
Efficient Hop ID based Routing for Sparse Ad Hoc Networks
Yao Zhao1, Bo Li2, Qian Zhang3, Yan Chen1, Wenwu Zhu3

1 Department of Computer Science, Northwestern University, Email: {yzhao, ychen@cs.northwestern.edu}
2 Department of Computer Science, The Hong Kong University of Science and Technology, Email: bli@ust.hk
3 Wireless and Networking Group, Microsoft Research Asia, Email: {qianz, wwzhu}@microsoft.com

Abstract
Routing in mobile ad hoc networks remains as a

challenging problem given the limited wireless bandwidth,
users’ mobility and potentially large scale. Recently, there
has been a thrust of research to address these problems,
including on-demand routing [1-2], geographical routing [6-
8], virtual coordinates [15], etc. In this paper, we focus on
geographical routing, which was shown to achieve good
scalability without flooding, but it usually requires location
information and can suffer from the severe dead end problem
especially in sparse networks. Specifically, we propose a new
Hop ID based routing protocol, which does not require any
location information, yet achieves comparable performance
with the shortest path routing. In addition, we design
efficient algorithms for setting up the system and adapt to the
node mobility quickly, and can effectively route out of dead
ends. The extensive analysis and simulation show that the
Hop ID based routing achieves efficient routing for mobile ad
hoc networks with various density, irregular topologies and
obstacles.

1. Introduction
Routing remains as a challenging problem, particularly in

mobile ad hoc networks due to the limited spectrum, user’s
mobility and power constrains. There are several challenges:
scalability, routing efficiency, ad hoc network of various
density and topology. For instance, scalability poses
considerable challenges for ad hoc environment because it
lacks the inherent hierarchy in the address structure. That is,
in an ad hoc network, two neighboring nodes might have
completely different address or/and identifiers.

There are mainly two types of proposals specially designed
for ad hoc routing to improve scalability: on-demand routing
protocols [1-2] and geographical routing schemes [6-8]. The
on-demand routing does not require any prior-processing for
route establishment, instead uses route request flooding to all
nodes in the network in order to establish the route on-
demand. This often relies on the computation of the short
path between a source and a destination, and tends to work
well for small or moderate size system with relatively stable
routes. However, such scheme does not scale well due to the
significant overheads in terms of both delay and flooding in
large networks.

The basic idea in geographical routing to use a node's
location as the address, and forward packets based on a pre-
defined routing metric, usually the geographic distance. The
greedy nature comes from the fact that such algorithms
usually forward packets only based on the decrease of this
metric in each step without considering complete topological
information. The geographical routing achieves good

scalability in that each node only needs to be aware of the
neighbors’ location information, and does not rely on the
flooding to exploit network topology. However, there is one
serious limitation for geographical routing: the dead end
problem, especially under low density environment or
scenarios with obstacles or holes. The dead end problem is
caused by the inherent greedy nature of the algorithm in that
a packet may get stuck at a local optimal node that appears
closer to the destination than any of its known neighbors
under the pre-defined routing metric. Recently, virtual
coordinates was proposed for geographic routing without
location information [15], which, however, suffers the same
dead end problem.

In this paper, we aim to design new routing protocols to
solve the dead end problem without sacrificing routing
efficiency, even for sparse ad hoc network with various
topologies and obstacles. For routing efficiency, we seek for
the shortest path route performance as that of the on-demand
routing. To the best of our knowledge, we are among the first
to achieve all these properties in one system with small
overhead.

We propose a novel routing algorithm, utilizing a new
virtual coordinate, called Hop ID. Each node maintains a Hop
ID, a multi-dimensional coordinates, which are assigned
based on its distance to some landmark nodes randomly
selected from the ad hoc network. With a predefined distance
function, two nodes can calculate the “distance” between
them. Based on this Hop ID metric, the routing algorithm
performs greedy forwarding, similar to the geographic
forwarding, i.e., a node forwards the packet to a neighbor
which is “nearest” to the destination in the Hop ID space.
But in contrast to traditional geographical routing, such
schemes effectively avoid the dead ends, even for very sparse
network.

In addition, we designed efficient landmark selection
algorithm which takes even less than one second for a sparse
network of more than 10K nodes. These landmarks are
random nodes in the ad hoc network. The number of
landmarks remains constant even for very large ad hoc
network. We further propose a novel landmark-guided detour
scheme which can effectively route out of a small number of
remaining dead ends.

The extensive analysis and simulation in Section 5 shows
that the Hop ID based routing achieves both the simplicity
and scalability of the geographical routing and good routing
performance of on-demand routing, for mobile ad hoc
network with various density, topologies and obstacles.

The rest of the paper is organized as follows. In Section 2,
we discuss the related works. We present the design of Hop
ID routing in Section 3, and evaluate its performance in

Section 4. We conclude the paper and highlight several
possible avenues for further study in Section 5.

2. Related Works
Before we proceed to present the Hop ID routing

algorithm, we first describe the main motivations and put
them in the proper context with the related works. Routing is
a recursive procedure to forward packets “closer” and
“closer” to the destination. The most critical component in
any routing algorithm is how to measure the “distance”
between two nodes. This distance metric to a large degree
determines the route performance, yet how to select this
metric is non-trivial. Hop count or the shortest path distance
is a natural candidate, since packets are forwarded on a hop-
by-hop basis. But this poses considerable difficulty in ad hoc
networks in that it incurs significant overhead to find and
maintain the shortest path. On-demand routing algorithm [1-
2] and proactive routing protocol [3-4] are typical examples
using hop distance (i.e., the length in hops of the shortest path
between a pair of nodes) as the routing metric.

There have been other metrics proposed to measure the
“distance” between two nodes such as geometric distance,
last encountered time [13], and ID space distance [14].
Geographic routing uses geometric distance as the distance
metric, and it is greedy in that each node forwards a packet to
a neighbor with shorter distance to the destination.
Geographic routing does not incur explicit route discovery
using flooding; instead it only requires obtaining the position
of the destination and neighbors. Geographic routing in
general composes of three parts: 1) greedy routing algorithm;
2) dead ends resolution, and 3) location service. The
existence of dead end is a well-known problem for
geographic routing, in which pure greedy algorithms hardly
work in sparse networks or scenarios with obstacles or holes.
Many protocols, such as GPSR/GFG [6][7] used face routing
technique to overcome dead end problem, but usually is at the
expense of much longer routing path. GOAFR+ [8] made an
attempt in enhancing face routing performance. In sparse
networks, the fundamental problem in geographic routing is
that geometric distance can hardly reflect the true hop
distance between two nodes, thus often lead to dead end
problem. Face routing mitigates this problem at the cost of
longer routing path. In fact, the routing path can be several
times longer than that of the shortest path length [8].

