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Abstract— Packet forwarding prioritization (PFP) in routers
is one of the mechanisms commonly available to network op-
erators. PFP can have a significant impact on the accuracy
of network measurements, the performance of applications and
the effectiveness of network troubleshooting procedures. Despite
its potential impacts, no information on PFP settings is readily
available to end users. In this paper, we present an end-to-end
approach for PFP inference and its associated tool, POPI. This
is the first attempt to infer router packet forwarding priority
through end-to-end measurement. POPI enables users to discover
such network policies through measurements of packet losses of
different packet types.

We evaluated our approach via statistical analysis, simulation
and wide-area experimentation in PlanetLab. We employed POPI
to analyze 156 paths among 162 PlanetLab sites. POPI flagged 15
paths with multiple priorities, 13 of which were further validated
through hop-by-hop loss rates measurements. In addition, we
surveyed all related network operators and received responses
for about half of them all confirming our inferences.

Besides, we compared POPI with the inference mechanisms
through other metrics such as packet reordering (called out-of-
order (OOO)). OOO is unable to find many priority paths such
as those implemented via traffic policing. On the other hand,
interestingly, we found it can detect existence of the mechanisms
which induce delay differences among packet types such as slow
processing path in the router and port-based load sharing.

Index Terms— Packet forwarding priority, inference, packet
loss, packet reordering

I. INTRODUCTION

.
The Internet was designed with no gatekeepers over
new content or services. A lightweight but enforce-
able neutrality rule is needed to ensure that the
Internet continues to thrive.

—- Vint Cerf
Packet forwarding prioritization has been available in off-

the-shelf routers for quite a while, and various models from
popular brands, such as Cisco and Juniper Networks offer
support for it [1], [2]. Network operators have come to rely on
these mechanisms for managing their networks, for example
as a way of rate limiting certain classes of applications (e.g.
peer-to-peer) [3]. PFP can have a significant impact on the
performance of applications, on the accuracy of measurement
tools’ output, and on the effectiveness of network troubleshoot-
ing procedures.
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Despite its potential impact, users, developers and most
other network administrators have no information of such
settings nor ways to procure it. In this paper, we present an
end-to-end approach for packet forwarding priority inference
by measuring the loss rate difference of different packet
types and its associated tool, POPI, which is the first such
attempt to our best knowledge. This tool can be used by
the enterprises or end-users to discover whether their traffic
are treated differently by the ISPs, and whether the ISPs
has fulfilled the contracts between them and the users. For
example, after Comcast was found to treat BitTorrent with low
prioirty in 2007, Comcast and BitTorrent reached an agreement
to work together on network traffic in 2008 [4], [5].

There are a couple of challenges for designing and im-
plementing POPI. First, background traffic fluctuations can
severely affect the end-to-end inference accuracy of router
properties. Secondly, probe traffic of a relatively large packet
bursts are neither independent nor strong correlated. Most ex-
isting inference methods have to assume certain independence
(i.e. i.i.d. processes) or strong correlation models for inference
(e.g. back-to-back probe packets). However, as for the rela-
tively large packet bursts sent by POPI, a good mathematical
model is needed to determine whether the loss rates difference
between two packet types is the consequence of a random
effect or being treated really differently. Thirdly, we want to
measure more than two packet types at the same time, so
simply determining whether they are treated differently is not
enough.

To overcome these challenges, POPI takes the following
three steps to infer packet forwarding priority inference. First,
it sends a relatively large amount of traffic to temporarily
saturate the bottleneck traffic class capacity, which gives
POPI better resistance against background traffic fluctuations.
Secondly, we apply a robust non-parametric method based
on the ranks instead of pure loss rates. Thirdly, we assign a
rank-based metric to each packet type and use a hierarchical
clustering method to group them when there are more than
two packet types. We also believe some of these schemes can
be applied in other Internet measurement applications.

We validated our approach via statistical analysis, ns2 sim-
ulation and wide-area experiments in the PlanetLab testbed.
We chose 26 packet types on various protocols (ICMP, TCP
and UDP) and various port numbers associated with traditional
and P2P applications in addition to some random ports. Tested
over 156 directional paths among 162 PlanetLab sites, POPI
identified 15 paths flagged with multiple priorities, 13 of which
were validated using a hop-by-hop measurement method. After
surveying all related network operators, we received responses
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for seven of them all confirming our inferences.
As an extension of our earlier paper [6], we compared POPI

with the inference mechanisms based on other metrics with
less overhead such as packet reordering (called out-of-order
(OOO)) in this paper. OOO is unable to find many priority
paths such as those implemented via traffic policing. On the
other hand, it can detect existence of the mechanisms which
induce delay differences among packet types such as slow
processing path in the router and port-based load sharing.

The rest of the paper is organized as follows. We review
related work in § II before discussing the design space and
challenges in § III. The design of POPI mechanisms is
presented in § IV. We evaluate our POPI tool with both NS
simulation (§ V) and the PlanetLab experiments (§ VI). Fur-
thermore, we discuss the use of other metrics such as packet
reordering and delay for inference in § VII. We conclude and
summarize our findings in § VIII.

II. RELATED WORK

To the best of our knowledge, this is the first attempt
to infer router packet-forwarding priority through end-to-end
measurement.

Perhaps the efforts most closely related to this work are
those identifying shared congestion [7]–[9]. Such efforts try
to determine whether two congested flows are correlated and
share a common congested queue along their paths. If we
consider the flows of different packet types along a same path,
our problem becomes to identify whether these flows do not
share a common congested queue. While both problems are
related clearly, we usually need to simultaneously consider a
much larger number of packet types (e.g. 26 packet types in the
PlanetLab experiment). Note that the correlation based method
used for shared congestion identification methods requires
back-to-back probing which, in our case, translates into O(n2)
pairs probing for n packet types. In addition, those efforts
focused on flows which experience congestion (ignoring un-
congested ones), so their probe traffic rate is low and not
bursty [7]–[9]. To identify packet forwarding prioritization
in routers, one must send relatively large amounts of traffic
to temporarily force packet drops (by saturating the link).
Thus, for better scalability and accuracy, our problem requires
different measurement and statistical interference methods.

[10] proposed a framework for enabling network clients to
measure a system’s multi-class mechanisms and parameters.
The basic idea is similiar to ours, i.e., to inject multi-class
traffic into the system and use a statistical method to infer
its scheduling types and parameters based on the output.
However, the technique did not consider cross-traffic effects
and only simulation results were presented.

PFP inference also has some goals in common with efforts
on network tomography [11]–[13]. However, unlike in network
tomography where loss information and topology information
are combined to infer link losses, we look to identify if
different packet types (based on protocol or port numbers)
experience different loss rates. In addition, while probes used
for network tomography are always non-intrusive in order to
get accurate link loss/delay, our problem requires that we
saturate links in order to uncover the configuration of the
routers.

Finally, [14] is a content-based method to detect the mid-
dleboxes which modify a web page’s content. The method in
this paper detect the middleboxes which generate packet loss
differences but do not modify the contents of the packets.

III. INFERRING PACKET-FORWARDING PRIORITY

A. Background on Priority Mechanisms
Network administrators can enforce priority/link-sharing

mechanisms in a router by defining a traffic class (usually
IP protocol and TCP/UDP port number) and associating with
it a particular queuing/scheduling mechanism [1], [15]. Some
of the commonly available mechanisms are as follows.
• Priority Queuing (PQ). This allows users to assign ar-

bitrarily defined packet classes to queues with different
priorities. Since queues are served based on their priority,
this allows specified packet types to be always sent before
other packet types.

