
On Pending Interest Table in Named Data Networking

Huichen Dai† Bin Liu† Yan Chen§ Yi Wang†
† Tsinghua National Laboratory for Information Science and Technology

† Dept. of Computer Science and Technology, Tsinghua University, China
§ Northwestern University, USA

dhc10@mails.tsinghua.edu.cn, liub@tsinghua.edu.cn, ychen@cs.northwestern.edu, wy@ieee.org

ABSTRACT
Internet has witnessed its paramount function transition from host-
to-host communication to content dissemination. Named Data Net-
working (NDN) and Content-Centric Networking (CCN) emerge as
a clean slate network architecture to embrace this shift. Pending
Interest Table (PIT) in NDN/CCN keeps track of the Interest pack-
ets that are received but yet un-responded, which brings NDN/CCN
significant features, such as communicating without the knowledge
of source or destination, loop and packet loss detection, multipath
routing, better security, etc.

This paper presents a thorough study of PIT for the first time.
Using an approximate, application-driven translation of current IP-
generated trace to NDN trace, we firstly quantify the size and access
frequencies of PIT. Evaluation results on a 20 Gbps gateway trace
show that the corresponding PIT contains 1.5 M entries, and the
lookup, insert and delete frequencies are 1.4 M/s, 0.9 M/s and 0.9
M/s, respectively. Faced with this challenging issue and to make
PIT more scalable, we further propose a Name Component Encod-
ing (NCE) solution to shrink PIT size and accelerate PIT access op-
erations. By NCE, the memory consumption can be reduced by up
to 87.44%, and the access performance significantly advanced, sat-
isfying the access speed required by PIT. Moreover, PIT exhibits
good scalability with NCE. At last, we propose to place PIT on
(egress channel of) the outgoing line-cards of routers, which meets
the NDN design and eliminates the cumbersome synchronization
problem among multiple PITs on the line-cards.

Categories and Subject Descriptors
C.2.1 [COMPUTER-COMMUNICATION NETWORKS]: Net-
work Architecture and Design

Keywords
PIT, Size, Frequency, Encoding

1. INTRODUCTION
The functionality of Internet has evolved substantially, though

it was originally designed for host-to-host communication, it now
mostly serves content-centric applications. Therefore, researchers
arrive at a widely recognized agreement that content should have a
more central role in future network architectures than it does in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’12, October 29–30, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1685-9/12/10 ...$15.00.

current Internet’s host-centric conversation model [5, 7]. The re-
search community addresses this problem with a paradigmatic shift
– Content-Centric Networking [10] (CCN), which focuses on con-
tent dissemination based on content identifiers rather than content
hosts. Named Data Networking [15] (NDN) is an instance of the
general CCN paradigm.

NDN communication is requester-driven. A requester sends out
an Interest packet, which carries a name – the identifier – that spec-
ifies the desired data. PIT in an intermediate router remembers the
Interest name and from which interface the Interest comes in. Con-
tent providers respond to the Interest by sending back a Data packet
that carries both the name and desired content. Once Data packet
arrives at an intermediate router, the router looks up its name in the
PIT to obtain the interface from which the requesting Interest comes,
and deletes that name from PIT. Therefore, a router inserts every in-
coming Interest into PIT, and removes each received Data packet
from PIT. Intuitively, due to the high-speed packet arrival rate, PIT
will have a large size and demand extremely high access (lookup,
insert and delete) frequency, which has caused wide debate on the
feasibility of PIT. The features that PIT brings (Section 2.3) makes
it indispensable to NDN/CCN. Therefore, the PIT issue becomes a
knotty obstacle that hinders practical and scalable implementation
of NDN.

