nodes. Meanwhile, the region oriented
routing achieves efficient routing paths closing to shortest paths
in practice. A simple and practical hashing scheme is designed
to achieve balanced storage on every node in the network
potentially, which circumvents the hard problem of uniform
hierarchical decomposition. In summary, HVGR represents a
practical protocol with the following features:
• Good Scalability. HVGR is a scalable virtual coordinate

based routing scheme which does not require any location

2

information. Unlike other virtual coordinate approaches [8,
9, 12, 13], route dead ends do not exist in a stable HVGR
system. The initialization overhead is O(N log N) and
every node maintain O(log N) routing states, where N is
the number of nodes in the sensor network.

• Good Efficiency. Routing paths in HVGR are close to
optimal, i.e., the routing stretch (length of the routing path
divided by the length of the shortest path between two
nodes) is close to one in average on all paths and locally
short paths. Furthermore, we borrow the routing idea from
the virtual coordinate routing [8, 14] to further reduce the
routing stretch.

• Good Load Balancing for Routing. Although HVGR
uses a hierarchical virtual coordinate, it avoids the classic
problems of hierarchical approaches such as bottlenecks at
root, overloading the backbone structure or gateway nodes.
HVGR achieves this through its use of region oriented
routing which does not introduce any backbone routes or
hotspots.

• Good Load Balancing for Data Storage. HVGR achieves
balanced storage load, which means no particular node
will be overloaded or run out of storage space quickly.
In addition, when a node plans to sleep proactively, it need
only transfer the stored data to its neighboring nodes instead
of some distant virtual neighbors (as in VRR [15]).

We simulate HVGR extensively and compare it to VRR [15],
a state-of-the-art routing protocol for sensor networks. Our
evaluation shows that HVGR successfully achieves the above
design goals. The remainder of this paper is organized as
follows: we survey related work in Section II, present the
details of our HVGR algorithm in Section III, evaluate HVGR
in Section IV and conclude in Section V.

II. RELATED WORK

A vast number of sensor networks comprise static sensor
nodes. Our work focuses on these scenarios of large, static
sensor networks with varied node density. While some de-
ployment scenarios do involve mobility in which sensors are
carried by human or animals, we do not consider these in this
paper.

a) Data-centric storage based on geographic routing:
Geographic routing is a class of scalable any-to-any routing in
wireless networks [16], and geographic hash table (GHT) [6]
first proposed data-centric storage by extending the idea of
geographic routing. GHT is simple and light-weight but inherits
the shortcomings of geographic routing in that it requires GPS
(or other position system) and suffers from routing dead ends
in sparse networks. Moreover, for data-centric storage, GHT
requires a priori knowledge of the network’s boundary and it
is not clear how to uniformly distribute storage for irregular
boundaries. Following research such as DIM [4] and DIFS [5]
further improves the functionality of the data-centric storage
for complex query primitives. Also KDDCS [17] improves the
storage load balancing on DIM [4] so that the storage of events
is distributed reasonably uniformly among the sensors.

b) Routing for data-centric storage without out GPS:
PathDCS [7] is designed for data-centric storage. It is simple
and practical. But in pathDCS, not all the nodes in the network
can be storage servers, and hence load balance of the storage
is not good. Each routing path must go through at least

one landmark, hence landmarks are prone to be overloaded.
Therefore we do not specifically compare our approach with
pathDCS in evaluation. VRR [15] is another candidate for data-
centric storage because of the DHT abstraction it provides.
VRR however requires O(

√
N) routing state at every node,

which is not scalable for large sensor networks. Since VRR’s
virtual ring topology is independent to the underlying topology,
VRR works quite well in mobile scenario, while the path
stretch is relatively large. GEM [18] scheme is another scalable
routing solution for data-centric storage. GEM builds a virtual
polar coordinate system and an event is hashed to a distance
and angle in the polar coordinate space. However, GEM is
fragile under dynamics – when nodes/links fail, a potentially
large number of nodes in the system must recompute routing
coordinates.

c) Any-to-any routing algorithms that are not suitable
for DCS: Recently there are a flourish of landmark or vir-
tual coordinate based any-to-any routing in sensor networks.
Rao et al. propose a scheme for geographic routing without
location information (NoGeo) [19]. They present a virtual
coordinate construction algorithm, which achieves performance
comparable to that of real geometric coordinates in dense
networks. However, NoGeo requires O(N) per-node states and
causes O(N

√
N) communication overhead during initializa-

tion. NoGeo stimulates several other solutions that construct
virtual coordinates [8, 9, 12]–[14] for efficient any-to-any
routing. S4 [20] is a novel landmark based routing which
guarantees routing success, and bounds the path stretch to be
3 in the worst case. However, in these virtual coordinate or
landmark based routing, an additional scalable location service
is required. Moreover, it is unclear how to hash an event to
meaningful virtual coordinates because large portions of the
high dimensional virtual coordinate space are likely to be
unoccupied. It is thus difficult (or at best costly) to find the
node closest to a coordinate derived by hashing an event name.
In summary, these any-to-any routing approaches cannot be
applied to data-centric storage in practice until they themselves
can provide a name service.

d) Related hierarchical routing: The idea of hierarchical
routing is also widely used in the point-to-point ad hoc rout-
ing [11, 21]–[23]. CGSR [21], LANMAR [22] and ZRP [23]
simply use two level of hierarchy to improve the scalability and
HSR [11] will potentially overload cluster headers by building
paths over cluster headers. Hence these existing hierarchical
routing can not be simply borrowed for data-centric storage.
Actually, one of the papers that influence this work is that of
Tsuchiya [24], which introduced a classic hierarchical routing
in wired networks.