• Proportional Share Scheduling (PSS). With PSS each
traffic class is given a weight. Bandwidth is allocated to
classes in proportion to their respective weights. There
is no strict priority difference between classes. There are
different ways to implement this scheduling mechanism,
e.g. Weighted Fair Queuing (WFQ), Weighted Round-
Robin (WRR). In Cisco routers, the CBWFQ is Class-
Based WFQ and the Custom Queuing is WRR based [1].

• Policing. This restricts the maximum rate of a traffic
class. Traffic that exceeds the rate parameters is usually
dropped. The traffic class cannot borrow unused band-
width from others.

Only the first mechanism sets absolute priorities between
traffic classes. There is no absolute priority difference between
the other two classes, and the loss experienced by one class
depends on whether its traffic rate exceeds its allocated band-
width.

B. Choosing Inference Metric
Three basic end-to-end performance metrics, loss, delay and

out-of-order, can all be used as inference metrics. This is
because these metrics of different packet types can become
different when a router is configured to treat them differently.
Consider a PQ of two priorities, where the high priority queue
is always served first. Low priority packets will experience
larger loss rates and longer queueing delays than the high
priority packets. Besides, a low priority packet may arrive
earlier than a high priority packet but leave after it while the
contrary will never happen. The reordering events between
them are asymmetric. Here, the loss, delay, and reordering
can all be used as a metric to infer priority settings. In this
paper, we’ll use the loss, delay and OOO (Out-Of-Order) based
method to name the inference methods based on these metrics.

Essentially, the delay and reordering metrics are equivalent
because when a packet gets lagged behind another packet,
its delay should be larger than the other. In the following,
we discuss the pros and cons between loss metric and the
other two metrics and the reason why we choose packet loss
eventually.

1. The probe overhead of packet loss metric is larger
than the other two. Obviously, loss rates difference will not



3

become evident until the associated link (or a sub-link for
a traffic class) is saturated and begins to drop packets. This
simple observation defines the basis of loss-based inference
approach: In order to reveal packet-forwarding priorities, one
needs to saturate the path available bandwidth for a given
class to produce loss rates difference among different classes.
On the other hand, packet reordering and delay differences
can be observed as soon as queue begins to build up. We do
not need to send as much traffic as the loss-based approach
for the reordering and delay-based approach.

2. Loss difference can be observed for all kinds of QoS
mechanisms while the other two cannot. Although using
delay and reordering metrics can result in less probe overhead,
they can not detect certain router QoS mechanisms simply
because those mechanisms do not generate different delays
at all. According to our test on a real Cisco router, Policing
does not generate any packet reordering nor delay differences.
However, any kinds of router QoS mechanisms will ultimately
generate loss rates differences because that is the purpose of
configuring such mechanisms. In § VII, we found that many
multi-priority paths (MPPs) detected by the loss-based method
could not be detected the other two methods.

3. Packet delay difference can be caused by many
other mechanisms than QoS. As noted in [16], the root
cause of packet reordering is the existence of parallel packet
forwarding paths. Such paths can be in a router, parallel links
between two routers, or different routes over a number of hops.
When packets are split to these parallel paths according to
their packet types and these paths have different delays, we’ll
observe asymmetric packet reordering and delay differences
among different packet types. In § VII, we show that many
paths showing differences in packet delay and reordering were
not caused by router QoS mechanisms, but the various forms
of parallel forwarding paths such as slow processing inside
routers and port-based load sharing.

To sum up, although the loss-based method has larger probe
overhead, it can detect all kinds of QoS mechanisms and is
not likely to be affected by parallelism in the forwarding paths
as the other two. Hence, we use packet loss as the metric for
inference.

C. Challenges for POPI

In designing and implementing POPI we addressed a num-
ber of interesting challenges.

I. The accuracy of end-to-end inference of router prop-
erties can be severely affected by background traffic fluc-
tuations. Clearly, if one’s probing introduces relatively small
additional traffic, whether the link is saturated or not depends
solely on the amount of background traffic. To make our
approach more resistant to background traffic fluctuations we
opt for sending relatively large amount of traffic to temporarily
saturate bottleneck traffic class capacity, which increases the
probability of observing loss rates difference. To note, the
sender may not be able to saturate the bottleneck link due to
limited resources, which is an inherit limitation of this method.

II. Probe traffic of a relative large packet bursts are
neither independent nor strongly correlated. Once the loss
rate for each packet type is obtained, we need to determine

whether the loss rates difference among them is large enough
to conclude that they are treated differently. When packet
losses can be described with a good mathematical model,
e.g. independent and identical distribution (i.i.d) process, we
can determine if the loss rates of different packet types were
evidently different or not by comparing all pi, the loss rate of
packet type i, using parametric statistical methods. However,
our probe packets are sent in large packet bursts. Packet
losses in one burst are not independent but correlated. We
are not aware of any well-known model for packet losses in
a large packet burst in the Internet. Hence, we employ a non-
parametric method based on ranks, which is independent to
underlying packet loss model and insensitive to loss correla-
tions.

III. Grouping is needed for multiple packet types prob-
ing. If we only probe two packet types at one time, simply
determining whether they are treated differently is enough.
However, we sometimes probe more than two packet types and
need to group them based on their priorities. Here, we assign
a rank-based metric to each packet type and use hierarchical
clustering method to group them.

In summary, POPI saturates the link with relatively large
amount of traffic and clusters packet types based on their loss
ranks. Such an approach gives POPI better resistance against
background traffic fluctuations, allows it to cope with the
inherent characteristics of its measurement traffic, and enables
it to measure more than two packet types at one time.

IV. DESIGN OF POPI

In this section, we present the design of the POPI tool which
has three steps: 1) probing the path; 2) deriving ranks; and
3) partitioning packets with different forwarding priorities to
different groups based on their ranks.

A. Probing the Path

Fig. 1 illustrates our link probe method. We want to test
k packet types. POPI sends a number of bursts (nb) from a
source to a destination. The interval between bursts is ∆. Each
burst consists of nr rounds, in which k packets, one for each
packet type studied, are interleaved in random order. So, there
are nr×k back-to-back packets in each burst. There are three
parameters for the probe method, ∆, nb and nr. In order to
achieve independence between bursts, i.e. to ensure the router’s
queuing busy period caused by one burst does not interfere
with the following one, ∆ should not be too small. On the
other hand, in order not to experience large background traffic
fluctuation duration the probe, we need to keep the whole
probe duration within a relatively short period. In practice, ∆
is set to one to ten seconds to keep overall probe duration
within several minutes. We’ll discuss nb in § IV-D and nr in
§ V.

The probe overhead is comparable with current available
bandwidth measurement tools such as Pathload. In our exper-
iment, nb = 32, nr = 40 and ∆ = 10. Usually, the user
only needs to compare two or three packet types. Hence when
k = 2, 2560 packets are sent in one probe during 320 seconds.
As for the Pathload, it usually sends K×N = 100×12 = 1200
packets in one probe during 15 seconds [17].
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Fig. 1: A burst consists of nr × k packets

Notation Meaning
nb number of bursts in a path measurement
nr number of rounds in one burst
∆ time interval between bursts in a path measurement
k, kj number of all tested packet types, number of tested packet types

for class j
J number of queues/classes/groups.
ANRi the average normalized rank for packet type i over nb bursts
θ threshold used for comparing with ANR range

TABLE I: Key notations

B. Deriving Ranks

For every burst, loss rate ranks are computed by first sorting
packet types in ascending order according to their packet loss
rates in that burst and then assigning ranks in order, i.e. the
packet type with the largest loss rate has rank 1, the one with
the second largest loss rate has rank 2, and etc on.1

Similiar to packet loss rates, due to randomness of packet
losses, the ranks of different packet types are like random
arrangements over the all bursts when the packet types are
treated equally. On the other hand, the ranks of certain
packet types are always small when they are treated with low
priority.2 However, the advantage of using ranks is that we
have a theory to bound the variance of loss ranks caused by
the random effects whereas we do not have that bound for loss
rates if the loss model is unknown.

