
Uranine:	Real-time	Privacy	Leakage	Monitoring	
without	System	Modification	for	Android

Vaibhav Rastogi1,	Zhengyang Qu2,	Jedidiah	
McClurg3,	Yinzhi Cao4,	and	Yan	Chen2

1	University	of	Wisconsin	and	Pennsylvania	State	University
2	Northwestern	University

3	University	of	Colorado	Boulder
4	Lehigh	University



The	Privacy	Problem

• Third-party	smartphone	
apps	becoming	increasingly	
important
• Apps	regularly	leak	private	
information	without	
informing	users
• Private	information	leakage	
is	a	concern	for	both	
consumers	and	enterprises

Goal make	information	about	
privacy	leaks	transparent	and	
accessible	to	the	user

2



Outline

Requirements	and	Approach

Challenges

Design

Implementation	and	Evaluation

Conclusion

3



Outline

Requirements	and	Approach

Challenges

Design

Implementation	and	Evaluation

Conclusion

4



Requirements

• Real-time	detection:	enable	situationally-aware	
decision	making
• No	platform	modification:	enable	deployment	on	
all	devices
• Easily	configurable:	enable	privacy	leakage	
monitoring	for	just	the	apps	user	wants,	no	
overhead	for	the	rest	of	the	system
• Portable:	across	different	architectures	and	
language	runtimes
• Others:	accuracy,	performance

5



Requirements

TaintDroid Phosphor
Real	time Yes Yes
System	
Modification

Yes Yes

Configurability Little Little
Portability No Yes
Runtime
performance

Good Good

Accuracy Good Good

6

Enck,	William,	et	al.	"TaintDroid:	an	information-flow	tracking	system	for	realtime privacy	
monitoring	on	smartphones."	ACM	Transactions	 on	Computer	Systems	(TOCS) 32.2	(2014):	5.

Bell,	Jonathan	Schaffer,	and	Gail	E.	Kaiser.	"Phosphor:	 Illuminating	Dynamic	Data	Flow	in	the	
JVM."	OOPSLA	(2014).



Uranine

• Inline	taint	tracking.	Add	information	flow	tracking	
code	to	the	application
• Do	not	touch	platform	code
• No	modification	to	the	runtime
• No	modification	to	the	framework	 libraries

• Approximate	information	flow	through	platform	
code

7



Requirements

TaintDroid Phosphor
Real	time Yes Yes
System	
Modification

Yes Yes

Configurability Little Little
Portability No Yes
Runtime
performance

Good Good

Accuracy Good Good

8

Enck,	William,	et	al.	"TaintDroid:	an	information-flow	tracking	system	for	realtime privacy	
monitoring	on	smartphones."	ACM	Transactions	 on	Computer	Systems	(TOCS) 32.2	(2014):	5.

Bell,	Jonathan	Schaffer,	and	Gail	E.	Kaiser.	"Phosphor:	 Illuminating	Dynamic	Data	Flow	in	the	
JVM."	(2014).



Requirements

TaintDroid Phosphor Uranine
Real	time Yes Yes Yes
System	
Modification

Yes Yes No

Configurability Little Little High
Portability No Yes Yes
Runtime
performance

Good Good Good

Accuracy Good Good Good

9

Enck,	William,	et	al.	"TaintDroid:	an	information-flow	tracking	system	for	realtime privacy	
monitoring	on	smartphones."	ACM	Transactions	 on	Computer	Systems	(TOCS) 32.2	(2014):	5.

Bell,	Jonathan	Schaffer,	and	Gail	E.	Kaiser.	"Phosphor:	 Illuminating	Dynamic	Data	Flow	in	the	
JVM."	(2014).