III. HIERARCHICAL VORONOI GRAPH ROUTING

A Voronoi graph is a well-known decomposition of spaces or
planes [25]. Given a set of landmarks, a Voronoi graph divides
the plane according to the nearest-neighbor rule: each point is
associated with the region of the landmark closest to it. Our
hierarchical virtual coordinate construction is analogous to the
decomposition of a Voronoi graph, which inspires the name,
Hierarchical Voronoi Graph Routing (HVGR). In what follows,
we first present the basic HVGR routing algorithm followed by
the practical issues facing this basic scheme and our solutions
to these challenges.

3

A. Basic Routing Algorithm

We first introduce our hierarchical coordinates and then
describe our region oriented routing that forwards packets to
specified hierarchical coordinates. Finally, we show how name-
based routing for data-centric storage is achieved in HVGR.

1) Features of hierarchical coordinates: The basic routing
algorithm relies on the hierarchical coordinates associated with
landmarks. To begin, there are some number of first level
(or highest level) landmarks which divide the network into
different first level subregions. Fore example, in Figure 1, L1

is a first level landmark and the square 1 marked 1st level
is L1’s first level region. Each node in the network knows
all the first level landmarks and its next hops to these first
level landmarks. Then, within each first level region there
are some second level landmarks (e.g. L1,1 in L1’s first level
region), that divide the first level region into multiple second
level subregions. Again, each node in a particular first level
subregion knows the path to all second level landmarks that
lie within its first level subregion. This hierarchical division
continues until the nth subregion is sufficiently small and,
finally, every node knows all other nodes within its lowest level
subregion. A node’s hierarchical coordinate is a sequence of
landmark node identifiers, ordered from the highest to lowest
level. For example, in Figure 1, node D has the hierarchical
coordinate (L1, L1,1, L1,1,1).

2) Region oriented routing to a hierarchical coordinate:
Figure 1 shows an example of the basic routing algorithm
used to route packets from the source (S) to a destination (D)
with known hierarchical coordinate. The first level landmark
of D is L1, which is easy to determine given D’s hierarchical
coordinate. Our first step sends the packet towards L1, to which
the routing path is known by all nodes in the network. The
packet is forwarded hop by hop towards landmark L1 until it
enters the first level region (say, region R1) of L1. Assume
the packet enters region R1 of L1 through node A. Node A
knows all the second level landmarks in region R1 including
L1,1. Hence A will similarly forward the packet toward L1,1

(the second level landmark in D’s coordinate vector). The
packet will change direction when it reaches node B, which
is the entry to the second level region within which D lies.
Finally the packet reaches the lowest level subregion whose
entry node knows the direct path to D (because we require
complete routability in the lowest level regions).

In many classical hierarchical routing algorithms, landmark
nodes (or cluster heads) are prone to be overloaded. This is
avoided in HVGR because, although the region oriented routing
uses landmarks to guide routing, packets are redirected when
they enter the regions of the landmarks. Also, there is no
special “gateway” node in our hierarchical system as packet
may enter a region through any border node of the region. It
is worth mentioning that the routing path between two close
nodes in different regions may not be optimal, as the initial
direction of the region oriented routing may be away from
the direct path in certain cases. However the detour is locally
bounded and, as we show (Section IV-B), HVGR has small
path stretch for paths between close nodes.

1The shape of a region actually can be irregular as we split the regions
using Voronoi graph described in Section III-C.

D

S

L1

L1,1

L1,1,1

1s t l e v e l

2n d l e v e l

3r d l e v e l

A
B

Fig. 1. Region oriented routing.

3) Basic name based routing for data-centric storage: In
data-centric storage, events are generated and stored at nodes
corresponding to event names. Assume now we have a new
event with event ID E, and there are mi ith level landmarks
in an (i− 1)th level subregion2. We introduce a series of hash
functions Hi (i = 1, 2, ...) for each level of the hierarchy (or a
single hash function with multiple seeds). First, E is hashed to
an integer l1 ∈ [1, m1] with hash function H1. Therefore we
determine that the event E is stored in the first level region of
the lthi first level landmark, say Ll1 . Here we assume the order
of the first level landmarks is fixed and known to every node.
Then the event is forwarded towards landmark Li, as in region
based routing. Once the event enters the right first level region,
the entry node uses hash function H2 to select the next second
level landmark for the event. This iterative process creates a
hierarchical coordinate while the event is being forwarded.
Finally the event enters the lowest level region wherein all
nodes know each other and hence the event can be simply
stored at the node with ID closest to the hash of event ID E.

Our name based routing has an important advantage for
name-based storage: to withstand node failure or if a node
proactively chooses to sleep, the node just needs to replicate
or transfer the stored data to its neighboring nodes in the same
lowest level region. This is more efficient than other DHT
based storage system, e.g.VRR [15], which has to transfer the
data to remote nodes (because VRR’s virtual neighbors may
not be topologically close). We leave for future work the design
of sleeping strategies optimized for our HVGR system.

B. Practical Design Issues
There are several challenges to building a scalable, efficient,

robust and load balanced data-centric storage system over
HVGR.

The first issue is that of efficiently building a scalable
hierarchical virtual coordinate system. Tsuchiya proposed hi-
erarchical landmark routing for the Internet which yields an
average routing table size of O(

√
N) [24]. But intuitively, we

expect an average routing table size of O(log N).
The second challenge is to balance load across the system.

In this paper, we consider load balancing for both routing and

2The 0th level subregion refers to the entire network

4

storage. With good load balancing in routing, no node becomes
overloaded for forwarding packets. HVGR’s routing achieves
this by using landmarks as routing guides but not actually
forwarding packets through the landmarks. In terms of storage
load, the goal is to have all nodes to store similar amounts of
data. We present certain improvements to our basic name-based
routing in order to achieve load-balanced storage.