Another well-known limitation of geographic routing is
that it requires GPS or other location devices to obtain
relatively precise location information. For geographic
routing, exact location might not be required and imprecise
virtual coordinates accordant to the network topology may
perform better than the real coordinates system. Under such
motivation, recently Rao et al. made a first attempt for
geographic routing without location information [15]. They
proposed a virtual coordinate construction algorithm, which
achieves comparable performance with the real geometric
coordinates in dense networks. It was also shown in [15] that
the virtual ordination has potential in the environment with
obstacles or holes, as virtual coordinates can better reflect the
connectivity than real coordinates. But [15] performs badly in
sparse network because its greedy success rate drops quickly
and the dead end problem becomes more and more serious.

3. Efficient Routing with Hop ID
To design a scalable and efficient routing scheme for

mobile ad hoc network, we observed that a pre-defined
distance metric in geographical routing is the key to obtain
scalability, in that it does not require any flooding or requires
minimum flooding to explore the route discovery. On the
other hand, the accuracy of the pre-defined distance metric
representing the hop distance determines the route
performance. In another word, if the greedy metric can more
accurately reflect the hop distance, the route performance will
be closer to that of the shortest path routing. This is precisely
the problem in the existing geographical routing algorithms,
where in sparse networks or scenario with obstacles or holes,
the correlation between the geometric distance and hop
distance subdues, thus it results in signify-cantly more dead
ends and unnecessarily longer route paths.

To address these problems, in this Section, we present the
Hop ID based routing. Basically, we construct a multi-
dimensional coordinates system, called Hop ID system, and
use corresponding distance function to calculate the Hop ID
distance between a pair of nodes. A node’s position, i.e. its
Hop ID, is a vector, in which each dimension is the hop
distance from the node to a pre-selected landmark node. Hop
ID distance (vector) between two nodes is calculated from the
relative hop distances to the set of landmarks. The results
demonstrate that the Hop ID distance closely resembles the
hop distance. In addition, Hop ID construction has no
requirement for the density of the network, thus the routing
protocol works well under both high and low density
environments. Comparing to existing proposals, in particular
the virtual coordinates in [15], our proposed Hop ID system
obtains comparable performance under dense environment,
and performs significantly better in sparse networks.

Hop ID routing is also one type geographic routing, thus it
requires the careful design of the three parts identified in
Section 2. Firstly, this needs a routing algorithm based on a
pre-specified distance metric; we construct a multidimen-
sional virtual coordinates, Hop ID system, which relies on the
elected landmark nodes to compute the Hop ID distance
between a pair of nodes. Secondly, dead end problem still
occurs, but this is considerably less severe than the existing
geographic routing scheme due to its insensitivity to the
network density. We present effective techniques to solve this
problem.

Finally, a location service is needed for the source node to
get the Hop ID of the destination. This is not the focus of our
paper, partly because the location service has been
extensively studied [9-12], in which many known techniques
such as [9][10] can be used in Hop ID system. But we can use
a simple location service as follows: each node n randomly
use a pre-defined hash functions to hash its IP address to one
of the landmarks, which will serve as the location server for
n. The routing to landmark nodes is always known to all
nodes. Each node updates its Hop ID with its location server
when necessary as discussed in Section 3.4.
3.1. Hop ID Description

We use the example in Fig. 1 to illustrate the basic ideas in
Hop ID system. We assume that some nodes have already
been selected as landmark nodes by the landmark selection

algorithm introduced in Section 3.3 and each node knows its
hop distance to all the landmarks. In Fig. 1, L1, L2 and L3 are
three landmarks. Following a predefined order, the hop
distance of a node to all the landmarks is combined into a
vector, i.e. the node’s Hop ID. For example, L2’s Hop ID is
305 in Fig. 1, representing that L2 is 3 hops away from L1, 0
hop away from itself and 5 hops away from L3.

Fig. 1 Example of Hop ID. A node N’s Hop ID xyz means N
is x, y, z hops away from landmark L1, L2 and L3 respectively.

Intuitively, the Hop ID can reflect the proximity of the
network to some extent. Take two nodes N1 and N2 for
example, we define the hop distance between N1 and N2 as Lh.
Assume there are m landmark nodes, and the Hop ID of N1
is)1(H),,,()1()1(

2
)1(

1 mHHH , the Hop ID of N2 is
)2(H),,,()2()2(

2
)2(

1 mHHH , the following triangulation
inequality holds:

)(|)(|)2()1()2()1(
kkkhkkk

HHMinLHHMax +≤≤− (1)

Apparently, for each k from 1 to m, Lh is no more than the
sum of)1(

kH and)2(
kH , since there exists a path from N1 to N2

via landmark k and the hop count of this path is)1(
kH +)2(

kH .
For the left part of the inequality, without losing the
generality, we assume)1(

kH is no more than)2(
kH ,)2(

kH is no
more than the sum of Lh and)1(

kH , because there is a path
from landmark k to N2 via node N1 and)2(

kH is the shortest
hop distance from landmark k to N2. These inequalities yield
a lower bound L and an upper bound U of Lh. More landmark
nodes can make the lower and upper bounds even tighter, but
as we can see from the discussion in Subsection 3.2, the
number of landmarks needed in reality will be a constant
which is determined by the precision requirement other than
number of nodes in the network.
3.2. Distance Function

One of the key problems is what distance function is most
efficient for greedy routing. We seek for a distance metric
calculated by Hop IDs, and such distance is an accurate
estimation of the hop distance.

Recently, Jon et al. studied this problem in a theoretical
manner and introduce the following theorem [22]:
Theorem: In any s-doubling metric M, a constant number of
randomly selected landmarks achieve an (ε,δ)- triangulation
with probability 1-γ, where the constant depends on δ, ε, γ,
and s.

The (ε,δ)-triangulation means for all but an ε fraction of the

pairs (u,v), we have δ+<1/LU for a metric holding
triangulation inequality. Like Euclidean space, a ball is
defined as all the nodes that are no farther than a radius by a
certain metric. A metric is an s-doubling metric if every ball
can be covered by at most s balls of half the radius [22].
Obviously, the metric of hop distance is an s-doubling metric,
while s is related to the density of the network. And equation
(1) shows hop distance satisfies the triangulation property.
Thus based on this theorem, given a constant number of
randomly selected landmarks, we can achieve δ+<1/LU for
all but ε fraction of node pairs with probability 1-γ. In other
words, the lower bound and upper bound of hop distance can
be quite precise if we have enough landmarks. This motivates
us to use U or L as the metric for greedy routing.