Though current researches on NDN/CCN are in full swing, the
study on PIT is quite exiguous. To the best of our knowledge, we are
the first to conduct measurements on exact PIT size and access fre-
quency, and further propose solutions to address this untouched is-
sue, i.e., shrinking PIT size and improving PIT access performance.
To unfold this problem, we are faced with the following challenges:

1. How to evaluate and quantify the PIT size and frequency
while NDN/CCN has NOT been really deployed?

2. Different from merely lookup a name, how to well address the
insert and delete operations?

3. How to support PIT scalable to large name sets while still
sustaining high PIT access performance?

In this paper, we propose a real trace-translation/mapping method
to measure the size and access frequency required by PIT. We cap-
tured a one-hour trace from a 20 Gbps gateway link in the China
Education and Research Network (CERNET) for our experiment.
Afterwards, a Name Component Encoding (NCE) solution is put
forward to reduce PIT’s memory consumption and promote the ac-
cess performance. At last, we also present a scheme on where to
place PIT in NDN routers when actually implementing PIT. Espe-
cially, we make the following contributions:

1. We emulate NDN applications’ working paradigms by trans-
ferring the existing IP applications to the NDN platform.
Then, by translating/mapping our captured IP trace to NDN
scenario at the perspective of applications, we quantify the
size and access (lookup, insert and delete) frequencies re-
quired by PIT. Experimental results on a trace collected from

211

a 20 Gbps gateway link show that the corresponding PIT has
1.5 M entries, and its lookup, insert and delete frequencies are
1.4 M/s, 0.9 M/s and 0.9 M/s, respectively. These results im-
ply that directly storing and accessing PIT entries as charac-
ter strings in commodity memories is not scalable and incurs
great challenges, especially for insert and delete operations.

2. We continue to adopt an encoding-based idea (NCE) and
make important improvements to shrink the PIT size and sat-
isfy the access frequency requirement. The encoding idea was
first proposed in our previous work [14]. Experimental re-
sults demonstrate that by our solution, the PIT size can be be
reduced by up to 87.44%, and the lookup, insert and delete
frequencies can achieve 3.27 M/s, 2.93 M/s and 2.69 M/s re-
spectively on an Intel 2.27 GHz CPU, satisfying the access
frequency requirement of the studied PIT.

3. Moreover, in combination with the router architecture, we de-
sign an ingenious PIT residence scheme that places PIT on
packets’ outgoing line-cards (egress channel), avoiding the
cumbersome synchronization problem among multiple PITs
on line-cards.

The remainder of the paper is organized as follows. Section 2 pro-
vides NDN background information and our motivation. Section 3
designs working paradigms on the NDN platform for existing IP
network applications, and measures the size and access frequency
of PIT. We propose an encoding-based solution to reduce the PIT
size and promote PIT access performance in Section 4. Section 5
proposes a PIT residence solution on router outgoing line-cards. We
evaluate our solutions in Section 6, Section 7 is the comparison of
previous work, and Section 8 concludes this paper.

2. BACKGROUND AND MOTIVATION
2.1 NDN Introduction

NDN, a specific instance of the CCN paradigm, is a novel net-
work architecture proposed by [15] recently. Different from current
Internet practice, it makes content (“what”) as its central role, rather
than “where” content is located. A critical distinction from IP is that,
every piece of content in NDN network has an assigned name, and
packets are routed/forwarded by names, rather than IP addresses.

NDN names are application-dependent and opaque to the net-
work, but they all share common characteristics – hierarchically
structured and composed of explicitly delimited components. The
delimiters, usually slash (‘/’) or dot (‘.’), are not part of the name.
The naming system is an important piece in the NDN architec-
ture and is now still under active research. For the purpose of
early exploring the properties of PIT before the naming specifica-
tion finally goes to standard, in this paper, we temporarily use hi-
erarchically reversed domain names as NDN names. For exam-
ple, the scholar service provided by Google – scholar.google.com
is hierarchically reversed to com/google/scholar, and com, google,
scholar are three components of the name. For an HTTP URL,
we hierarchically reverse its host name, and concatenate the rest
part, such as absolute path, as an NDN name. For instance, URL
name.example.com/path/to/content is transferred to an NDN name
of com/example/name/path/to/content. The hierarchical structure,
which resembles IP addresses, enables name aggregation and allows
fast name lookup of Longest Prefix Match (LPM), and will be lever-
aged by PIT lookup.