The third challenge is to achieve a path stretch close to 1.
The region oriented routing achieves about 1.15 path stretch
over shortest path. While this is a useful improvement over
VRR [15], there is still room for even better efficiency.

The final challenge is to provide resilience against dynamic
changes in nodes and links. For example, new nodes may join
while other nodes may proactively sleep or just fail without
notification. It is desirable that the system deals with such
dynamics in a fast and efficient manner.

In what follows, we address each of the above challenges in
turn. We introduce algorithms for hierarchical virtual coordi-
nate construction, landmark selection, storage assignment, path
stretch improvement and robustness to network dynamics.

C. Constructing the Hierarchical Architecture
To construct a hierarchical architecture, there are two general

approaches: bottom-up and top-down. Some hierarchical rout-
ing protocols in ad hoc networks take the bottom-up approach,
i.e., constructing the lowest level first and then building upper
levels iteratively. For example, Hierarchical State Routing
(HSR) [11] is a multilevel clustering-based routing protocol.
This bottom-up approach typically generates a backbone path
between landmarks or gateway nodes between regions. In this
paper, we introduce a top-down approach to support the name
based routing introduced in Section III-A.

We will present our landmark selection algorithm in Sec-
tion III-D. For now, we assume a landmark selection algorithm
that selects at most mi (i = 1, 2, . . .) landmarks in an (i−1)th

level region. Using the example in Figure 2, we now present
the details of our hierarchy construction.

1) First, assume m1 first level landmarks are selected. Each
landmark node floods a LANDMARK packet to the entire
network and thus every node learns its distance to all
first-level landmarks (See Figure 2 (a)).

2) Each node chooses the closest landmark as its repre-
sentative (ties are broken in a consistent manner, e.g.,
based on the ID of the landmark nodes). The entire
network is thus divided into m1 localized subregions.
An important feature of this division is that each region
itself is a connected sub-network. This is because if a
node belongs to the region of landmark L, its parent
node in L’s shortest path tree must also be in the region
of L (See Figure 2 (b)).

3) Next, consider a first level region R of a first level
landmark. The m2 second level landmarks in region R
do a scoped flood to only the nodes in the first level
region R. The scoped flood is controlled as follows:
a LANDMARK packet generated by the second level
landmark has a field of region, which can be the ID
of the corresponding first level landmark. A node will
rebroadcast the received LANDMARK packet if and only
if the node is in the region R. There are m1 × m2

second level landmarks in the entire network. However

L1

L2

Region 1

Region 2

Subregion 1

Region 2

Subregion 2

L1,1

L1,2

(a) (b)

(c) (d)

Fig. 2. Hierarchical virtual coordinate.

the overhead of scoped flooding is only m2N in total
because of the scoped flooding. Therefore, the total
overhead due to LANDMARK packets is equivalent to
m2 network-wide floods (see Figure 2 (c)).

4) The second level landmarks divide the first level regions
into some second level subregions (e.g. shown in Fig-
ure 2 (d)). By doing this iteratively, nodes’ hierarchical
virtual coordinates are created. The termination condition
we use is that the subregion only contains the owner land-
mark and the landmark’s one-hop neighbors. Therefore,
it is easy for a node in the lowest region to find routes to
any other node in the region. Note that it is also possible
to allow larger lowest level subregions and use any all-
pairs routing algorithm (e.g. link state or distance vector
based routing) within the region.

Intuitively, after O(log N)-level divisions, we obtain the
lowest level regions. While our simulation results support
this intuition for the sensor network topologies we consider,
a rigorous proof of this is non-trivial and we leave for future
work. The flooding overhead of LANDMARK packets of each
level is O(miN) and hence the total flooding overhead of all
the levels is O(mN log N), where m = maxi mi.

D. Landmark Selection
Landmark selection is a critical problem for all landmark

(or beacon) based routing algorithms [8, 12, 13, 20]. However,
there are few studies exploring the landmark selection problem.
One possible reason is that complex landmark selection algo-
rithms (e.g. using global information or multi-round election)
are hard to support in sensor network scenarios. Also, the exact
landmark selection criteria favoring the routing is not clear in
most routing algorithms and random landmark selection seems
to do an enough good job.

Intuitively, we want the landmarks in a region to be dispersed
so that the subregions divided by them are even. Randomly
selecting landmarks is a simple but non-optimal approach
to uniformly spreading out landmarks. An optimized random
landmark selection algorithm is introduced in [14] to reduce the
chance of picking nearby landmarks. The basic idea in [14] is
to first build a shortest path tree rooted at a coordinator node by
flooding. Then starting at the leaves nodes, each node collects

5

L1 L2

L1,1 L1,2 L2,1 L2,2

L1,1,1 L1,1,2 L2,1,1 L2,1,2 L2,2,1 L2,2,2

(L1)

(L1)

(L2)

(L2) (L2,2)
Fig. 3. Landmark hierarchy.

the landmark candidates from its child nodes in the shortest
path tree, and randomly picks a certain number candidates to
report to its parent node. Assuming NR nodes in a region, then
the overhead of landmark selection in this region is O(2NR).
A useful by-product is that the coordinator learns the number
of nodes in this region (i.e. NR); a feature we leverage in
Section III-E.