However, we found that U is not a good metric for greedy
routing. For example, for two nearby nodes N1 and N2, U
usually is not a good estimation of the hop distance between
these two nodes, since the closest landmark to them may be
even further than the distance between N1 and N2. In fact, this
is the partial reason why there are ε fraction of node pairs for
which the precise estimation are not available as mentioned
in the theorem. As a packet is routed closer and closer to the
destination, it will suffer from the imprecise distance if U is
chosen as the distance function. However, L does not have
this problem. That is the reason why our last choice of
distance function is almost L (but not exact L).

Using the landmark selection algorithm described in
Section 3.3, our simulation shows that the lower bound L is
very close to the shortest path Lh. Fig. 2 illustrates the
relationship between L and Lh as a function of number of
landmark nodes. The network has 3200 nodes distributed
uniformly in a square, and the density is 3π (see Section
1.4.1.1 for the detailed setup of the experiments). There are
N=40,000 paths (u, v) are measured in each round of the
simulation. The deviation of L away from Lh can be
calculated as:

NLLE
vu

h /)/1(
),(

2∑ −= (2)

As shown in Fig. 2, with only a few landmarks, the
deviation of L from Lh is very small. For example, when there
are 18 landmarks in these 3200 nodes, the average deviation
is less than 0.1, where Lh is about 23 hops in average.
Although L is a good distance metric that can fairly
accurately estimate the shortest path, it is not a practical
greedy metric yet for the following reason. L is discrete and
it will easily cause a dead end if L itself is not exactly the
same as the hop distance Lh. More specifically, for a
destination d, a node may easily get a tie when comparing its
L with L of its neighbors. For example, node B and H are of
same distance to node D in Fig. 1. But node H seems to be
closer to D, because the Hop ID of H is no farther to D than B
for each dimension of Hop ID. Thus we add a bit
modification to L to utilize more information from Hop ID
and get continuous distance value for distance estimation.
Finally, we choose the power distance metric:

p
m

k

p
kkp HHD ∑

=

−=
1

)2()1(|| (3)

Specifically when p=2, Dp is the Euclidean distance.

Obviously, when p is reasonably large (e.g., 10), the value of
Dp is mainly determined by L (See Fig. 2, the deviation of Dp
is quite close to and even less than L). But unlike the lower
bound L, the power distance Dp has continuous values, which
help break ties and eliminate many dead ends. We had a
sensitivity test of p over a range of 5, 10, 15 and 20. We
found that the performance is good and similar when p is
larger than or equal to 10. Thus we choose p as 10 in all the
simulation experiments in this paper.

0

0.1

0.2

0.3

0.4

2 6 10 14 18 22 26 30

Number of Landmarks

A
vg

 D
ev

ia
tio

n
fro

m
 S

ho
rte

st
 P

at
h

Lower bound

power distance

Fig. 2 Distance functions vs shortest path

3.3. Initial Landmark Selection
Based on the discussion of Section 3.2, we select landmark

randomly. A simple way is to use some hash function to
select landmark randomly. For example, if we need m
landmarks, we can simply generate m random IDs for
landmark selection, called landmark IDs. Each node has its
own unique ID which can be hashed from the IP address or
any other unique number of a node. For each node, if its ID
is the closest one to a landmark ID, it becomes a landmark.

This is much easier to accomplish if we can deploy an ad
hoc network from the scratch. However, we often have to set
up the routing system with a deployed ad hoc network, such
as in the battle fields. To this end, we designed an efficient
algorithm to random select m landmarks for an existing ad
hoc network based on the hashing idea. To prevent the
overhead by nodes competing for landmarks, a coordinator
node C is first selected to manage the landmark selection
process. C can be any node that is relatively stable.
1) Build a shortest path tree

 Node C generates m random landmark IDs and then floods
to the network a CENTER packet including these m IDs.
Every node adds its upstream node ID when it rebroadcast the
CENTER packet and thus the upstream node knows its
downstream children. Thus through the flooding, we can
build a shortest path tree with root as C. Note that we may not
get an absolute shortest path tree because of the lossy
wireless channel. But this will not introduce problems as we
choose landmark randomly.
2) Aggregate landmark candidates

This process starts from the leaves of the shortest path tree.
It is simple for a node N to determine whether it is a leaf node
or not: if no other node claims N as its upstream node, N is a
leaf node. With the assumption that there is not much data
transmission before the routing is set up, it is easy to select a
reasonable timeout for node N to believe all its neighbors
have rebroadcast the CENTER node. The leaf node N will
send a CANDIDATE packet to its upstream nodes, in which it
selects itself as the landmarks for each landmark ID. The

upstream node will collect all the CANDIDATE packets from
its children and find the best candidate (the closest one) for
each landmark ID. Iteratively, the upstream node reports to
its upstream and at last the coordinator C will get the best
candidates of the whole network. Again, to avoid endless
waiting for report from its children, a non-leaf node can set
an expiration time or even actively query all children. This
bottom up report scheme for landmark selection is very
efficient. Ideally (without packet loss), each node only needs
to send one packet containing m landmark candidates.
3) Inform landmarks

At the end of Step 2), the coordinator C finds the m best
landmark candidates. Now it needs to inform them. Here,
node C only needs to send m packets instead of a packet
flooding. Since each non-leaf node N aggregates the
candidate recommendation from its subtree and selects the
best candidates, node N can keep the states of these
candidates as of from which child node, each candidate is
recommended. Use only O(m) memory for each of the non-
leaf nodes, the algorithm actually builds m inverse paths from
C to the landmarks and thus saves a flooding.
4) Build Hop ID

After receiving the notification from the coordinator C,
each landmark node floods a LANDMARK packet to the
network with its landmark ID. On receiving LANDMARK
packets, each node records its hop distance to the
corresponding landmark to compose its Hop ID. After all the
LANDMARK flooding is done, every node set up its Hop ID.
Optimization for Step (2)

The purpose of random landmark selection is to have
landmark nodes distributed uniformly in the network. But
when m is not very large (usually m≤30 with the current scale
of ad hoc networks), randomly selected landmarks may not
distribute uniformly in the network. Next we describe an
optimization scheme to improve the random landmark
selection algorithm described in Step (2).