NDN adopts a brand new data requester-driven communication
mechanism. To receive data, a requester sends out an Interest packet,
which carries a name – the identifier – that specifies the desired data.
An intermediate router remembers the name and the interface from
which the Interest comes in the PIT, and then forwards the Interest
by looking up its name in the Forwarding Information Base (FIB).

When the Interest arrives at a node that serves the requested data, a
Data packet that carries both the name and the content is returned.
Once the Data packet reaches a router, the router looks up its name in
the PIT to obtain the interface from which its corresponding Interest
comes in, and then forwards Data to that interface. Therefore, Data
travels back to the requester by taking the same path of the Interest,
but in the reverse direction, i.e., symmetric routing. Moreover, the
Data packet is strategically cached by a router’s Content Store (CS)
to serve subsequent Interests.

2.2 Packet Lookup and Forwarding in NDN
The NDN packet lookup and forwarding processes are a bit com-

plicated than that of IP. To better comprehend the packet lookup
and forwarding process, keep in mind that PIT keeps track of pend-
ing Interests, i.e., received but yet un-responded Interests. The spe-
cific lookup and forwarding processes of Interest and Data packet
are shown in Figure 1(a) and Figure 1(b), respectively. Figure 1(a)
shows that once an Interest packet arrives at interface 𝑖 of an NDN
router 𝑅, 𝑅:

1. consults CS if the desired content is present and returns a copy
in Data packet via 𝑖,

2. if not, looks up PIT to see if PIT has an entry for this Interest.
If so, adds 𝑖 to that entry, and discards this Interest packet,

3. otherwise, creates a PIT entry for this Interest and add 𝑖 to this
entry, and

4. forwards Interest to the next-hop interface by looking up FIB.

When Data packet returns, Figure 1(b) shows that 𝑅:

1. forwards the Data packet over all the requesting interfaces in
the corresponding PIT entry and deletes this entry,

2. caches the Data packet in the CS based on policies.

2.3 Motivation
We have presented the role that PIT plays in NDN, and PIT brings

NDN significant features:

1. PIT enables Interest and Data packets be routed without speci-
fying a source or destination address, which means PIT makes
NDN communication concentrates on the content itself, rather
than where the content locates or who are exchanging data.

2. The feature above inherently supports anonymous communi-
cation, making attacks difficult to launch and communication
more secure.

3. PIT prevents Interests loop persistently, because Interest name
plus a random nonce, which is stored in the PIT entry, can
effectively identify duplicates to discard. Data packets do not
loop since they take the reversed paths of Interests.

4. The property above also enables NDN to inherently support
multipath routing, because NDN router can send out an Inter-
est via multiple interfaces without worrying about loops.

5. PIT supports Data packet multicast when multiple Interests
received by the router apply for the same content.

6. At last, PIT can detect Data packet losses if an Interest has not
been responded beyond a time threshold.

All these significant features that PIT brings to NDN enable
NDN/CCN to be an information/content-centric network, and there-
fore motivate us to conduct a thorough study on PIT.

3. PIT SIZE AND ACCESS FREQUENCY
There has been a debate on PIT since the proposal of PIT, because

each Interest looks up, inserts and updates PIT, and each Data packet
looks up and removes PIT entries, intuitively resulting in extremely
large size and high access frequency of PIT. Interests are triggered

212

CS FIB

Discard Interest

Data

Incoming
Interest

Forward
Interest

Add interface

to PIT entry

Not foundFound

PIT

Control Plane

Data Plane

Create

PIT entry

(a) Interest lookup and forwarding process.

CS

Forward
Data

Cache Data

Incoming
Data

Discard Data

PIT

Data Plane

Not foundFound

Control Plane

(b) Data lookup and forwarding process.

CS PIT

Discard Interest

Data

Incoming
Interest

Forward
Interest

Add interface

to PIT entry

Not foundFound

FIB

Control Plane

Data Plane

Create

PIT entry

(c) Interest lookup and forwarding process when
placing PIT on the outgoing line-cards.