We now introduce how landmarks are selected at each level.
First, assume there is a node C which starts the landmark
selection process 3. Node C automatically becomes a first level
landmark as well as the master landmark among all first level
landmarks. Using the optimized random landmark selection
algorithm [14], node C selects the other m1−1 landmarks and
divides the network into mi first level regions. Each of these
m1 landmarks automatically becomes the master landmark of
its first level region. Then each master of its region repeats
the process of random landmark selection. Finally, a master
landmark stops selecting slave landmarks when it finds that all
the nodes in its region are its neighbors. Note that in an (i−1)th
level region, maybe less than mi landmarks are finally selected
because the region is already very small. Figure 3 shows an
example where landmarks create a hierarchical structure. For
example, using our landmarks selection algorithm, landmarks
L1, L1,1 and L1,1,1 are the same node.

E. Storage Load Balancing
Balancing load across nodes in a sensor network is critical

as sensors are energy and storage constrained and energy-
depleted nodes can result in network partitions. The storage
load balancing goal here is thus to uniformly distribute events
to nodes.

If we use the basic name based routing introduced in
Section III-A, the storage load balancing property depends on
whether the landmarks divide the networks evenly or not. For
example, assume the m1 first level landmarks are L1, · · · , Lm1

.
An event E has a probability 1/m1 of being assigned to the
first level region of landmark Li(i = 1, . . . , m1). If L1 has a
larger region with more nodes than L2, then in average a node
in L1’s region will have less stored events than those in L2’s
region. Unfortunately, it is hard to divide a region evenly with a
simple random landmark selection algorithm. Landmarks may
have to negotiate and adjust their divisions, and hence make a
complex and costly process. We solve this challenge through
a slight modification to the basic name based routing.

3Node C do not have to be any special node in some special location (e.g. at
the center). We choose a random node C in our simulations and the results
do not vary much with different C nodes.

As mentioned in the landmark selection algorithm (Sec-
tion III-D), each landmark knows the number of nodes in its
region. We thus assign storage tasks to regions in proportion
to the sizes of the regions. For example, for the m1 first level
landmarks, let Ni(i = 1, . . . , m1) be the number of nodes in
landmark Li’s first level region. So N =

∑m1

i=1
Ni. H1 is a

hash function which hashes an event ID to a real value in [0, 1).
Then the event will be stored in a node in Lk’s first level region
if and only if:

1

N

k−1∑

i=1

Ni ≤ H1(E) <
1

N

k∑

i=1

Ni (1)

For example, assume we have three first level landmarks,
and N1 = N2 = 100, N3 = 200. If H1(E) < 0.25, the event
is assigned to the region of landmark L1; if H1(E) ≥ 0.5, the
event will be assigned to the region of L3; otherwise the event
will be stored to the L2’s region. Since the hash function H1

is uniform, each region is expected to store a number of events
proportional to the number of nodes in that region. When an
event is assigned to a first level region, it is iteratively hashed
to a second level region and so on. In the lowest level region,
each node can be viewed as a subregion and be assigned the
hash range evenly by the landmarks.

F. Path Stretch Reduction
Our region oriented routing uses only a single landmark to

guide the forwarding at any point in time. However, one might
leverage the information provided by the other landmarks. For
example, our region oriented routing could be combined with
other single-layer landmark based routing algorithms such as
HopID [14] and BVR [8].

For simplicity, consider only the first level landmarks. Each
node knows their shortest path distance (or hop distance [14])
to the first level landmarks4, and a vector of such hop distance
in a certain order makes the coordinate of the node, i.e., the
Hop ID coordinate. Using the Hop ID as the destination coor-
dinate, greedy algorithms can be used to route efficiently [8,
14]. Dead end problem can be completely solved because our
region oriented routing can help out the dead ends. In short,
if we know the hierarchical virtual coordinate and the Hop ID
coordinate of the destination node, we first conduct the greedy
routing based on the Hop ID coordinate. Once the packet is
stuck at a dead end, the region oriented routing can be used to
lead the packet out of the dead end. The greedy Hop ID routing
resumes when the region oriented routing brings the packet to
a node “closer” to the destination than the dead end. We call
the combined routing scheme HVGR+, to differentiate it from
our original scheme HVGR. Section IV-B shows that HVGR+
improves HVGR significantly in terms of path stretch.

In data-centric storage, the generator of an event or the
querier does not initially know the coordinates of the storer
and hence HVGR+ can not be directly applied. However a
flow usually involves back-and-forth communication between
two end nodes and hence the coordinates of the source or
destination can be piggy-backed and HVGR+ can thus be
applied for all but the first packets in a flow.

4In case there are very few first level landmarks; e.g. two landmarks, we
also use the distance to second level landmarks.

6

G. Handling Dynamic Changes
Robustness is desirable for data-centric storage systems. We

now introduce schemes that dynamically adapt the hierarchical
virtual coordinates under node and network dynamics. In a
nutshell, our goal is to maintain the shortest path trees to
landmarks in the corresponding regions. An individual node
seeks to maintain the routes (or next hops) to O(log N)
landmarks in the regions within which it lies. This involves
maintaining multiple distance vector routing paths and hence
techniques from existing distance vector based routing solu-
tions can be applied here. Given the similarity and due to space
limitations, we present only a high-level description of our
coordinate maintenance algorithms in this paper. An additional
design guideline we follow is to minimize changes in nodes’
hierarchical coordinates so that the number of stored events
that need to be relocated under dynamics is small.