We collect one more metric – subtree size in the shortest
path tree. For a non-leaf node N, its subtree size is the number
of nodes which has N on its shortest path to the coordinator.
When the landmark candidates are reported from the leaf
nodes in a bottom up manner, the subtree size can be obtained
in a similar recursive manner. Thus when the coordinator
node C selects landmarks from all the candidates provided by
C’s neighbors, C can take the subtree size into account and
select landmarks from each subtree proportionally to the size
of the subtree. For example, even if a small subtree has
relatively large number of landmark candidates whose IDs
are very close to the landmark IDs, the number of real
landmarks chosen from this subtree is still proportional to its
size, i.e., relatively small.
3.4. Hop ID Adjustment

Once the landmark selection procedure is completed, each
node obtains a Hop ID. In the mobile environment, nodes can
move, and the Hop ID has to be periodically updated to
reflect the topology changes. One straightforward way is to
let each landmark node flood periodically, and then every
other node gets its updated Hop ID. Apparently, it is not
scalable due to the significant flooding cost.

Here, we propose a Hop ID adjustment algorithm, which
applies the distance vector routing principle. The algorithm
only utilizes the periodical HELLO messages, which is
originally used for collecting and maintaining the Hop IDs of
each node’s neighbors.

Assume at T0 time node N broadcasts a HELLO message.
Node N first calculates its new Hop ID and then broadcasts
the new Hop ID in the HELLO message. Assume N has n
neighbors N1, N2 … Nn, and neighbor Ni’s Hop ID is

),,,()()(
2

)(
1

i
m

ii HHH . For N’s new Hop ID
),,,(21 mHHH , we have:

otherwise
 landmark th theis N if

 1)(
 0

)(

1

i
HMinH k

imk
i

+=
≤≤

(4)

In fact, it is a variant of distance vector routing, calculating
the hop distance of all the nodes to the landmark nodes.
Using this adjustment algorithm, the Hop ID of a node may
not be very precise. But the greedy routing algorithm can
tolerate such errors in the Hop IDs, as shown in Section 3.5.

Each node N stores the latest Hop ID that it sent to the
location server. After adjustment, if the Hop ID distance
between its new Hop ID and latest reported Hop ID is larger
than a threshold t, N needs to send an update to its associated
location server (in our simple scheme, the corresponding
landmark). Here we select t as 2 for a good balance between
the stability and routing adaptation of the system.

The Hop ID adjustment algorithms are quite efficient and
cost only periodical exchange HELLO messages with
neighbors. It is part of our future work to study the more
dynamic scenarios where nodes join or leave the network, but
we expect the similarity between these dynamic scenarios and
mobile scenarios. The problem may occur when a landmark
node leaves without any notification. This is a classic
distributed system problem. We will select a coordinator
among the landmarks, which is responsible for selecting new
landmarks when any of them fail. When the coordinator fails,
the landmarks will re-elect the coordinator through the classic
ring election or bully algorithms [21], which are robust.
3.5. Hop ID Greedy Routing Algorithm

The greedy routing algorithm is similar to that of
geographic routing and the difference is only in the choice of
distance function. There are several assumptions. Firstly, we
assume the source knows the destination node’s Hop ID, and
the Hop ID is included in the packet header of each data
packet. Thus we need a Hop ID lookup service, which has
been discussed in the beginning of Section 3. Secondly, each
node knows the Hop ID of its neighbors or even more
aggressively, its 2-hop neighbors. This can be achieved by
periodically broadcasting the HELLO packets.

For simplicity, we describe our routing algorithm with only
1-hop neighbors as follows. Using the distance function Dp,
the source node or a relay node S calculates its distance to the
destination, which is designated as Dsd. Then node S
calculates each neighbor’s “distance” to the destination by
using Dp, and assume Min(Dnd) is the minimal distance and
the right neighbor is N . If Min(Dnd) is less than Dsd, the
sender will forward the data packet to the neighbor N .
Otherwise, the node S is a dead end, and the greedy routing
will stop here. We introduce a novel landmark-guided routing

to address the dead end problem as below.
3.6. The Dead End Problem

In geographic routing, voids cause dead ends. In essential,
voids make the physical distance fail to reflect the hop
distance. Similarly, the Hop ID distance metric also deviates
from the hop distance to some extent, so dead ends still exist.
The number and selection of landmarks determines the Hop
ID coordinates, which greatly affect the possibility of dead
ends. For example, in Fig. 1 for destination node C, node A is
a dead end. There is a kind of special dead ends, i.e., a relay
node has the same Hop ID as the destination, or some nodes
have the same Hop ID. We call this kind of dead ends SHID
dead ends. Unlike geographic routing, dead end problem is
significantly alleviated, because the distance metric is closer
to the hop distance, thus better resembles the topology of the
network. This is also demonstrated through the simulation
results in Section 4. Still, a small number of dead ends do
exist and the problem needs to be addressed. Unfortunately,
we cannot apply the face routing algorithm to our algorithm,
because our Hop ID coordinates has much higher dimensions
than two dimensions.

We introduced a novel landmark-guided routing to solve
this problem. The observation is that the landmark nodes
themselves are good guides for routing off dead ends. When a
node finds that it is a common dead end E (not SHID dead
end), it records its distance to the destination (denoted as De)
in the data packet. Then the node finds the nearest landmark
node to the destination, which will become the guide. The
packet will be forwarded to the guide hop by hop. The
routing then enters a detour mode from the original greedy
mode. For example, node A is a dead end for destination node
C in Fig. 1. Then A enters the detour mode and sends the
packet to L3, which is the nearest landmark to C. When the
packet reaches node G, G will notice that itself is closer than
node A to C, and node G can leave the detour mode and
switch back to greedy mode again. This detour process
continues until any of the following conditions is satisfied:
1) The current node is closer to the destination than the

dead end node E. Thus the routing returns to the greedy
mode from the detour mode.

2) The packet in the detour mode has been forwarded more
than t hops or it reaches the landmark. We use this
detour algorithm only for trying routing out of a dead
end and then we can resume the greedy procedure.
Simulation shows that when t is chosen 5, we can route
out of most dead ends without bothering the landmarks
too much with many detoured packets.

This detour algorithm cannot completely resolve all dead
end problems. But it effectively mitigates most of the dead
end problems without making the routing paths much longer,
as shown in the simulation results of Section 5. Note that this
will not cause landmark nodes to become bottlenecks,
because data will only be passed to a landmark when both the
dead end and destination are very close to the same landmark.
The simulation further validates that there is no real heavy
traffic to the landmarks.