C. Partitioning Based on Ranks

Every packet burst can be regarded as an observation.
Identifying whether there is consistent difference among k
ranks over n observations is a well-known statistical problem
called problem of n rankings [19]. Classic non-parametric
solutions such as the Friedman test [18] can find whether
there is consistent difference, but they do not make partitions
among packet types. Therefore, we proposed to use Average
Normalized Ranks (ANR) to group packet types when there
is consistent difference. The ANR is the average of the ranks
for a packet type over all bursts. Our statistical method is as
follows:

1) Calculate ANR. Let rm
i = (1, 2, ...) denote the rank for

packet type i in mth burst. The Normalized Rank NRm
i

is rm
i /k. The range of NRm

i is between 1/k and 1. The
ANRi for packet type i is

ANRi = (
nb∑

m=1

NRm
i )/nb. (1)

We developed a mathematical model for ANR using
Central Limit Theorem:
Theorem 1: When kj packets are in a same class j, the
range of this class (R = ANRmax − ANRmin) for nb

1For tie breaks, we use the mid-ranks method [18] to distribute the total
ranks equally among them.

2Our method is robust in the case when a fraction of bursts does not satisfy
the assumption discussed in § IV-D.

bursts at confidence level 1− α is

θ1−α,kj ,nb,k = Q1−α,kj
×

√
k2

j − 1/k
√

12nb, (2)

where Q1−α,kj
is the 100(1−α) percentile of the range

(of kj i.i.d. standard normals) distribution.
Proof: Please refer to Appendix.

According to this model, when R > θ1−α,kj ,nb,k, those
packets should belong to multiple groups.

2) Partition groups based on ANR. We use a hierarchical
divisive partition approach to cluster ANRs. Initially, we
assume all packet types belong to one group, and then
we use the above criteria to judge this assumption. If
R > θ, we partition them into two groups using the
k-means clustering algorithm [20]. This procedure is
applied recursively to all newly partitioned groups until
R ≤ θ or there is only one packet type in the group.
The pseudo code of the partition procedure is shown as
below.

Procedure 1 ksplit(anrs)
1: kj ← len(anrs)
2: if kj = 1||(max(anrs) − min(anrs) ≤ θ1−α,kj ,nb,k)

then
3: return anrs
4: else
5: [anrs1, anrs2] = kmeans(anrs, 2)
6: return [ksplit(anrs1), ksplit(anrs2)]
7: end if

D. Performance Analysis on Priority Group Partitioning

1) Methodology: We first simulate many sets of random
rank values (given the number of priority groups and packet
types) that satisfy the following two conditions:

1) ∀ packet type i ∈ priority group Gu, and ∀ packet type
j ∈ priority group Gv , the loss rate rank ri > rj when
Gu has higher priority than Gv .

2) For packet types within the same priority group, their
ranks are randomly permuted in each burst in order to
simulate the effects of random losses.

We then analyze the ANR group partition performance using
the generated rank values. Note that the above conditions do
not consider the worst case when the rank of i in higher
priority group Gu can be smaller than the rank of some packet
type j in a lower priority group Gv . However, we do consider
an extreme case that violates those two constraints due to
severe traffic fluctuations in the end of this section.

2) Cluster error types: Group partition gives three types of
errors.

1) over-partitioning: The number of partitioned groups is
more than that of the actual situation. It results from the
type I error associated with the criteria R > θ, when
POPI thinks that k packet types are not in one group
but actually they are. According to statistical theory, the
percentage of these errors is less than the confidence
level α we choose to calculate θ.

2) under-partitioning: The number of partitioned groups
is less than that of the actual situation which results
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α
PPPPPPPPtype

nb 8 16 32 64 128

0.01
Over Partition 8.5 2.52 2.23 2.52 2.42

Under Partition 0.20 0 0 0 0
Sum 8.7 2.52 2.23 2.52 2.42

0.001
Over Partition 5.7 0.63 0.21 0.29 0.23

Under Partition 43.5 0 0 0 0
Sum 49 0.63 0.21 0.29 0.23

TABLE II: Average cluster error percentage (%) for J = 2

HHHHHJ
nb 8 16 32 64 128

3 50.0 0.30 0.31 0.35 0.46
4 69.0 0.44 0.39 0.54 0.53
5 82.1 0.93 0.60 0.52 0.48

TABLE III: Average cluster error percentage (%) for J = 3, 4, 5, α =
0.0001

from the type II error of the criteria. Theorem 2 in the
Appendix denotes that when nb is above certain value,
i.e. larger than 12 for k = 32, the percentage of type II
errors is zero.

3) mis-partitioning: The number of partitioned groups is
equal to that of the actual situation, but some packet
types are partitioned to wrong groups.

3) Average cluster error percentage: As the basic operation
of our cluster method is to split several packet types into
two groups, we first analyze the case of two priority groups
(J = 2). There are 256 (k1, k2) combinations where k1+k2 =
k ≤ 32 and k1 ≤ k2. We try 64 simulations for each of the
combination, i.e. 16,384 simulations in total. Table II shows
the percentage of the first two types of cluster errors for
different nb under α = 0.01 or 0.001. To note, we do not
show the percentages for the third type of errors since they
are all zero.

As shown in this table, we should at least choose nb > 8
for our experiments since both α have a large error percentage
when nb = 8. Besides, we will use α = 0.001 for our
experiments since both α = 0.01 and α = 0.001 have 0%
under-partitioning when nb ≥ 16 but α = 0.001 has smaller
percentage of over-partitioning. The results also agree well
with our theoretical analysis, i.e. there is no under-partitioning
when nb ≥ 16 and the percentages of over-partitioning are
close to the confidence level we set for nb ≥ 32.

When J > 2, the number of (k1, k2, ..., kJ) combinations
grows dramatically for

∑
kj ≤ 32 and kj ≤ kj+1. We tested

all combinations, but with reduced number of simulations for
each combination to keep the total number of simulations
about the same to that of J = 2. Table III shows the
partitioning accuracy for J = 3, 4, 5. Our partitioning method
consists of two basic operations, the threshold comparison
and k-means partition. When J increases, the number of
such operations required for correct partitioning increases. As
each operation may introduce error, the overall performance
decreases as J increases, as shown in the table. However, the
error percentages are all below 1% for nb ≥ 16.

4) Effects of background traffic flutuations: The back-
ground traffic may not be stable during the probe. Consider an
extreme case where the background traffic is ON/OFF traffic.
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Fig. 3: NS-2 topology

Suppose when a probe burst is sent during the ON period, the
loss rates measured are well-separated. When a probe is sent
during the OFF period, no loss rate difference is observed (as
the link is not saturated). The ranks in such bursts will be
the same for all packet types. We fixed the total number of
bursts to 32 and increased the number of bursts probed during
the OFF period (n0). Fig. 2 shows how n0 affects the cluster
results. The error is the average performance of all (k1, k2)
combinations for k1 + k2 = 2, 14, 23, 32 and k1 ≤ k2, where
we run 64 simulations for every combination. The cluster error
increase suddenly when n0 becomes larger than 13, 40% of
32 bursts. Below that value, the error percentage remains zero.
This shows our clustering method does not require every burst
to have loss rate differences, and that it is robust against quite
large fluctuations on background traffic.