1) Periodic HELLO messages: Every node periodically
broadcasts HELLO messages. HELLO messages are used for
neighbor maintenance and landmark-rooted shortest path tree
maintenance. A HELLO message includes: 1) the node’s hier-
archical virtual coordinate as well as the hop distance to the
corresponding landmarks, 2) the latest sequence numbers for
the landmarks obtained by listening to neighbors’ HELLO mes-
sages. Each landmark maintains a counter for its sequence
number, and the sequence number is increased by one and
broadcast to its neighbors every time the landmark sends out
a HELLO message. Using these HELLO messages, the latest
sequence number of an ith level landmark is gradually flooded
to the (i−1)th level region containing the landmark. This looks
like a slow flooding from the landmark to the right region. The
sequence number helps the fast recovery of routes to landmarks
when node/link failures happen (See Section III-G3). Note that
in standard distance vector routing sequence numbers are not
used because it is not possible to include O(N) sequence
number in the HELLO messages.

If a node does not hear any HELLO messages from a
neighbor for a certain period, this neighbor is considered failed
and removed from the node’s neighbor table.

2) Node join: When a new node A joins the sensor network,
it learns its neighbors’ virtual coordinates from the HELLO
messages of its neighbors. Node A first picks a lowest region
that has the closest landmark to itself, and then informs the
landmark (say landmark L) about its join. If A is one hop
away from L, landmark L simply broadcast a message to tell
all the other nodes in the lowest region (note all the nodes
in a same lowest level region are within one hop from the
lowest level landmark); if A is two hops away from L, node A
will becomes a new landmark, following our approach of the
construction of hierarchical virtual coordinates in Section III-C.
In both cases, the communication overhead of a new node’s
join is O(1), because the lowest level region has O(1) nodes.
Later on, node A learns its parent nodes to the landmarks of
different levels that are visible to it by listening to the HELLO
messages.

3) Node failure or link failure: Usually, node failure and
link failure are hard to differentiate. So once a neighbor is
unreachable, we assume that the neighbor node fails.

a) Landmark failure: Although landmarks play an im-
portant role during initialization, they are not as critical once
the coordinates are constructed. Region oriented routing can

continue to work even if some landmarks fail because a routing
path may not pass through the failed landmarks at all. We can
thus adopt a slow but consequently light-weight approach to
recover from landmark failures.

Note that in HVGR, landmarks also build a hierarchical
structure (See Figure 3). With the exception of the master
landmark at the first level, every landmark is a slave landmark
at some level. A simple scheme is to let the master landmarks
periodically check whether the slave landmarks are alive or not.
However, this scheme increases the overhead on landmarks.
Instead, we propose a light-weight scheme the leverages the
sequence numbers in HELLO messages. Normally, in any
region, the master landmark should periodically receive the
new sequence numbers updated via HELLO messages from the
other landmarks in the region. Once the master landmark does
not hear new sequence number from a slave master for a certain
time, the master landmark sends a query to the slave master
to check if the slave master is still alive. If the slave master
is unreachable, the master landmark will select a node in the
slave master’s subregion as replacement. The new landmark
can immediately do a scoped flood of the region to claim its
replacement or let HELLO messages gradually announce the
replacement. As for the first level master landmarks, we let
the other first level landmarks also monitor its availability. If
the master landmark fails, another master landmark is elected
among the slave landmarks using classic ring election or bully
algorithms [26]. The new master landmark then selects a new
landmark for replacement the former master landmark.

b) Non-landmark node failure: If a non-landmark node
fails, its neighboring nodes may lose the next hop to some
landmarks. This is the same route recovery problem as in
distance vector based routing algorithms. To deal with the well-
known “count-to-infinity” problem [27], we again leverage
the sequence number carried in HELLO messages. When a
node A finds its next hop node to a landmark L fails, it can
simply choose another neighboring node that broadcasts newer
sequence numbers for the landmark. This scheme is light-
weight, as the node losing paths simply waits for neighbors’
HELLO messages.

4) Storage Hash Range Adjustment: For data-centric stor-
age, each region is responsible for a certain hash range so that
the event associated with the hash value in the range is stored
in this region, as shown in Section III-E. When nodes join or
leave, the hash range may need to be adjusted to keep load
balanced. However, a node’s join or leave without any action
usually does not hurt the load balancing property much. To save
the control overhead, we decide to not adjust the hash range of
regions when detecting the events of new or failed node. On the
other hand, landmarks infrequently collect the number of nodes
in its region and check if there are significant changes or not.
Once the number of nodes in the region changes significantly
(e.g., increase or reduce more than 20%), new hash ranges
are negotiated by landmarks and distributed to nodes in the
corresponding region.

IV. EVALUATION

A. Evaluation Methodology
1) Simulator: Similar to [8, 9, 14], we first implemented

a packet level simulator in C++ that can scale to tens of
thousands of nodes. In this simulator, radios have a precise

7

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 2 4 6 8 10 12 14 16

Av
er

ag
e

pa
th

 s
tre

tc
h

Number of landmarks in each region

HVGR
HVGR-Local

HVGR+

Fig. 4. Path stretch vs # of landmarks in each region.

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

 2 4 6 8 10 12 14 16

In
itia

l o
ve

rh
ea

d
(fl

oo
di

ng
s)

Av
g

of

 la
nd

m
ar

k
in

 ro
ut

e
ta

bl
e

Number of landmarks in each region

Overhead
of LM in RT

Fig. 5. Initialization overhead & route table size.

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 12800 6400 3200 1600 800 400 200

Av
er

ag
e

pa
th

 s
tre

tc
h

Number of nodes in the network

 VRR
 HVGR
 HVGR+

Fig. 6. Path stretch vs network size.

(circular) radio range 1, and nodes can send packets only
to nodes within this range. There is no bandwidth limit in
the simulator. We do not simulate collision in the simulator.
While these assumptions are not very realistic, the simulations
empirically verify the correctness and the feasibility of the
protocols. It is our future work to implement HVGR in some
sensor network testbeds. For comparison, we also implemented
VRR [15], the latest wireless routing protocol which also works
for data-centric storage.