 Hop ID GWL
Initialization (packets) O(m·N))(NNO ⋅

HELLO Packets O(N) O(N)

Packet Header (bytes/packet) O(m) O(1)
Location Server)(NNO ⋅)(NNO ⋅

Table 1 Overhead of Hop ID vs. GWL
Expanding ring flooding is a very simple but costly

algorithm in routing search. It floods to search some node and
increase the flooding range (e.g. by increasing the TTL) until
the destination is reached. Our routing algorithm uses this
algorithm to solve the remaining dead ends, including the
SHID dead ends. Except for SHID dead ends, we only use
this algorithm to find a closer node and thus the greedy
algorithm can move on. As for SHID dead end, usually the
real destination is not very far from this dead end. So no large
range flooding of the expanding ring is needed, and as a
result the overhead is not high.
3.7. Summary and Analysis

Our routing algorithm relies on the construction and
maintenance of the Hop ID system. It has the following three
key steps:
3) A voluntary node floods to the entire network and build

a shortest path tree rooted at this node.
4) Landmark nodes are selected randomly using the

landmark selection algorithm. After this procedure, each
node can obtain its Hop ID.

5) Each node adjusts its Hop ID periodically, and
broadcasts its new Hop ID by HELLO message.

The routing algorithm is a common greedy procedure,
which is similar to geographic forwarding. To deal with the
dead end problems, we design a landmark-guided detour
algorithm, and apply it with the expanding ring algorithm to
route out of dead ends.

Now we analyze the overhead of construction and
maintenance for the Hop ID system. Assume we have totally
N nodes in the network and m landmarks. To construct the
Hop ID system, there are O(m) flooding to the entire network,
i.e., O(m·N) control packets. As shown in Section 4, m
usually is a small number (less than 40), even for a
reasonably sparse and large ad hoc network of 3,200 nodes.
Furthermore, it will change little as N increases.

To maintain the Hop ID system, each node broadcasts
HELLO message periodically, so the overhead is O(N) control
packets in a period. But the overhead of bandwidth
consumption (in bytes/second) is O(m·N), as each HELLO
packet contains a node Hop ID, an m-dimensional vector.
Thus compared with the geographic routing, we spent a bit
more bandwidth for sending larger messages. Another
overhead is the packet header overhead. Every data packet
must include the Hop ID of the destination, which costs O(m)
(usually m bytes of Hop ID) bytes per packet. As for Hop ID
lookup overhead, it is)(NNO ⋅ , since each node will send a
packet to the location server and the average hop distance
between a node and a landmark is)(NO . Another overhead
is the flooding overhead of expending ring when the
landmark-guided routing fails. It is hard to give a theoretical
bound for this overhead, while our simulation shows that it is
very low in practice (See Subsection 4.2). Table 1 shows the
comparison of overhead between our Hop ID system and
GWL [15].

4. Performance Evaluation
In this section, we evaluate the Hop ID system through

simulations. The routing algorithm has three stages: pure
greedy routing, the detour algorithm for most dead ends and
expanding ring algorithm to guarantee the routing success.
For convenience, we call the pure greedy routing algorithm
HIR-G, and call the HIR extended with detour algorithm
HIR-D. The HIR-D with the expanding ring algorithm is
called HIR-E. Using expending ring, HIR-E can always
guarantee routing success if the source and destination are
connected. That is the reason why most graphs omit it. For
comparison, we also implemented the geographic routing
without location information [15], which is called GWL. In
addition, we also implement the pure greedy geographic
forwarding (GFR) and GOAFR+ [8] protocol with the real
geographic coordinates for comparison.
4.1. Evaluation methodology

4.1.1. Experiment design
In most (unless specified otherwise) scenarios, there are N

(N varies from 200 to 51200) nodes distributed randomly in a
2-D C×C square area. The communication range of each node
is 1. We use λ to denote the density of the network, where λ =
π×N/(C×C). Here λ means there are λ nodes per unit disk in
the 2-D space, and λ reflects the average neighbor number of
a node in the network. In 3-D space, the density is similarly
defined as λ = π×N/C3. For each scenario, 200 randomly
nodes are chosen as both source and destination nodes. Thus
there are 38900 routing path in one scenario. We repeated 20
times to get an average.
4.1.2. Evaluation metrics

In our evaluation, we consider the following metrics:
 Routing success rate: the fraction of packets that can be

successfully delivered to the reachable destination. This
metric is trivial for HIR-E since it can always get 100%
success rate by flooding. However, the metric of HIR-D
tells us how well the greedy (with detour extension)
algorithm works and thus how often the Hop ID routing
has to resort to expending ring flooding.

 Flooding range: the number of hops HIR-E takes to use
expending ring flooding to deliver packets to the
destination. Other than the overhead of flooding in
packets, this metric provides a clear picture on the size of
the flooding range.

 (Shortest) path stretch: the ratio of absolute routing path
to the shortest path between the source and destination. It
is true that routing path length may not be the best metric
to depict the data transfer overhead, and other metrics are
proposed such as ETX [18]. But like in other geographic
routing protocol papers, we only use path length, and
leave it as future work to explore other metrics as the
greedy metric.

4.1.3. Simulation Model
First, we implemented our algorithm in ns2 [23].

Unfortunately, ns2 itself is not scalable to large wireless
network, e.g. a network with 3200 nodes. To evaluate the
performance in large networks and compare it with the

previous work [15], we also implemented a packet level
simulator that can scale to tens of thousands of nodes. In this
simulator, radios have a precise (circular) radio range 1, and
nodes can send packets only to nodes within this range. This
simple model enables us to abstract the impact of message
loss and signal attenuation on routing performance, and allow
us concentrate on how well the routing algorithm performs.
We compared the results our ns2 simulator and scalable but
simple simulator using small networks (≤400 nodes) and
found they did not have significant difference. Thus we only
present the simulation results from the scalable simulator.

In addition, to evaluate how our algorithm works in a real
environment, we present simulations in which we model:
6) Mobility - to simulate mobility, we use the modified

random way point model [1] suggested in [17].
7) Losses - nodes drop incoming packets with a given

probability. Since we do not model a specific MAC
layer, radio technology or data-traffic pattern, we resort
to a uniform loss model. While this may not be a
realistic loss model, it does provide some insight into
the robustness of the algorithm in the presence of loss.