V. EVALUATION WITH NS-2 SIMULATION

We implemented POPI in NS-2. We use a dumbbell topol-
ogy as shown in Fig. 3. The output queue of R0 → R1
is configured with PQ or PSS using CBQ (Class-Based
Queueing) [21]. If not specified, R0 is configured with PQ
of two priority classes. Class 1 is the high priority class and
class 2 is the low priority class. The queue length of high
and low priority queues are 20 and 60, respectively. In the
experiment, the size of both POPI packets and background
packets are 1000 bytes. The probe traffic rate is 100Mbps. We
always send 32 packet types and set nb = 32.

As the POPI sends a packet burst in a very short period, it
is the burstiness of background traffic over small time scales
(less than 1s) rather than LRD over large time scales that
matters. However, the traffic model over short time scales is
still not clearly understood [22]. In our simulations, we use
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Gamma traffic with shape parameter γ < 1, which has larger
burstiness than Poisson traffic at small time scales in order to
resemble realistic Internet traffic.

A. The Effects of Probe Burst Size
The background traffic is 10Mbps Gamma with shape 0.5,

which consists of equal share of high and low priority traffic.
Fig. 4 shows how the partition results are affected as nr

increases for various (k1, k2) combinations. Every point in
the figure denotes the result of a simulation probe. As shown
in this figure, the partition results can be divided into three
phases according to the value of nr. In phase 1, nr ≤ 18, the
probe does not saturate the link, hence no loss is generated,
and all packet types are partitioned as one group.

Phase 2 is a transitional phase. The low priority packet types
begin to experience losses, but since the losses are insufficient
for POPI to properly classify the packets, the partition results
are still incorrect. This phase can be further divided into
two sub-phases based on the amount of losses generated. In
the beginning, a packet type in the low priority group only
experiences sporadic drops in some bursts. For most of the
bursts, it shows no difference in terms of drops from the high-
priority packet types, thus POPI still clusters them with high
priority packet types, resulting in under-partitioning. As nr

increases, certain class 2 packet types have drops in almost
every burst, and are clustered as the low-priority group, while
some other class 2 packet types still do not have sufficient
drops to be clustered as low-priority group, since their ANRi

are in the middle of the typical ANR of class 2 and the
typical ANR of class 1. Those intermediates are clustered
as a separate group when judged against the criteria, which
results in over-partitioning.

Finally, POPI enters phase 3 in which the loss rates are
well-separated, and POPI’s accuracy solely depends on the
performance of the cluster method, which has an error per-
centage below 1%, as shown in previous section. We also did
simulations for the PSS queue configuration and observed the
same three phases too.

The above simulations show that we can get very accurate
results as long as we can generate enough losses. Besides, the
above simulations help us to estimate the nr for our PlanetLab
experiments. In our PlanetLab experiments, we also probe at
100Mbps with a similar number of packet types. We assume
the queue length of the configured router is 60 (the default
value for the normal-limit priority queue for Cisco Routers
with recent IOS 12.2 [1]) and the available bandwidth is less
than 90Mbps. According to this simulation, nr ≥ 30 is enough
to get accurate result. We treat this result as a rule of thumb,
and use nr = 40 in PlanetLab experiments.

B. The Effects of Background Traffic Rate
In this experiment, we show the performance of using a

fixed nr under different background traffic rates, i.e., 10, 20,
40, 80, 90Mbps. For each rate, we let k1 = 1, 2, 3, ...31. Once
the background traffic rate and (k1, k2) are fixed, we run
10 simulations. Altogether, 1550 simulations are performed
and all of them are correctly partitioned. It shows that our
algorithm works well under different available bandwidth. No
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matter how large is the background traffic, the low priority
packets are always dropped prior to the high priority packets.
Thus we can always observe the loss differences between low
and high prioirty packets.

C. Proportional Share Scheduling
We show how the different queuing discplines affect the

our algorithm in this experiment. We use PSS and define two
traffic classes in R0. The bandwidth allocation ratios for the
two classes are 0.2 and 0.8 repectively. The background traffic
rates are 2 and 8Mbps. We let k1 = 1, 2, 3, ...31. For every
(k1, k2) combination, we run 10 simulations. Altogether, 310
simulations are performed and 10 of them result in under-
partitions. All of the under-partitions come from k1 = 7.
For PSS, whether a class experiences packet drops at the
router depends on its input traffic rate and allocated bandwidth.
Let Ti be the traffic rate of class i during the probe. Simple
calculation reveals that when k1 = 7, T1 = 24Mbps and T2 =
86Mbps. Both two classes exceed their allocated bandwidth
and experience packet drops. Thus, our algorithm can not
differentiate them. As for k1 6= 7, only one of the two classes
exceeds its allocated bandwidth and loss rates differences
can be observed. However, only certain traffic pattern can
trigger such behavior which should not be common in normal
measurements.

VI. PLANETLAB EXPERIMENTS

A. POPI and its Two Probe Modes
POPI works in two probe modes, End-to-End Probe (EEP)

and Hop-by-Hop Probe (HHP). In both modes, the sender
sends multiple packet types toward the receiver. The receiver
feedbacks certain information of every received packet to the
sender, which is used by the sender to measure the end-to-end
losses and reordering events along the path. EEP mode works
exactly as the way described in Fig. 1.

HHP mode is used to locate the configured router or device
by measuring the losses and reordering events to every router
on the path towards the destination (including the destination).
It sends nb cycles. In each cycle, it sends nh bursts whose
TTLs increase from one to nh, which is the total hop count
from sender to receiver. For TTL = nh, POPI measures
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PROT Type/Port Number
ICMP ICMP ECHO
TCP 20, 21, 23, 110, 179, 443 (well-known app)

1214, 4661, 4662, 4663, 6346, 6347, 6881 (P2P appli-
cations)
161, 1000, 12432, 38523, 57845 (random)

UDP 110, 179, 161 (SNMP)
1000, 12432, 38523, 57845 (random)

TABLE IV: 26 packet types considered for PlanetLab experiments.

the end-to-end packet losses and reorderings based on the
feedback from the receiver. For TTL < nh, POPI calculates
the losses and reorderings up to a hop by counting time-
exceeded ICMP responses from that router. When packets
do not traverse the configured box, we will not observe
packet loss or reordering difference. After packets traverse the
box, the loss or reordering difference will be similar to that
observed at the receiver, and will exhibit over the remaining
hops. Once we observe such phenomenon, the configured box
should be around the spot of difference, the hop at which the
difference begins to show.

To note, the losses and reorderings of ICMP responses
actually include round-trip effects. However, as the response
packets were all ”ICMP time exceeded” packets of a same
packet size, it is very unlikely that any router on the reverse
path is going to treat them differently. Hence, even when there
are losses or reorderings on the reverse link, the effects are
unlikely to introduce bias against a specific packet type.

B. Packet Types Tested

While it may seem necessary to test all packet types of
different protocol/port number combinations to validate our
approach, in practice there is only a small number of packet
types that network administrators may want to treat differently.
We selected 26 packet types as listed in Table IV. For UDP and
TCP packets, 30002 is used as the destination port, because
it is very unlikely that ISPs will set an explicit priority policy
based on it. The port numbers listed in Table IV are used as
source ports to measure the source port based priority policy.
(Destination port based policy can be measured in a similar
manner). These packet types are selected to check:
• Whether ICMP, TCP and UDP packets are handled with

equal priority.
• Whether some well-known applications are granted

higher priority. This set includes ftp (port 20, 21), telnet
(port 23), POP3 (port 110), BGP (port 179), and HTTPs
(port 443). Port 80 is not included because it is used by
PlanetLab maintenance.
• Whether P2P traffic is treated with lower priority. The

seven ports tested are used by four major P2P applica-
tions, Fasttrack, eDonkey, Gnutella, and BitTorrent.