Deployment	Model

10



Outline

Requirements	and	Approach

Challenges

Design

Implementation	and	Evaluation

Conclusion

11



Challenges

Tracking	taint	across	calls	to	
framework	libraries

Accounting	for	the	effects	of	
callbacks

Tainting	objects	while	following	
Java	reference	semantics

12



Outline

Requirements	and	Approach

Challenges

Design

Implementation	and	Evaluation

Conclusion

13



Design

Instrumentation
Taint	Storage	&	Propagation

To	Bytecode

Framework	Code	
Summarization	Rules

To	Intermediate	
Representation

App

Instrumented	
App

14



Taint	Storage	and	Propagation	

• Shadow	taint	location	for	each	location

• Similar	for	method	parameters
• Add	additional	parameters	for	carrying	taints
• Return	taint	returned	via	parameter

• Taint	propagation	for	various	operations

class A {
String field;

}

class A {
String field;
int field_t;

}

15

p = q + r; p = q + r;
p_t = q_t | r_t;



Taint	Storage	and	Propagation	

• Introduce	taint	at	sources

• Check	for	taint	reaching	sinks

String id = tm.getDeviceId();

String id = tm.getDeviceId();
int id_t = 1;

socket.write(deviceLocation);
if (deviceLocation_t != 0)

sendAlert();
socket.write(deviceLocation);

16



Tracking	Taint	across	library	calls

• Pre-defined	rules	for	summarization
• Catch-all	policy:	Combine	taint	of	all	parameters	
and	set	to	the	return	taint	and	the	taint	of	object	
on	which	method	is	called	(receiver)
• Above	summarization	not	sufficient:	additionally	
propagate	taint	to	all	objects	that	refer	to	the	
object	being	tainted

17



Callbacks

• toString() may	be	called	by	framework	code	
and	the	returned	string	used	elsewhere
• Solution:	treat	like	framework	code	and	propagate	
return	taint	to	receiver

class A {
private String id;
public A(TelephonyManager m) {

id = m.getDeviceId();
}
public toString() {

return id;
}

}

18



Java	Reference	Semantics

• Problem:	tainting	objects,	not	just	object	
references	
• If	an	object	gets	tainted,	all	references	should	show	
the	taint
• Storing	object	taints	should	not	affect	garbage	
collection
• Solution:	Use	a	weak	hashtable to	map	objects	to	
taints

19



Outline

Requirements	and	Approach

Challenges

Design

Implementation	and	Evaluation

Conclusion

20



Implementation

• Employ	dexlib to	convert	bytecode to	IR
• A	class	hierarchy	analysis	to	identify	callbacks	and	
guide	the	instrumentation
• A	fine-grained	instrumentation	framework	on	top	
of	IR
• Generates	bytecode sequences	that	pass	the	Dalvik
verifier

• 6000	lines	of	Scala	code

21



Accuracy	Evaluation

• Use	TaintDroid as	ground	truth
• Small-scale	manual	as	well	as	large-scale	
automated	tests
• Large-scale	automated	runs	with	Android	Monkey	
on	1490	apps
• Privacy	leakage	results	consistent	with	TaintDroid
• 4	cases	were	identified	to	be	Uranine false	positives

22



Performance	Evaluation
• Performance	expected	to	be	good:	framework	code,	
which	does	the	real	heavy-lifting,	runs	without	
overhead
• Measuring	performance	is	difficult

• No	macrobenchmarks for	Android
• Microbenchmarkingwill	not	show	true	performance	on	real	
workloads

• Created	6	macrobenchmarks from	real	apps	from	
Google	Play
• Overhead	less	than	50%	for	5	benchmarks,	and	around	
10%	in	four	benchmarks
• Compares	favorably	with	TaintDroid (30%)	and	
Phosphor	(50%)

23



Scope	for	Optimizations

• Static	analysis	may	be	used	to	identify	code	paths	
that	will	not	leak	information

• Thus	only	a	few	paths	need	to	be	instrumented

• Such	optimizations	not	possible	for	TaintDroid or	
Phosphor

24



Outline

Requirements	and	Approach

Challenges

Design

Implementation	and	Evaluation

Conclusion

25



Conclusion

• Privacy	is	a	major	issue	in	the	present	digital	
revolution

• Private	information	leakage	should	be	transparent

• Uranine tracks	private	information	leakage	in	
Android	apps	without	platform	modification

• A	step	towards	bringing	information	leakage	
transparency	to	the	masses

26



27

https://play.google.com/stor
e/apps/details?id=com.webs
hield.privacyshield



Thank	you!

28