8) Obstacles - we model obstacles by using straight walls
that are parallel to the x- or the y-axis. Nodes cannot
communicate with each other if the line connecting
them intersects with a wall.

9) 3-D space - in the Hop ID system, the Hop ID is a multi-
dimensional virtual coordinates with no assumptions on
the dimension of the network. As for geographic routing,
more work need to be done for face routing to be
applied in 3-D space.

10) Irregular shapes and voids - we create networks with
voids, i.e., regions inside the network that do not contain
any nodes. We further simulate networks of various
shapes, including concave shapes.

4.2. Landmark Sensitivity
The number of landmark nodes is a very important

parameter for the Hop ID system. The theorem described in
Subsection 3.2 shows that with constant number of
landmarks, we can obtain a precise hop distance
measurement regardless of the network size. But this constant
is related to network density. Thus the sparser the network is,
the more landmarks are need. However, even when the Hop
ID distances are mostly precise, the route success rate is still
affected by the increase of the number of nodes N as
discussed in Section 0. In this and next two sections, we find
that the landmark number is actually not very sensitive to the
density and the size of networks, i.e., after the number of
landmarks exceed some small value (like 30), the increase of
the number of landmarks gives little improvement for routing
performance.

Fig. 3 shows how the landmark number affects the routing
success ratio. We use a 3200 nodes network and the density
varies from 2π to 3π. Fig. 3 shows the routing success ratio as
a function of the number of landmarks. In a moderate dense
network (λ = 3π), HIR-D has higher than 98% routing
success rate with only about 20 landmarks. While in a quite
sparse network (λ = 2π), HIR-D requires 30 or more
landmarks to ensure 95% routing success ratio. In the
following sections, we fix the number of landmarks as 30 in

all the simulations. We find that such a small number of
landmarks are robust and sufficient for a large range of
network settings.

Fig. 4 shows the overhead of flooding in networks of
different density. Even in the sparse network, the flooding
range is very small (less than 7 hops if landmark number is
30), compared with the network diameter above 60 hops.
Actually, we only use expanding ring algorithm to find one
closer next hop, which usually can be satisfied in a small
region. So the expanding ring algorithm needs little overhead
to find a next greedy hop.
4.3. Density

In this subsection, we study the performance of our
algorithm with various network densities. As shown in [8],
the critical density for routing is around 4.5 nodes per unit
disk (λ=4.5). In our simulation, the density of the network
varies from π to 4π. This density range does not covers the
extremely dense network (λ=5π) as used in [15], simply
because all the simulated protocols route with almost 100%
route success rate and path stretch of nearly 1.0. For the
partial-connected network, we only take the largest connected
sub-network into account and omit those scattered nodes. We
choose a 20×20 square area and nodes uniformly distributed
in the area. The number of nodes N is determined by the
network density, e.g. 800 nodes when λ is 2π.

Fig. 5 shows the success ratio of GFR, GWL, HIR-G and
HIR-D as a function of network density. GOAFR+ is not
included in this figure, because using face routing algorithm,
GOAFR+ can guarantee routing as in the ideal model. The
same is for the HIR-E, as the expanding ring algorithm can
always find the next hop or the destination. It seems to be
strange that the success ratios of all algorithms decrease as
network density increases, when the network density is
smaller than some critical value (about 5.0). The reason is
that the network splits up into many small disconnected sub-
networks. Fig. 5 shows that GFR performs very poorly in
some critical sparse networks because the geographic
distance severely deviates from the hop distance and the GFR
routing encounters a large number of dead ends. GWL
outperforms GFR when the density is very low, which shows
that the virtual coordinates capture the topology better. HIR-
D performs the best, which is more than 97% in most critical
network density. This shows landmark nodes are good guide
for dead ends and the detour algorithm can effectively help
resolve the dead ends. Note that the higher the route success
rate of HIR-D reaches, the less flooding overhead is
introduced by HIR-E.

Fig. 6 shows the path stretch of GFR, GWL, GOAFR+,
HIR-G and HIR-D with different network densities. The path
stretch of GFR, GWL, HIR-G and HIR-D are always very
close to 1.0 (the four curves are overlapped in Fig. 6), no
matter how sparse the network is. GOAFR+ performs worst,
and the path stretch is as high as about 3.5 for the critical
density. HIR-E is not included, because HIR-E has nearly the
same path stretch as HIR-D. Since the routing efficiency of
all the simulated protocols except GOAFP+ are always close
to shortest path, we omit the graphs on routing path stretch in
the following tests to save space.

0

0.25

0.5

0.75

1

2 10 18 26 34 42 50

 Number of Landmarks

R
ou

tin
g

Su
cc

es
s

R
at

io

HIR-G λ=3π
HIR-D λ=3π
HIR-G λ=2π
HIR-D λ=2π

Fig. 3 Landmark number vs Routing

success rate

1

3

5

7

9

11

13

15

2 10 18 26 34 42 50

 Number of Landmarks

Fl
oo

di
ng

 ra
ng

e

λ=3π
λ=2π

Fig. 4 Landmark number vs Flooding

range

0

0.2

0.4

0.6

0.8

1

3 5 7 9 11 13
Network Density

Su
cc

es
s

R
at

io

HIR-D
HIR-G
GFR
GWL

Fig. 5 Routing success rate as a function

of network density

1

1.5

2

2.5

3

3.5

3 5 7 9 11 13
Network Density

HIR-G
HIR-D
HIR-E
GFR
GOAFR+
GWL

S
pa

n
of

 S
ho

rte
st

 P
at

h

Fig. 6 Path stretch as a function of

network density

0

0.2

0.4

0.6

0.8

1

100 1000 10000 100000

Number of Nodes

Su
cc

es
s

R
at

e

HIR-D
HIR-G
GFR
GWL

 Fig. 7 Routing success rate as a function

of network size

0.5

0.6

0.7

0.8

0.9

1

0 300 600 900 1200 1500 1800

Pause time(s)

S
uc

ce
ss

 R
at

io

HIR-G(λ=3π)
HIR-D(λ=3π)
HIR-G(λ=5π)
HIR-D(λ=5π)

Fig. 8 Routing success rate as a function

of mobility

Fig. 6 also shows that the path length of GOAFR+ is much
high in very sparse networks. Because geographic forwarding
has very low success rate, GOAFR+ mostly has to resort to
face routing. As a result, the routing path stretch is even more
than 3 in the worst case. It is worth mentioning that the
performance of GFR is much better than that in [8], because
we use 2-hop neighbor information when doing the greedy
algorithm.
4.4. Scalability

In this subsection, we study the scalability of our routing
algorithm. As discussed in Sections 3.2 and 4.2, the number
of landmarks does not increase much as the number of nodes
increases because it goes asymptotically to a constant in the
square shaped networks. In simulations, we adopt a moderate
density 2-D network, where λ=3π. The network size varies
from 200 to 51200 nodes.