C. Experiments and Data

We conducted the first run, N1, among 162 PlanetLab nodes
on May 12, 2006 to test the loss-based method. Because the
data set of N1 only recorded loss information, we conducted
the second run, N2 on Jun 22, 2007 among 132 PlanetLab
nodes in order to compare the loss-based method with the
OOO and delay-based method. As the loss-based result of N2

is very similar to N1 and the result of N1 had been carefully
validated, we’ll discuss the loss-based results for N1 and only
the comparison results for N2. Together, those nodes span over
100 autonomous systems. About 60% of the hosts are located
in North America, while the others are distributed in Europe,
Asia and South America.

In each experiment we randomly paired the selected nodes
and probed the paths in both directions for every pair of
nodes. We ran POPI with k = 26, nb = 32, nr = 40 and
∆ = 10 seconds. For each path, the measurement took 5
minutes, and 33,280 packets were sent (each with size 1500 B).
Thus although the burst of probe traffic is quite intensive, the
average bandwidth consumption is just 1.04 Mbps, well below
the typical 100 Mbps capacity.

After completing our measurements, we gathered the packet
dump files from the receiver nodes. For N1, we were only
able to collect results from 156 of the 162 paths measured
and we use those paths for the analysis. Among the 26 packet
types measured, some of them were (usually one or two packet
types) banned along the path as no packet was received at the
receiver during the probe. We excluded them from the priority
group inference.

D. Validation Method

Since it is very difficult to get the actual router configura-
tions on the path, we use HHP method to locate the spot
of difference. We find its corresponding organization using
whois database, and then send emails to the related technical
support for validation. To minimize the traffic sent to routers,
we usually chose three to six packet types according to the
group pattern and set nr to 10.

To enquire the network operator, it is always better for us
to ask the question as specific as possible. When we locate
the spot of difference only along one direction, the configured
box can be either at the spot or one hop before it depending
on whether the rule is applied to the input queue or output
queue.

When both directions of a path exhibit a same group pattern,
HHP locates one spot of difference along each direction. As
there is usually only one configured box along the path, the
distance between the two spots can help us to point out the
box and its type more precisely. As shown in Fig. 5(a), the
two spots point to a same router when the rules are configured
at the input queues of the router. The two spots are two hops
away from each other when the rules are configured at the
output queues as shown in Fig. 5(b). In the experiment, we
observed many cases that the two spots were just one hop
away. It could be that the rules were configured at the output
queue of two adjacent routers as shown at the left of Fig. 5(c),
or that there is a middlebox between two routers as shown
at the right of the figure. We cannot tell exactly which type
is from HHP, but the responses from network operators all
indicated middleboxes.

When the configured router or routers around it are unre-
sponsive, we may only locate a range for the spot of difference.
However, as long as the range was not too large, we still wrote
emails to the related network operator.
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(a) Zero Hop

A BC

(b) Two Hops

A B A BC

(c) One Hop with middlebox or configured output queues

Fig. 5: Hops between two spots of difference in HHP probes. Small black
circles are the places of configuration rules. Short arrows above denote the
spots of difference and probe directions.

E. Results of N1

First, we check how packet drops are distributed among
bursts of a path measurement to see if there are any effects
caused by background traffic fluctuations, as we discussed
in § IV-D. Fig. 6 shows the distribution of number of path
measurements in which a certain number of bursts experienced
network packet drops. From this figure, we can see that for
most of the path measurements, either all bursts experienced
drops or no bursts experienced drops. This is accordance with
our notion that traffic remains relatively stable within a short
period of time.

1) The performance of average normalize ranks: As we
chose ANR as the metric to infer whether there is multiple
priority groups and to cluster priority groups, it’s crucial to
understand how such a metric really captures packet forward-
ing priorities. In this section, we try to answer the following
questions.
• Can ANR range clearly distinguish single priority vs.

multiple priority settings?
• How does ANR perform when compared with other

alternative metrics, e.g. link loss rate range?
• With multiple priority settings, is ANR suitable to cluster

the packet types into different groups?
First, we examine how accurately the ANR range metric can

distinguish whether there is a packet forwarding preference in
effect. Fig. 7 shows the cumulative percentage of the ratio
between the ANR range measured and the threshold θ used
for partitioning of the 156 paths. As discussed in § IV-D, we
use a confidence level α = 0.001 to calculate the threshold θ.
When the ratio is larger than one, packet types are partitioned
into multiple priority groups. The curve shows that the ratios
less than one and those larger than one are well separated.
Among 141 paths whose ratios are less than one, the ratios of
140 paths are well below one (0.82). On the other hand, of
the 15 paths with ratio larger than one, 13 paths have ratios
larger than 1.20. In addition, we compare our method with the
Friedman test as mentioned in § IV-C, using the same α. As
shown in Table V, the two methods are almost equivalent.
Therefore, both evaluations suggest that the ANR range is
a good indicator for whether there is an agreed preference
among the packet types.