Figure 1: Packet lookup and forwarding process.

by applications for data communication. Each application has its
own way to send out Interest and Data packets, and the mechanism
of sending out packets influences the size and access frequency of
PIT. In other words, each application has its own way to construct
and destruct PIT entries. Therefore, we measure the size and access
frequency of PIT at the perspective of application, rather than at the
network layer.

3.1 Applications from IP to NDN platform
Researchers propose that Internet architecture switch from IP to

NDN to better satisfy the requirements of users, such as browsing
web pages, sharing files, and watching videos, etc. Therefore, the
network applications demanded by users will not change, but require
different implementations on the NDN platform. Consequently, we
design working paradigms for the major applications in current In-
ternet – HTTP, FTP, P2P, Email, Online Game, Streaming media,
Instant messaging – based on NDN communication model1, i.e.,
transfer applications from IP platform to NDN platform.

Fundamentally, NDN’s requester-driven communication model
pulls data from remote host to local host – a one-way data flow
service. NDN has to solve the problem of bootstrapping two-way
communications on top of a fundamentally one-way service.

3.1.1 HTTP
The HTTP protocol is a request/response protocol. A client sends

a request to the server in the form of a request Method, request-URI
(Uniform Resource Identifier), etc., over a connection to a server.
The server responds with a message, which includes a success or
error code, followed by entity meta information and possible entity-
body content.

HTTP communication is initiated by a client sending out a request
to be applied to a resource on some origin server. In the simplest
case, this may be accomplished via a single connection between the
client and the origin server. Therefore, HTTP accords with the NDN
requester-driven communication model. The HTTP requests can be
divide into different categories because of the different methods they
take with them. The Method token of an HTTP request indicates the
method to be performed on the resource identified by the Request-
URI. Method includes:

1. OPTIONS: allows the client to determine the options and/or
requirements associated with a resource, or the capabilities of
a server.

2. GET: retrieves whatever information identified by the
Request-URI.

3. HEAD: identical to GET except that the server MUST NOT
return a message-body in the response, but only the metain-
formation about the resource.

4. POST: requests that the origin server accept the data enclosed
in the request as a new subordinate of the resource identified
by the Request-URI.

1NDN does not have a separate transport layer, thus all the NDN
applications build directly on the request-driven communication
model.

5. PUT: requests that the enclosed data in the request be stored
under the supplied Request-URI.

6. DELETE: requests that the origin server delete the resource
identified by the Request-URI.

7. TRACE: invokes a remote, application-layer loop-back of the
request message.

8. CONNECT: (reserved).

NDN only contains two kinds of packets: Interest and Data. Inter-
est packet requests for a specific piece of content, i.e., pulls desired
content, which is similar to the HTTP OPTIONS, GET and HEAD
method. Thus, these three methods can be directly implemented
by Interest packet, with the Request-URI being Interest name, and
the method encapsulated in the Interest body. Their corresponding
HTTP responses are implemented by Data packets. However, in or-
der to implement the integrated HTTP protocol in NDN, we should
extend the functionality of Interest packet to accommodate the rest
methods. Let’s examine them one by one.

For request with POST or PUT method, it tries to push data to
the server, which violates NDN’s pull communication model. To
implement the pushing HTTP request, Interest packet should be ex-
tended to not only contain the name of the requested content, but
also include a data block that contains the content to be pushed to
the server. By this means, requests of POST and PUT method can
be implemented by Interests as well, with their request-URIs also
being Interest names. Their responding Data packets notifies the
clients of the status of these requests, such as SUCCESSFUL, NOT
ALLOWED, NOT IMPLEMENTED, etc. The rest two methods,
DELETE and TRACE, neither pulls or pushes data, but invokes a
function on the server. Now that we have extended the Interest from
pull to push communication model, it is no harm that we further ex-
tend Interest to function calls (delete, echo-back, etc.). In this way,
DELETE and TRACE can be implemented by the Interest packet
as well. For DELETE, the Interest specifies the name of the to be
deleted resource by Request-URI, and Data packet returns the status
of the deletion. For TRACE method, the Interest is echoed-back by
the server in Data packet.