 Fig. 7 shows the success ratio of HIR-G and HIR-D with
two kinds of network density respectively as a function of
network size. Both HIR-G and HIR-D perform worse as the
network size increases, which is the same as geographic
routing and GWL. Intuitively, this is because that the average
routing length increases with the growth of the network size.
Then the probability to encounter nodes with imprecise
distance to the destination increases, which usually causes
dead ends. Furthermore, the local information becomes less
accurate for the greedy algorithm. Thus with the help of
landmarks, HIR-D can survive from many dead ends and
performs better than HIR-G. GFR performs the worst, and
degrades rapidly as the network size increases.

4.5. Mobility
In this subsection, we model mobility by using the

modified random way point model [17]. Each node picks a
destination at random within the square grid and moves
towards the destination with a speed uniformly distributed in
the range [0.004, 0.076]. The average speed is 0.04,
equivalent to the speed of 10m/s if the unit transmission
range is 250m. When a node searches for its destination, the
node remains stationary for a time interval called pause time.
After staying for the pause time, the node selects another
destination, and repeats.

In the mobile scenario, the Hop ID of a node may not be
accurate and thus degrade the performance of the HIR
algorithm. The Hop ID adjustment algorithm adjusts the Hop
ID of each node locally, and eventually adjusts the Hop ID of
all nodes globally. The HELLO packet interval determines the
adjustment frequency, and in our setting it is 1 second in
average, which can detect the local topology change in time.
There are 3200 nodes in the square and the network density is
3π or 5π. Fig. 8 shows that even high mobility is not harmful
to our Hop ID system. The imprecise Hop ID system works
quite well as the success ratio of HIR-D is above 92% in the
worst case. As pause time increases, the mobility of network
become lower and lower, and as a result HIR-D obtains close
to 100% success ratio.
4.6. Loss and Collisions

In this subsection, we study the robustness of our algorithm
in the presence of losses. We model losses by randomly
dropping control packets with a probability p. To factor out
the routing failures due to data packet losses, we do not drop

any data packets. While arguably this is not a very realistic
loss model, it allows us to study the robustness of our
algorithm when using incomplete information. We choose λ
as 5π and network size as 3200 nodes, which is a quite dense
environment.

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3

Link Loss Ratio

Su
cc

es
s

R
at

io

HIR-D
HIR-G
GWL

Fig. 9 Success ratio as a function of link loss ratio

Fig. 9 shows the success rate of greedy routing when the
loss rate p increases from zero to 30%. As expected the
success rate drops as the loss rate increases. However, this
drop is not severe. For 30% loss rate, the average success rate
of greedy routing is still greater than 98%. The success rate
is greater than the probability of hop-by-hop packet delivery
because we ignore losses on the data path. These results
suggest that our algorithm is robust in the presence of packet
losses. Intuitively, this is because that even with imprecise
Hop ID, the greedy algorithm can work well. In contrast, with
the same setup, the performance in [15] is much worse.
4.7. Obstacles

In this subsection, we study how our algorithm works in
the presence of obstacles. We model the obstacles as walls
with lengths of up to 6.25 units. For comparison, note that the
radio range of a node is 1 unit, and a node only knows its
two-hop neighborhoods. Thus, for large obstacles it is not
always possible for nodes to bypass it by only using the
greedy routing. But as our Hop ID distance is mainly
determined by the topology of the network, obstacles in
network will not directly affect the algorithm performance. In
fact, when there are more obstacles, more links in the original
scenarios without obstacles are broken and the network
becomes sparser. In other words, it reduces the average
neighbor number and thus brings minimum impact to the
performance of our algorithm.

Fig. 10 plots the success rate for our greedy routing in a
3200-node network for different obstacle lengths, and for
different number of obstacles. The network density is 5π,
which is very dense because we want to get rid of the effect
of density. As expected, the success rate decreases as the
number of obstacles and/or their length increases. But the
performance of HIR-D is still very good. For example, when
there are 20 obstacles with length 6.25, the success ratio of
HIR-D is still over 98%. On the other hand, geographic
routing with real coordinates performs badly, which drops
below 50% in critical scenarios. For GOAFR+, scenarios
with obstacles make it hard for GOAFR+ to calculate the
planar sub-graph. Thus the success ratio of GOAFR+ drops
from 1.0 to about 0.86 when there are 20 obstacles. As for
GWL, it shows that the virtual coordinates is also severely

affected by obstacles. The performance drops more than 30%
when there are 20 obstacles.
4.8. Irregular Shapes

In this section, we explore networks where the nodes are
distributed in areas of irregular shapes. Fig. 11 presents two
kinds of irregular 2-D shapes. The irregular shape (a) has a
concave perimeter and shape (b) has a large hole in the center
of the square. In the simulation, 3200 nodes are distributed in
the shadow area of a 25×25 square grids, and the void space
varies.

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1.25 2.5 3.75 5 6.25

Length of Obstacle

S
uc

ce
ss

 R
at

io

HIR-D
HIR-G
GFR
GOAFR+
GWL

Fig. 10 Success rate as a function of obstacles

(a)

(b)

0.6

0.7

0.8

0.9

1

0 3.13 6.25 9.38 12.5 15.6 18.8
Length of the hole

Su
cc

es
s

R
at

io
HIR-G
HIR-D
GWL

(c)
Fig. 11 Irregular shapes and success rate for shape (b)

For shape (a), it does not change the performance of these
routing protocols much, and we omit the result figure here.
Fig. 11 (c) shows the success ratio of our algorithm in
irregular shape (b). The size of the hole in the center of the
square varies from 0 to 18.75, i.e., from 0 to 9/16 in terms of
the proportion of the area.

The results are similar to those presented in Section 4.3.
The irregular shape does not bring any essential change to the
Hop ID system and thus has little effect. On the contrary,
geographic routing using either real coordinates or virtual
coordinates is significantly affected by the irregular shapes
with holes.
4.9. 3D-Space

So far we have assumed that nodes lie in a 2-dimensional
space. 3-D space may be a more realistic scenario and 2-D
space can be viewed as a special case of 3-D space system.
For example, buildings or mountains are typical 3-D
scenarios. In this section, we simulate a 3-D network in a
10×10×10 cube and certain number (determined by the
density) of nodes are distributed randomly in the cube.