Secondly, we compare the ANR range metric with another
possible candidate, the loss rates (LR) range metric. The
LR range is the difference between the maximum and the
minimum loss rate of different packet types. In Fig. 8 we

````````````Friedman
ANR Range #G > 1 #G = 1

#Group > 1 14 2
#Group = 1 1 139

TABLE V: Comparison between ANR Range test and Friedman test
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Fig. 8: Loss rate ranges v.s. ANR ranges

plotted a path measurement as a point with its x-axis as the LR
range and y-axis as the ANR range. Suppose we have designed
another priority inference method based on the LR range and
use it on these paths. Then, a loss rate based threshold θ′

will be used to distinguish a priority path from a non-priority
path in the same way as we do in ANR range method. For
those points with both large ANR and large LR ranges, the
two methods will both infer them as MPPs, thus there is no
difference between them. The points with both small ranges
also make no difference. The points that make a difference
are those with large ANR but small LR ranges, and those with
small ANR but large LR ranges, because the two methods will
make opposite conclusion for these points.

We first check the two typical points with large ANR
ranges but small LR ranges, (0.04,0.40) and (0.04, 0.36). They
correspond to the path 13 and 14 in Table VI. The inference
results are correct according to the feedback from the relevant
network operators. Their ANR ranges are large, ranked as the
13th and 14th largest ANR ranges, whereas their LR ranges
ranks are not as high as their ANR ranges ranks, ranked as
the 26th and 29th largest LR ranges. Many non-priority paths
have larger LR ranges than those two paths. Therefore, the
LR based method creates two false negatives when it infers
these two paths as non-priority paths, while it creates lots of
false positives by inferring those non-priority paths that have
larger LR ranges as MPPs. The reason for them to have large
ANR range but small LR range is that in most of the bursts
the loss rate difference between their high priority group and
their low priority group is just one or two packets. Although
their loss rate differences are small, they are persistent over all
bursts, which leads to the large ANR range and suggests there
exists a certain preference for certain packet types. In this case,
the ANR range metric makes such persistent behavior obvious
while the LR range metric tends to ignore it.

Then, we examine the point (0.09, 0.12), which has a
small ANR range but a relatively larger LR range. When
checking this path measurement logs, we found that the
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Fig. 6: Histogram of number of lossy bursts for 156 probes.
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receiver received 11 bursts. All the loss rate differences stem
from the first burst. In that burst, every TCP packet type
received only two packets, while every ICMP and UDP packet
type received 40 packets. Investigating further, we found that
the TCP advertised window values in TCP headers, which
were set to 32768 as we sent, were rewritten to 1460, 2920
when received for the two packets in the first burst, while
remained unchanged for the rest of the bursts. As a normal
TCP connection usually starts with congestion windows set
to one or two, we suspect that our aggressive probing method
has triggered a TCP congestion control mechanism related rule
in a firewall, so that all packets not accommodated within
the window size were discarded. We checked all 156 paths
and found 11 others have the same phenomenon, i.e. large
losses for TCP packets with rewritten headers in the first
burst. In the real Internet environment where there are lots
of hidden middleboxes, there are many transient losses which
may produce a large LR range for a certain packet type in
some bursts. But the ANR range metric is much more robust
to such burst errors than the LR range. Thus the ANR range
is more suitable for discovering the priority settings.

Finally, when the ANR range exceeds the threshold, we
cluster packet types based on their ANR values. Therefore, we
also want to know how the ANR values are distributed within
the range. The 15 paths with largest ANR values were flagged
with multiple priorities. We show them together with the next
15 paths (i.e. 16th to 30th) with the largest ANR ranges in
Fig. 9 and Fig. 10 to see how ANR values were distributed
for both MPPs and non-priority paths. The numbering of path
in these figures will be used consistently throughout the rest of
this paper, e.g. Table VI. In the figures, higher priority number
denotes smaller loss rates.

We define the distance between two priority groups G1

and G2 as the minimal ANR difference between any pair of
packet types i and j where i ∈ G1 and j ∈ G2. We define the
range of a priority group G as the maximal ANR difference
for any pair of packet types in G. For most of the MPPs,
except for paths 1 and 15, the distance between any different
priority group is always much larger than the maximal range of
the priority groups. On the other hand, the fifteen non-priority
paths in Fig. 10 not only have obviously smaller range than

the top 15 paths, their ANRs are also concentrated within the
range. Large distance between groups and a small range within
a group are two good properties for clustering.

2) Priority group inference result: Table VI shows the
source destination pairs, the ANR range, and the packet types
of priority groups for the 15 MPPs identified. Three paths
were partitioned to three priority groups, and all others to two
groups. Except for the path 1 and 15, all other group partitions
can be described concisely in the table. Four paths treated
some P2P ports out of the seven P2P ports in Table IV as
low priority. Although different paths set their policies based
on different subsets of the seven ports, it’s not a surprise
to see that all policies treated P2P ports as low priority.
However, it is a little surprising to see that for the eight paths,
more than half of the MPPs identified are related to ICMP.
Five of the paths treated ICMP as low priority, two treated
it as high priority, and one treated it as medium priority.
Although we have not found unanimous agreement on whether
ICMP packets are treated with high or low priority, it does
suggest that we have to be careful when using ICMP loss
rates to estimate the network performance of TCP or UDP
connections. Three paths 1 (See validation for path 1), 3 and
6 treat well-known TCP applications with high priority. When
ISPs cannot over-provision their networks, it seems that giving
bandwidth guarantee to well-known Internet applications is
one of their solutions.

Among the 15 paths, there are three pairs of paths (3,6),
(5,8) and (13,14) that are worth extra attention. Each pair
contains bi-directional measurements between the same pair
of nodes, and their priority group categorizations are the same.
Given the router IP and the number of hops away from end
hosts, as seen in the validation data (see Table VII), we believe
that a single router on the path is responsible for the priority
setting of each path pair (3,6) and (13,14), as confirmed with
network operators. Take path (13,14) for example. They are
both caused by the egress filtering on router 192.5.40.131
and thus the loss rate differences show up in the subsequent
routers.

On the other hand, there are 9 other paths that do not have
their reverse paths listed in the table, likely indicating that
their priority configurations are asymmetric.
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Fig. 9: Clustering results for the top 15 paths with the largest ANR range.
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Path Source→Destination Range Group Partition
1 pku2.6planetlab.edu.cn→planet2.att.nodes.planet-lab.org 0.63 6,8,10
2 planetlab01.erin.utoronto.ca→planetlab-3.amst.nodes.planet-lab.org 0.62 2(ICMP+Bittorrent),24
3 planetlab1.nycm.internet2.planet-lab.org→soccf-planet-001.comp.nus.edu.sg 0.60 7(APPS),22
4 lzu1.6planetlab.edu.cn→planetlab1.ls.fi.upm.es 0.59 21,1(ICMP),2(P2P)
5 planetlab2.iii.u-tokyo.ac.jp→planetlab5.upc.es 0.55 22,1(ICMP)
6 soccf-planet-001.comp.nus.edu.sg→planetlab1.nycm.internet2.planet-lab.org 0.54 7(APPS),22
7 planetlab1.ukc.ac.uk→planet2.ics.forth.gr 0.54 1(ICMP),30
8 planetlab5.upc.es→planetlab2.iii.u-tokyo.ac.jp 0.52 21,1(ICMP)
9 planetlab1.cs.colorado.edu→plab1.nec-labs.com 0.51 22,5(P2P)

10 scratchy.cs.uga.edu→planetlab1.georgetown.edu 0.50 18,5(P2P)
11 planet1.scs.cs.nyu.edu→planetlab2.net-research.org.uk 0.50 29,1(ICMP)
12 planetlab2.lsd.ufcg.edu.br→planetlab1.mnlab.cti.depaul.edu 0.41 25,3(P2P)
13 planetlab2.postel.org→planetlab1.cs.purdue.edu 0.40 27,1(ICMP)
14 planetlab1.cs.purdue.edu→planetlab2.postel.org 0.36 27,1(ICMP)
15 planetlab1.informatik.uni-erlangen.de→planetlab2.ece.ucdavis.edu 0.35 1(ICMP),7,18

TABLE VI: 15 paths with multiple priorities. In the Group Partition column, each number represent a group and its size (i.e. the number of packet types in
that group). The groups are ordered by priorities with the highest priority on the left. The description for each group is enclosed in the parentheses. Except