It’s worth pointing out that, though NDN is a brand new network-
layer architecture, it is still built on current technologies. The data
link layer evolves separately from network layer, and the current
dominant layer-two standard is Ethernet. We believe that NDN still
employs the data transmitting services that current data link layer
technologies provide. Therefore, due to the Maximum Transmis-
sion Unit (MTU) of the data link layer, the HTTP response mes-
sage, when being transmitted back to the client, may be segmented
into multiple IP packets. Similarly, in NDN, a HTTP response mes-
sage is likely to be segmented into multiple Data packets as well,
rather than a single Data packet.

Subsequently, we examine the life time of PIT entries created by
NDN HTTP connections. An NDN HTTP connection 𝑣 is initial-
ized by a client sending out an Interest packet. Assume that this In-
terest packet enters router 𝑅 via line-card 𝑖 and leaves via line-card
𝑗, line-card 𝑗 (not line-card 𝑖, see Section 5) creates an PIT entry
when receives it, and keeps this entry until all the responding Data

213

Interest

t0

Data

t1

Data

t2

Data

tn t

Figure 2: The life time of this PIT entry is 𝑡𝑛 − 𝑡0.
packets of this NDN HTTP response message have been returned,
i.e., as the last Data packet arrives at line-card 𝑗, it removes the cor-
responding PIT entry. Therefore, one NDN HTTP request/response
pair corresponds to one PIT entry, and the life time of this PIT entry
is the time interval between the Interest packet and last Data packet
observed by a router, as shown in Figure 2.

3.1.2 FTP
Similar to HTTP, we implement FTP on the NDN platform by

assigning more roles to Interest and Data packet to accommodate
the FTP requests and responses.

FTP is built on a client-server architecture and uses separate con-
trol and data connections between the client and the server, as de-
picted in Figure 3. The client’s Protocol Interpreter (PI) initiates
the control connection, then standard FTP commands are generated
by the client PI and transmitted to the server process via the con-
trol connection. Standard replies with status codes are sent from the
server PI to the user PI over the control connection in response to the
commands. The FTP commands specify the parameters for the data
connection (data port, transfer mode, representation type, etc.). Data
connection can either be opened by the server (active mode) from
its default port to a negotiated client port, or by the client (passive
mode) from an arbitrary port to a negotiated server port as required
to transfer file data.

The control connection is in an interactive mode, which can make
direct use of NDN’s request-driven communication model, with In-
terest packets implementing commands and Data packets acting as
replies or acknowledgements. A command is encapsulated in the
Interest packet, and now the Interest’s name is not the name of de-
sired data, but the FTP service name on the FTP server. Data packets
are replies or acknowledgements of the commands and contain the
status code of the command executing result.

IP FTP data connection may run in active or passive mode, which
determines how the data connection is established. The difference
between them is whether the client or the server opens the data con-
nection. In active mode, the server initializes the data connection. In
situations where the client is behind a firewall and unable to accept
incoming connections, passive mode is used and the client initiates
the data connection to the server. However, in whatever mode the
data connection is initiated, a control connection must be initiated
by the client first!

No matter established by active mode or passive mode, the data
connection of IP FTP is duplex and bidirectional, i.e., the client and
server can actively send data to each other over this very data con-
nection. However, the NDN connection is unidirectional, the data
can only flow from the host possessing the data to the host sending
out Interests. Consequently, in NDN, the way how the data connec-
tion established alters and depends on whether the client 𝐶 wants to
upload file to or download file from the server 𝑆. If client 𝐶 wants
to download file from server 𝑆, it has to actively send out an Inter-
est to initiate the data connection, which corresponds to the passive
mode (initiated by client) of IP FTP. To implement this, client 𝐶
first negotiates with server 𝑆 over control connection by sending out
an PASV command, then server 𝑆 replies its information such as
FTP service name. Next, client 𝐶 uses this information to establish
a data connection by sending out an Interest with 𝑆’s FTP service
name to 𝑆, now server 𝑆 can send file to client 𝐶 by sending back
Data packets. This process is shown in Figure 4(a).