2) Simulation Setup: Our simulation scenarios include N
nodes distributed randomly in a 2-D C × C square area. The
network density (denoted as λ) is defined as the average degree
of the nodes. Unless otherwise indicated, we choose N as 3,200
and λ = 3π in the baseline simulations. We randomly pick 200
nodes as the sources and generate 200 random events to store
in the system. For each configuration, we conduct 10 random
runs and report the aggregate statistics.

3) Metrics: The following metrics are considered.
• Path stretch: the ratio of the real routing path length to the

shortest path length between the source and destination.
Path stretch is a common metric used in [8, 14, 15, 18]
to evaluate the routing efficiency.

• Load balancing: Entropy or divergence to the uniform
distribution can be used to estimate whether loads are
distributed uniformly or not. However, we find it is clearer
and more intuitive to use the cumulative distribution
function of the loads on nodes.

• Route table size: The route table size is proportional to
the number of landmarks visible and stored in the route
table.

• Initialization overhead: the number of packets sent to
build the hierarchical virtual coordinate. For simplicity,
we use the unit of flooding. If M packets are sent, we
say the overhead is M/N floodings, as a flooding to the
whole network costs N packets.

• Maintenance overhead: the number of packets sent when
a dynamic event (e.g., node join or failure) happens.

Next, we will present the simulation results.

B. Selection of Number of Landmarks in Each Level
The number of landmarks is critical to the performance of

any landmark based routing algorithms [8, 9, 14, 20]. Generally
speaking, the more landmarks the less path stretches and
the higher routing success rate, and also the more overhead.
However, in our HVGR, the number of landmarks is not so
critical. If there are less landmarks in each level, then there
will be more levels of division. HVGR+ relies on the first

level landmarks to conduct Hop ID routing [14], and hence
the number of first level landmarks affects the performance of
HVGR+. For simplicity, we let mi, (i = 1, 2, . . .) be the same
and equal to m.

We vary m in the baseline simulation setups. Figure 4 shows
the path stretch as a function of different m values. For HVGR,
path stretch drops quickly as m increases when m is very small.
When m is larger than 8, the speed of path stretch reduction
is very small as m increases. On the other hand, HVGR+ does
not change remarkable as m varies. The path stretch of HVGR
is usually about 1.15, while that of HVGR+ is about 1.05,
both close to one. Sometimes it is quite reasonable to have
highly localized traffic, especially for a large-scale network.
Therefore we also evaluate the path stretch for all the path of
length between 2 and 5 hops in shortest path routing. We take
such paths to represent local communication as the network
diameter is more than 30 hops and delivery of data to one-hop
neighbors is trivial. In Figure 4, HVGR-local shows that the
path stretch for local communication is still very small (less
than 1.3).

Figure 5 shows the relationship between m and the initializa-
tion overhead. It seems that the initialization overhead increases
linearly as m increases except the special case of m = 2.
Figure 5 also shows that the minimal, average and maximum
number of landmarks in nodes’ route tables increase slowly
as m goes up when m ≥ 4. When m = 2, the chance of
unbalanced partition of Voronoi graph by the randomly chosen
landmarks is much larger, which causes the special case.

From Figures 4 and 5, we can tell that the number of
landmarks in each region is not critical to the performance of
HVGR and HVGR+. In the following simulations, we choose
m as 6, considering the tradeoff between path stretch and
initialization overhead.
C. Scalable to Large-Size Sensor Networks

To study the scalability, we vary the number of nodes from
200 to 12,800 in the sensor networks, while keeping the same
density (i.e.,λ = 3π) by increasing the area.

Figure 6 shows that the path stretches of both HVGR and
HVGR+ do not increase remarkably as the network becomes
significantly larger. Note that x axis is in logarithmic scale.
When the sensor network has even 12,800 nodes, the path
stretch of HVGR is still less than 1.18 and that of HVGR+ is
about 1.06. The reason of stable path stretch of HVGR lie in the
nature of hierarchical structure. Recalling the region oriented
routing, the path is longer than shortest path as the packet is
forward towards the closest landmark to the destination. The
deviation angle of the direction may determine the path stretch,

8

 5
 10
 15
 20
 25
 30
 35
 40
 45

 12800 6400 3200 1600 800 400 200

In
itia

l o
ve

rh
ea

d
(fl

oo
di

ng
s)

Av
g

of

 la
nd

m
ar

k
in

 ro
ut

e
ta

bl
e

Number of nodes in the network

Overhead
of LM in RT

Fig. 7. Initialization overhead and route table size
vs network size.

 1.02
 1.04
 1.06
 1.08

 1.1
 1.12
 1.14
 1.16
 1.18

 1.2

 6 7 8 9 10 11 12 13 14 15

Av
er

ag
e

pa
th

 s
tre

tc
h

Network density

 HVGR
 HVGR+

Fig. 8. Path stretch vs network density.

 23

 24

 25

 26

 27

 28

 29

 6 7 8 9 10 11 12 13 14 15 16

In
itia

l o
ve

rh
ea

d
(fl

oo
di

ng
s)

Av
g

of

 la
nd

m
ar

k
in

 ro
ut

e
ta

bl
e

Network density

Overhead
LM in RT

Fig. 9. Initialization overhead and route table size
vs network density.

but the angle seems to be independent to the network size.
Clearly VRR has much larger path stretch, especially in large
networks. The path stretch of VRR is above two when the
network has more than 2,000 nodes.