paths 1 and 15, the groups without description contain the rest of packet types probed. APP denotes well-known TCP applications.

3) Effects of the number of rounds in one burst: In this
section, we evaluate the number of rounds nr needed to send
in one burst in order to infer the priority settings. Instead of
probing the paths with new nr values, we actually reuse our
measurement data by only counting received packets up to
a certain sending round j in one burst, ignoring the received
packets sent after that round. Since POPI put the round number
into the data payload for every packet, it’s easy to obtain nm

i(j),
the number of received packets for the packet type i up to the
sending round j in the mth burst, and perform ANR analysis
based on these values.

Fig. 11 shows that total partition errors decreases as nr

increases for the top 15 paths. We use the validation results in
the following section as the baseline to compare. The under-
partitions are the main types of errors when nr is small, and
the number of them gradually drops from 14 at nr = 1 to zero
at nr = 38. It suggests that we can have right partitions for
some paths at small nr, but we need to use large nr for some
other paths. This accords with our notion that for some paths
with large available bandwidth, we need to send large bursts
to make the priority settings show up.

F. Validation Results

The validation experiment took place on May 17 2006. We
validated the 30 paths in Fig. 9 and 10 in order to search for
both false positives and false negatives. Among the 30 paths,
four paths could not be checked, and one of them is in top
15. Among the 14 paths in top 15, 13 paths are validated
to have multiple priorities as shown in Table VII and 12 of
them were correctly partitioned. For the 12 of the bottom 15
paths, we did not find loss rates differences for any of them.
Therefore, no false negatives were found for any of the paths.
The four unchecked paths, one over-partitioned path 1 and one
unproven path 15 will be explained later.

For each priority router inferred in Table VII, we checked
its corresponding organization using whois database, and sent
email to the tech support for validation. We received responses
for seven paths and they all confirmed our inference results.
Paths 1, 3 and 6 are confirmed by their network operator as
setting separate high bandwidths for typical applications. In
addition, the network operator of Path 10 confirmed that they
use a traffic shaper (we consider it as part of a router for
forwarding functionality) close to the campus edge routers
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Fig. 12: Typical path loss rates

to limit P2P traffic. The other three MPPs (5, 13 and 14)
confirmed by their network operators are all caused by severe
ICMP traffic rate limiting on their routers

Fig. 12(a) gives the typical per hop loss rates for a suc-
cessfully proved path: path 8. Other MPPs are similar. There
are persistent loss rate differences between ICMP and the
TCP/UDP packets beginning at hop 12 with similar differences
all the way to the destination, while there is no such difference
before hop 12. Therefore, the configured router should be at
hop 11 or 12, depending on the router configuration (ingress
filtering or egress filtering). Fig. 12(b) shows the per-hop loss
rates for a typical non-priority path, path 24. The large loss
rates for hops 2 and 3 are probably due to ICMP rate-limiting.

The unchecked paths are path 7 and three others in the
bottom 15. Path 7 was not checked because traceroute did not
return any result beyond hop two, and the other three were not
checked because the source hosts were down, and there were
no other available hosts at those institutes either.

For the over-partitioned path 1, packet types from the two

Path #G Router w/ OP HC NH Location CFM
1 2 202.112.61.197 6 18 China Yes
2 2 128.100.200.97 5 17 Toronto –
3 2 137.132.80.104 11 15 Singapore Yes
4 2 138.100.254.18 15 16 Spain –
5 2 84.88.18.18 23 27 Spain Yes
6 2 137.132.3.131 5 15 Singapore Yes
8 2 62.40.96.169 12 21 UK –
9 2 128.138.81.134 5 15 Colorado –

10 2 128.192.166.1 4 12 Georgia Yes
11 2 193.63.94.6 12 13 UK –
13 2 192.5.40.53 11 15 Indiana Yes
14 2 192.5.40.134 5 15 Indiana Yes

TABLE VII: Summary of hop-by-hop validation results for the 12 success-
fully validated paths. The Path numbers are the same as those in Table VI. #G
is the number of priority groups shown in the hop-by-hop loss rates. Router
w/ OP is the router where the multiple priorities are observed. Note that they
may not be the routers with priority configured. HC is the hop count from
the source to that router. NH is number of hops of the path. ”Yes” in column
CFM means positive confirmation received, ”–” means no reply.

high priority groups (6,8) show no loss rate differences. It
has been confirmed by its operator that all these ports (UDP,
ICMP and the well-known TCP application ports such as 20,
21, 110, 179, 443 and etc.) are set to one high priority. This
is because the ANR method is a statistical method and cannot
guarantee 100% correctness. As shown in Fig. 9, their ANRs
range from 0.6 to 0.9 and are very close to each other.

For the unproven path 15, we did not observe loss rates
difference for all routers on the path. In the experiment, its
ANR was just above the threshold θ when detected as a MPP.
Besides, when we measured it again with POPI for validation,
its ANR is less than the threshold. Thus we believe it is a
false positive in our detection.

VII. COMPARING PRIORITY INFERENCE WITH DIFFERENT
METRICS

In § III-B, we the discussed general principles of choosing
the inference metric. In this section, we compare the infer-
ence results of the loss-based and OOO-based method using
PlanetLab experiments.

We do not use packet delay because the reordering metric
is more robust than the delay metric although they both
reflect the packet delay differences. When the delay variation
generated by the non-configured devices is large, a packet with
a shorter delay at the configured box can have a larger end-to-
end delay than a packet with a larger delay at the configured
box. Hence, the delay differences between different packet
types introduced by the configured box are overwhelmed by
the large delay variation introduced by the non-configured
devices along the path. Large delay variation can often be
observed for congested routers. However, routers usually do
no reorder packets. Hence the reordering events introduced
by the configured box are usually observed by the receiver
without any distortion. OOO-based method is generally more
accurate than the delay-based method.

A. Methodology
As discussed in § VI-C, we performed the loss-based and

OOO-based inference for every probe in N2. We also ran HHP
method for every OMGP (OOO-based Multi-Group Path) and
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Total P2P ICMP T179 Load
Share

Unknown

# OMGP 56 3 15 11 17 12
# HHP 36 2 12 10 12 0
Validation 11/0 2/0 4/0 4/0 1/0+8 0
# LMGP 19 5 6 3 3 4
# HHP 10 4 4 2 0 0
Validation 7/0 4/0 1/0 2/0 0 0
# Overlap 7 0 1 2 3 1

TABLE VIII: Group patterns given by the OOO-based and loss-based
methods for N2. The validation result is (the number of positive confirmed
paths)/(the number of negative confirmed paths). For load sharing pattern,
please refer to the related text for details.

LMGP (Loss-based Multi-Group Path), and sent emails to the
administrators of related networks for confirmation.

The OOO-based method is almost the same as the loss-
based method except that we use reordering ranks instead
of loss ranks to perform group partition. The reordering
rank of packet type i is derived from its Packet Reordering
Ratio (PRRi), which is the fraction of reordered packets in
all received packets of this packet type. Here, we define a
reordered packet as the one that is outpaced by a behind
packet.

In OOO-based method, we recalculate PRRs and their
ranks for every subgroup before partitioning it during the
hierarchical process. The packet reordering event is not just
a binary indicator. It indicates which two packets are out-of-
ordered. As the reordering events between two packet types are
already enough to determine whether they are treated equally
or not, we calculate PRRs only based on the out-of-order
events among packet types within a same group. Once a group
is divided into two new subgroups, PRR within each subgroup
is then recalculated.

B. Results
Table VIII shows the number of MGPs (Multi-Group Paths),

the number of paths that had their spots of difference identified
by HHP and the number of validated paths. We sent more than
20 emails and got 10 replies. All of them are positive confir-
mations. To note, one reply can confirm several paths, e.g. two
uni-directional paths between a pair of nodes. Therefore, the
number of validated paths is slightly larger than the number
of replies received.

There are 56 OMGPs and only 19 LMGPs in N2. The
overlap between the OMGPs and LMGPs is small, i.e. only
seven paths are both flagged as OMGP and LMGP. In N1, P2P
and ICMP are two main priority patterns configured by the
ISPs. However, only one of 11 LMGPs of these two patterns
in N2 is identified by the OOO-based method. On the other