Geographic forwarding can be applied to 3-D space
network with none or little modification, because the greedy

routing algorithm is not affected by the dimension. But the
face routing used in most geographic routing algorithms such
as GPSR [6] and GOAFR+ [8] will not work in 3-D space
without modification because the planar graph is the basic
requirement. There has been almost no existing work on the
geographic routing in 3-D space. As for virtual coordinates,
both our Hop ID system and GWL [15] make no assumption
on the dimensions of the network, and thus none will be
affected by the change of dimensions. The results in Fig 12
suggest that our algorithm works well in even higher
dimensional space. The key factor that affects the
performance of our algorithm is the density of the network
rather than the number of dimensions.

0

0.2

0.4

0.6

0.8

1

2 6 10 14 18

Network Density

S
uc

ce
ss

 R
at

io

HIR-G
HIR-D
GFR

Fig 12 Success ratio as a density of density in 3-D space

5. Conclusion and Future Work
In this paper, we aim to design efficient routing schemes

for mobile ad hoc networks of various density, topologies and
obstacles. We propose a new virtual distance metric, called
Hop ID distance and design efficient algorithms for setting up
the system and adapting to the node mobility quickly, and for
effectively routing out of dead ends. Extensive simulations
show that the Hop ID scheme provides efficient routing and
works in both sparse and dense networks, and is insensitive to
obstacles and voids, thus can be used in a wide variety of ad
hoc environments.

Meanwhile, there are several issues that have not been
fully investigated in this paper. For example, more realistic
link layer models and network topologies should be
incorporated. And it is important to consider a dynamic
system, where nodes can join and leave the system. What’s
more, it would be an interesting topic to taken loss rate or
delay into account when greedy routing is choosing next
nodes.

References
[1] D. B. Johnson, D. A. Maltz, and J. Broch, “DSR: The

Dynamic Source Routing Protocol for Multi-Hop Wireless Ad
Hoc Networks,” in Ad Hoc Networking, ch. 5, pp. 139-172,
Addison-Wesley, 2001.

[2] C. E. Perkins and E. M. Royer, “Ad hoc on-demand distance
vector routing,” in Proc. of the 2nd IEEE Workshop on
Mobile Computing Systems and Applications, 1999.

[3] G. Pei, M. Gerla, and T. Chen, “Fisheye State Routing: A
Routing Scheme for Ad Hoc Wireless Networks,” in Proc.
ICC 2000, New Orleans, LA, June 2000.

[4] T. Clausen and P. Jacquet, “Optimized Link State Routing
Protocol(OLSR),” RFC3026, IETF Network Working Group,
Oct. 2003.

[5] Y. B. Ko and N. H. Vaidya, “Location-aided Routing (LAR)
in Mobile Ad Hoc Networks,” in Proc. ACM/IEEE
Mobicom, Oct. 1998

[6] B. Karp and H. Kung. “GPSR: greedy perimeter stateless
routing for wireless networks,” in Proc. ACM/IEEE Mobicom,
Aug. 2000.

[7] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing
with Guaranteed Delivery in Ad-Hoc Wireless Networks,”
ACM Wireless Networks, November 2001.

[8] F. Kuhn, R.r Wattenhofer, Y. Zhang and A. Zollinger,
“Geometric Ad-Hoc Routing: Of Theory and Practice,” in
Principles of Distibuted Computing, 2003.

[9] A. Helmy, S. Garg, P. Pamu and N. Nahata, “Contact based
architecture for resource discovery (CARD) in large scale
MANets,” in Third IEEE/ACM International Workshop on
Wireless, Mobile and Ad Hoc Networks (WMAN),
IEEE/ACM IPDPS, April 2003.

[10] T. Camp, J. Boleng, and L. Wilcox, “Location information
services in mobile ad hoc networks”, in IEEE Int. Conf.
Communications, pages 3318-3324, 2002.

[11] J. Li, J. Jannotti, D. De Couto, D. R. Karger, and R. Morris,
“A Scalable Location Service for Geographic Ad Hoc
Routing,” in Proc. ACM/IEEE Mobicom 2000.

[12] P. Bose, et al. “A Survey on Position-Based Routing in
Mobile Ad-Hoc Networks,” IEEE Network, 15(6), 2001.

[13] H. Dubois-Ferriere, M. Grossglauser and M. Vetterli, “Age
Matters: Efficient Route Discovery in Mobile Ad Hoc
Networks Using Encounter Ages,” in Proc. ACM Mobihoc
03 , Maryland, June 2003.

[14] Y. C. Hu, H. Pucha, S. M. Das, “Exploiting the Synergy
between Peer-to-Peer and Mobile Ad Hoc Networks,” in Proc.
HotOS-IX, May 18-21, 2003.

[15] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, I. Stoica,
“Geographic Routing without Location Information,” in Proc.
ACM/IEEE Mobicom 2003

[16] X. Hong, K. Xu, and M. Gerla, “Scalable Routing Protocols
for Mobile Ad Hoc Networks,” IEEE Network
Magazine,July-Aug, 2002, pp. 11-21

[17] J. Yoon, M. Liu, and B. Noble, “Random Waypoint
Considered Harmful,” in Proc. IEEE Infocom 2003, San
Francisco, CA, April 2003

[18] D. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A High-
Throughput Path Metric for Multi-Hop Wireless Routing,” in
Proc. ACM/IEEE Mobicom 2003

[19] C. C. Chiang and M. Gerla, “Routing and Multicast in
Multihop, Mobile Wireless Networks,” in Proc. IEEE ICUPC
'97, San Diego, CA, Oct. 1997

[20] T.G. Kolda, R.M. Lewis, and V. Torczon, "Optimization by
Direct Search: New Perspectives on Some Classical and
Modern Methods," SIAM Review, vol. 45, pp. 385-482.

[21] A. S. Tanenbaum, M. van Steen, “Distributed Systems:
Principles and Paradigms”, Prentice-Hall, Inc, Sept. 2001

[22] J. Kleinberg, A. Slivkins, T. Wexler, “Triangulation and
Embedding using Small Sets of Beacons”, in 45th Annual
IEEE Symposium on Foundations of Computer Science
(FOCS'04), 2004

[23] NS2 network simulator, http://www.isi.edu/nsnam/ns/