Figure 7 shows that the average number of landmarks in
nodes’ route table goes up linearly as the number of nodes
increases exponentially, which confirms our conjecture men-
tioned in Section III-C. Consequently, the route table size of
each node and the initialization overhead of HVGR is linear to
log N , shown in Figure 7. Even when the network has as many
as 12,800 nodes, the route table contains about 31 landmarks
in average. Meanwhile, the maximum route table size of all
the nodes is normally less than twice of the average table size
(See the errorbars in Figure 7). This result clearly shows that
our HVGR is scalable to extremely large sensor networks. On
the other hand, VRR requires O(

√
N) memory for the route

table, which is less scalable.

D. Efficient with Networks of Various Density
Usually (virtual) coordinate based routing protocols [8, 14,

16] perform worse in sparse networks than they do in dense
networks because there are more dead ends in sparse networks.
Our HVGR is pure topology based and has no dead end
problem, hence network density will not affect the performance
of HVGR much. To evaluate this, we simulate with networks of
3,200 nodes with various network density. The density varies
from 2π to 5π, which covers most practical network densities.
Sparser networks with λ < 2π usually have low connectivity
and are partitioned into fragments [28].

Figure 8 shows that HVGR and HVGR+ have a little bit
larger path stretches in dense network than those in sparse
networks. This seems to be counter-intuitive, as we do not
expect HVGR and HVGR+ perform better in sparse networks.
The reason may be that the path stretch is a relative factor.
Obviously the denser the network, the smaller the average
length of routing paths. Therefore, the path stretch of dense
networks is larger than that of sparse networks given the
same extra hops over the shortest path. Figure 9 shows the
initialization overhead drops as networks become denser and
nodes are confined in smaller areas. This is reasonable as the
average number of levels of hierarchy decreases when the area
of sensor networks shrinks.

E. Balanced Load for Both Routing and Data Storage
Now we study the load balancing feature of our routing

algorithms. First, we check the routing load balancing for
HVGR, HVGR+ and the ideal shortest path routing. We count

the number of forwarded packets of each node during the
simulation of the routing algorithms and then normalize them
so that on average a node forwards only one packet. We do the
normalization because different routing protocols have different
routing paths length even when the networks and source-
destination pairs are the same. Figure 10 shows the cumulative
distribution function of the forwarding load of the nodes under
different routing protocols. Basically, we can see that HVGR,
HVGR+ and the idea shortest path routing have similar routing
load balancing property. This tells that HVGR and HVGR+ do
not overload landmark nodes, as we expected.

Meanwhile, we notice that the forwarding loads are quite
unbalanced for all the three algorithms. This is because the
nodes in the center of the area usually have large forwarding
loads, while the nodes in the edge of the network may
seldom forward packets for other nodes. Generally speaking,
minimizing the path length renders the overload of the nodes in
the center. There is a tradeoff between the path stretch and the
routing load balancing. We will study this interesting tradeoff
in the future.

Second, we consider the storage load balancing. We generate
12,800 events and let the data-centric storage systems store
them. In an ideal hash based storage system, an event ID is
uniformly hashed to a node, and hence the number of events
stored on a node has a binomial distribution. Figure 11 shows
the CDF of the numbers of events stored in the 3,200 nodes
when we simulated an ideal hash based storage system, HVGR
and VRR. HVGR has the perfect storage load balancing, as the
two lines of the ideal system and HVGR are overlapped. More
than 90% nodes have the load within the range from 10 to 20
events, while the average is 16. On the other hand, VRR has
worse load balancing property. This is because the node IDs of
VRR do not uniformly split the ID space, although the IDs are
hashed randomly. If three node IDs are by chance very close,
then the node with the middle ID shall get few stored events.

F. Small Overhead for Dynamic Scenarios
In this section, we evaluate the maintenance overhead of

our HVGR system. As we mentioned in Section III-G1,
HELLO messages are broadcasted periodically by every node,
hence we do not count HELLO messages here. Meanwhile,
we do not re-assign the hash range of each region unless the
system is very unbalanced (See Section III-G4). Therefore, we
focus on the overhead caused by nodes’ join and failure to the
hierarchical virtual coordinate here. In a 3,200-node network,
we add up to 640 (i.e. 20% of original nodes) new nodes

9

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

Cu
m

ul
at

ive
 p

er
ce

nt
ag

e
(%

)

Forwarding load (normalized)

HVGR
HVGR+

Shortest path

Fig. 10. Routing load balancing.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

Cu
m

ul
at

ive
 p

er
ce

nt
ag

e
(%

)

Number of stored events

HVGR
VRR
Ideal

Fig. 11. Storage load balancing.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20

Av
g

of

 m
es

sa
ge

s
pe

r a
ct

io
n

Number of new or failed nodes in percentage (%)

Join
Failure

Fig. 12. Maintenance overhead of dynamic events.

randomly or remove up to 20% of nodes randomly. The join
and failure frequency is about 1 event per second in average.

Figure 12 shows that the average extra control messages per
join is very close to two. In most cases, the new node just sends
one message to the lowest level landmark for join, and the
landmark announces its join to other nodes in the lowest level
region. Thus two control messages are needed. Occasionally,
the new node is two hops away from the landmark and hence
it becomes a new landmark. This case is rare, especially in
dense networks.

Figure 12 also shows there is very small average control
overhead when nodes fail silently. In average, a node failure
causes less than three messages to repair the hierarchical
virtual coordinate. As described in Section III-G3, in most
cases a failed node does not cause any addition message. Our
distance vector variant can heal quickly by leveraging on the
piggy-backed sequence numbers in HELLO messages. A failed
landmark is simply replaced by another node in the same
region, and the new landmark announce the replacement by
HELLO messages gradually.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new Hierarchical Voronoi Graph
based Routing (HVGR) and its improvement HVGR+ for data-
centric storage. Our HVGR is very scalable, as the initialization
overhead and routing table size of each node is O(log N).
HVGR and HVGR+ achieve close to shortest path performance
as the region oriented routing and Hop ID based routing utilize
the underlying network topology. We design a simple hash
mechanism so that HVGR can provide a well load balanced
data-centric storage system. In future, we plan to implement
HVGR in real sensor testbed to further evaluate it in the
realistic scenarios.