hand, OMGPs mainly concentrate on the ICMP, T179 and
load sharing patterns whereas very few LMGPs show the latter
two patterns. Such findings substantiate our analysis in § III-B
that the OOO-based method may fail to discover many multi-
priority paths but to flag many paths caused by the mechanisms
other than QoS.

Next, we discuss the mechanisms found by the OOO-based
method for every group pattern. The mechanisms mainly cause
packet types to experience different delays, such as fast/slow
forwarding paths inside a router or parallel load sharing links.

P2P As shown in Table VIII, there is no overlap between the
three OMGPs and five LMGPs. Because four of five LMGPs
are confirmed by their operators, we can see the OOO-based
method is not good at discovering those QoS mechanisms.
As for the three OMGPs, two of them are rate-limited by
the Packeteer’s standalone traffic shapers (confirmed by the
related network operators). The shaper uses a more intelligent
technique to do rate-limiting without dropping packets, which
is the reason why the loss-based method did not discover them.
Both of them show extremely large delays for TCP port 6881
(Bittorrent) packets. One of the two shows the pattern in two
directions and its spots of difference matched Fig. 5(c). The
shaper limits TCP connection throughput by rewriting its TCP
advertised window using a mechanism named TCR [23]. We
found that the advertised window was rewritten at the receiver.

ICMP Similar to the P2P pattern, the overlap between
the OMGPs and LMGPs is small too. For the LMGPs, we
speculate that the ISP used policing for rate-limiting, so we
did not observe any reordering event. As for the OMGPs, we
found two mechanisms for them and neither of them is likely
to generate a difference in loss rate. For two of the OMGPs,
HHP indicates that the ICMP packets take a different one
or two-hop route along the path, i.e. the router IP addresses
returned for the ICMP and other packets are different for one
or two hops. It seems to us that the network operators route
the ICMP packets for some purpose. For the other 12 OMGPs,
eight of them are from four bi-directional paths. Three of the
four bi-directional paths show one-hop pattern as Fig. 5(c), and
another one shows two-hop pattern as Fig. 5(b). We received
two confirmations saying that the reason is because the ICMP
packets are CPU processed and thus are slower than other
packet types. One of the boxes is a router, another is an IPS
device (McAfee’s InstruShield 4000).

T179 The 11 OMGPs all have the TCP port 179 packets
lagged behind other packet types. We received two replies
from the network operators and both indicated that they used
the CISCO 3750 switches as routers at the places we located.
We then tested that switch in our testbed and found when
it is configured as a router and its BGP routing module is
enabled, all BGP packets are sent to the switch CPU for
software forwarding without even checking if the destination
IP of the packet is to the router or not. Therefore, they lag
behind all packets of other types because all other packets
are fast switched without intervening of the switch CPU. As
processing delay only shows after the packets traverse the
router, the hop distances between their spots of difference are
all larger than one.

Although two paths (two directions between a pair of nodes)
are flagged as both LMGPs and OMGPs, we found that
their loss rate differences and reordering events are actually
caused by two different devices along the paths. The reordering
events are generated by the above mechanism whereas the loss
rate difference is caused by a policing rule in another router
along the path. Both of these findings are confirmed by their
corresponding network operators.

Load Sharing The port-based load sharing can be detected
by both methods. The OOO-based method detects it when
the delays of the parallel links are different, whereas the loss-
based method detects it when the loss rates of the parallel links
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are different. However, the loss based method is less likely to
detect this mechanism.

Nowadays, port-based load sharing is supported by both
Cisco and Juniper routers [24], [25]. It splits the traffic based
on IP protocol, source and destination port in the packet to
achieve finer load sharing granularity over parallel links. Since
the hash function used to determine the output link of a packet
is lack of application-level meaning, e.g., XOR of the source
and destination of TCP/UDP port number in Cisco router, each
of the partitioned groups contains a mixture of TCP and UDP
packet types. Usually, there are two parallel links so that the
packet types are partitioned to two groups.

In the 17 OMGPs, we identified spots of difference for 12
of them. Eight of them are directly validated by the HHP
method, which is similar to the method proposed in [26] to
identify such load-balanced paths. Multiple router IP addresses
are returned at certain hops for them, which shows that packets
of different types reach different router interfaces at those
hops. For the other four paths without returning multiple IP
addresses, we received one response from the related network
operators and it confirmed that they assigned the load-sharing
links to a same IP. We believe the other three are also caused
by this mechanism as they all give two groups and each of
the groups contains a mixture of TCP and UDP packet types.

We did not observe loss rate differences for the three
LGMPs during HHP probes. This is likely to happen as the
link utilizations of parallel links should usually be roughly
the same due to the finer granularity of this load sharing
mechanism.

Unknown Both methods produce a number of MGPs not
included in previous group patterns. For example, packets of
FTP control port (T21) lag behind other packet types for four
OMGPs, and one of them experiences smaller loss rates than
all other packet types. Because the port pattern is not as typical
as previous patterns, we did not perform HHP along these
paths. As the fraction of these paths is small (less than 25%
of all MGPs), we believe the conclusion drawn is still valid, i.e.
the loss-based method is more suitable than the OOO-based
method in detecting packet forwarding priorities.

VIII. CONCLUSIONS

In this paper, we have demonstrated that POPI, an end-
to-end priority inference tool, is able to accurately infer the
router’s packet forwarding priority. The contributions of this
work are the findings over Internet as well as the methodology.

In the PlanetLab experiments, the loss-based method de-
tected several multi-priority paths in the Internet. Further
validation showed the low false-positive rate of this method.
In searching for a method with less probe overhead than the
loss-based method, we used packet reordering and delay as the
inference metrics and found they were not as effective as loss
in detecting packet forwarding priorities. They failed to flag
many multi-priority paths that were discovered by the loss-
based method, and the paths flagged by them were mainly
caused by the mechanisms which induce different delays
among packets types. Hence, as for the packet forwarding
priority, we believe packet loss metric is more suitable than
the other two.

In the PlanetLab experiments, we have identified several
common priority settings (e.g. low-priority treatment for P2P,
high-priority treatment for well-known TCP applications and
different treatment for ICMP echo requests). Although OOO-
based method is not suitable for detecting forwarding priori-
ties, it discovers several types of middleboxes such as a traffic
shaper which shapes traffic by rewritten TCP header, and the
IPS devices which examine ICMP packets in its slow path. To
our best knowledge, no other existing network measurement
techniques are able to detect such middleboxes.
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APPENDIX

Proof for Theorem. 1.
Proof: Let k be the total number of packet types. When

kj packet types are in same class j, the NRi of a packet
type within this class has the discrete uniform distribution at
i0/k, i0 +1/k, · · · , (i0 + kj − 1)/k, where i0 is the minimum
NR for this class. Then, σ2(NRi) = (k2

j − 1)/12k2. Ac-
cording to the central limit theorem, ANRi = 1

nb

∑nb

i=1 NRi

approximates to the normal distribution with mean µ =
µ(NRi) and variance σ2(ANRi) = σ2(NRi)/nb. From [27],
the range of ANRs is θ1−α,kj ,nb,k = Q1−α,kj × σ(ANRi).

Theorem 2: The percentage of type II error is 0 when

nb > (
2Q1−α,kj+kj−1

√
(kj + kj−1)2 − 1√

12(kj + kj−1)
)2. (3)

Proof: Let j−1, j be two classes. Assume without loss of
generality that class j has higher priority than class j−1. Then,
define D is the difference between the maximal ANRi in class
j and the minimal ANRi in class j−1. D = max(ANR

(j)
i )−

min(ANR
(j)
i ).

D = max(ANR
(j)
i )−min(ANR

(j−1)
i )

≥ mean(ANR
(j)
i )−mean(ANR

(j−1)
i )

= (kj + kj−1)/2k

The percentage of type II error is P (D < θ1−α,kj+kj−1,nb,k).
Thus, when

θ1−α,kj+kj−1,nb,k < (kj + kj−1)/2k, (4)

the percentage will be zero. Combine Eq. (2) and (4), we can
get Eq. (3).

For kj + kj−1 = 32, the minimum nb satisfy Eq. (3) is 12.
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