REFERENCES

[1] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion:
A scalable and robust communication paradigm for sensor networks,”
in ACM/IEEE International Conference on Mobile Computing and Net-
works (MobiCom), Boston, Massachusetts, Aug, 2000.

[2] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and
D. Ganesan, “Building efficient wireless sensor networks with low-level
naming,” in 8th ACM Symposium on Operating Systems Principles, Oct,
2001.

[3] S. Shenker and et al, “Data-centric storage in sensornets,” SIGCOMM
Comput. Commun. Rev., vol. 33, no. 1, pp. 137–142, 2003.

[4] X. Li, Y. Kim, R. Govindan, and W. Hong, “Multi-dimensional range
queries in sensor networks,” in the first international conference on
Embedded networked sensor systems (Sensys), Nov. 2003.

[5] B. Greenstein et al, “DIFS: A distributed index for features in sensor
networks,” in 1st IEEE International Workshop on Sensor Network
Protocols and Applications, May, 2003.

[6] S. Ratnasamy et al., “GHT: A geographic hash table for datacentric
storage in sensornets,” in 1st ACM Workshop on wireless Sensor
Networks ands Applications, Sep., 2002.

[7] C.-T. Ee, S. Ratnasamy, and S. Shenker, “Practical data-centric storage,”
in the Third USENIX/ACM NSDI,, May, 2006.

[8] R. Fonseca et. al, “Beacon vector routing: Scalable point-to-point in
wireless sensornets,” in 2nd Symposium on Networked Systems Design
& Implementation (NSDI), May, 2005.

[9] Q. Fang et al., “Glider: Gradient landmark-based distributed routing for
sensor networks,” in IEEE Infocom, Mar. 2005.

[10] J. Bruck, J. Gaoy, and A. Jiang, “Map: Medial axis based geometric
routing in sensor networks,” in the 11th Annual International Conference
on Mobile Computing and Networking(Mobicom), Aug. 2005.

[11] G. Pei, M. Gerla, X. Hong, and C.-C. Chiang, “A wireless hierarchical
routing protocol with group mobility,” in IEEE Wireless Communications
& Networking Conference (WCNC), 1999.

[12] Q. Cao and T. Abdelzaher, “A scalable logical coordinates framework
for routing in wireless sensor networks,” in IEEE Realtime Systems
Symposium, Dec. 2004.

[13] A. Caruso, S. Chessa, S. De, and A. Urpi, “Gps free coordinate
assignment and routing in wireless sensor networks,” in IEEE Infocom,
Mar. 2005.

[14] Y. Zhao et al., “Efficient hop id based routing for sparse ad hoc net-
works,” in IEEE International Conference on Network Protocols(ICNP),
Nov. 2005.

[15] M. Caesar et. al, “Virtual ring routing: Network routing inspired by
dhts,” in ACM SIGCOMM, Sept., 2006.

[16] B. Karp and H. Kung, “GPSR: greedy perimeter stateless routing for
wireless networks,” in the 6th Annual International Conference on
Mobile Computing and Networking(Mobicom), Aug. 2000.

[17] M. Aly, K. Pruhs, and P. K. Chrysanthis, “KDDCS: A load-balanced
in-network data-centric storage scheme in sensor network,” in ACM
Conference on Information and Knowledge Management (CIKM), 2006.

[18] J. Newsome and D. Song, “Gem: Graph embedding for routing and
data-centric storage in sensor networks without geographic information,”
in the First International Conference on Embedded Networked Sensor
Systems (SenSys), Nov. 2003.

[19] A. Rao, C. Papadimitriou, S. Shenker, and I. Stoica, “Geographic
routing without location information,” in the 9th Annual International
Conference on Mobile Computing and Networking(Mobicom), 2003.

[20] Y. Mao et. al, “S4: Small state and small stretch routing protocol for
large wireless sensor networks,” in 4th Symposium on Networked Systems
Design & Implementation (NSDI), April, 2007.

[21] C. C. Chiang and M. Gerla, “Routing and multicast in multihop, mobile
wireless networks,” in IEEE ICUPC, Oct. 1997.

[22] G. Pei, M. Gerla, and X. Hong, “Lanmar: Landmark routing for large
scale wireless ad hoc networks with group mobility,” in IEEE/ACM
MobiHoc, 2000.

[23] Z. J. Haas and M. R. Pearlman, “The performance of query control
schemes for the zone routing protocol,” ACM/IEEE Transactions on
Networking, vol. 9, no. 4, pp. 427–438, Aug, 2001.

[24] P. Tsuchiya, “The landmark hierarchy: A new hierarchy for routing in
very large networks,” in ACM SIGCOMM, Aug., 1988.

[25] F. Aurenhammer, “Voronoi diagrams - a survey of a fundamental
geometric data structure,” ACM Computing Surveys, vol. 23, no. 3, pp.
345–405, 1991.

[26] A. S. Tanenbaum and M. van Steen, “Distributed systems: Principles
and paradigms,” Prentice Hall, Sept. 2001.

[27] C. Hedrick, “Routing information protocol,” RFC 1508.
[28] F. Kuhn, R.r Wattenhofer, Y. Zhang, and A. Zollinger, “Geometric ad-hoc

routing: Of theory and practice,” in Principles of Distibuted Computing,
2003.