However, if client 𝐶 wants to upload file, which corresponds to
the active mode (initialized by server) of IP FTP, client 𝐶 first sends

its information (FTP service name) to server 𝑆, and server 𝑆 ac-
knowledges with a Data packet. Then server 𝑆 sends client 𝐶 an
Interest to establish a data connection. After receiving the Inter-
est, client 𝐶 can upload file to server 𝑆, which is illustrated in Fig-
ure 4(b). Till now, we have designed the working paradigm on NDN
platform for both FTP control connection and data connection.

It’s known that, each Interest creates a PIT entry and the PIT entry
lasts until the responding Data packet returns. Because the control
connection is interactive, a corresponding PIT entry is inserted and
removed over and over again. At each snapshot, there can be at
most one PIT entry that corresponds to the control connection, but
control connection brings high PIT access frequency. For data con-
nection, because the size of a file can be relatively large and will
be segmented, the PIT entry will last until all the Data packets are
returned, which is very like that of an HTTP connection.

3.1.3 P2P
P2P is no doubt a major application in current Internet and con-

tributes vast traffic. To implement P2P on the NDN platform, we
should know how it works. Fortunately, it also obeys the request-
driven paradigm.

P2P network has two constructing ways: unstructured and struc-
tured. In unstructured P2P networks, a node sends out query packets
by flooding or smarter algorithms [11, 12] to search for nodes serv-
ing desired files, and those nodes possess the requested files will
send content back to the requester. In structured P2P networks, a
node first consults its local Distributed Hash Table (DHT) about
which nodes have the desired content, and then directly send re-
quests to those nodes. No matter unstructured or structured P2P
network, P2P’s working paradigm is the closest to that of NDN. The
query packets or the requests can be directly implemented by In-
terest packets “as-is”, as well as the replies implemented by Data
packets without any modification.

The corresponding PIT entries are created and removed in the way
similar to that of HTTP.

3.1.4 Email
Implementing Email service in NDN will encounter some diffi-

culties and calls for an a new mechanism. Because hosts push emails
out to servers, which is fundamentally different from NDN’s com-
munication pull model.

Email servers and other email transfer agents use Simple Mail
Transfer Protocol (SMTP) to send and receive email messages, user-
level client email applications typically only use SMTP for sending
messages to a email server for relaying. For receiving messages,
client applications usually use either the Post Office Protocol (POP)
or the Internet Message Access Protocol (IMAP).

Firstly, we consider sending emails. In IP, email is submitted by
a mail client (MUA, mail user agent) to a mail server (MSA, mail
submission agent) using SMTP. The messages can be directly sent
to the server without any knowledge of the server in advance (except
the email address). In however, in NDN, we need a “initiating”
stage. Assume that a Gmail client (logged in with email address
example@gmail.com) tries to send an email to “van@parc.com”.
It initiates the transaction by sending out an NDN Interest with the
name: “parc.com/email_service/van/example@gmail.com/123”.
(“parc.com/email_service/” is a routable prefix for the email service
of PARC, and 123 is a nonce.) After receiving the Interest, the
PARC server responds to the client’s Interest with an “OK” Data
packet as acknowledgement. This process is called the “initiating”
stage. Then the PARC server then sends out an Interest with the
name: “gmail.com/email_service/example/van@parc.com/456”
(“gmail.com/email_service” is the routable prefix to the Gmail
server, and 456 is also a nonce) to pull down the incoming email.
By this means, the Gmail mail client can send out an email via

214

File System Server DTP

Server PI

Client
DTP

Client PI

File System

User

Interface
User

FTP Commands

FTP Replies

Data Connection

Server-FTP Client-FTP

Control Connection

Figure 3: Model for FTP.

Server

DTP

Server

PI

Client

DTP

Client

PI

User

Interface

Data Connection

Server-FTP Client-FTP

Control Connection

Interest: PASV

Data: Service Name

Interest: request for file

Data: file

1

2

3

4

(a) NDN FTP: download file.

Server

DTP

Server

PI

Client

DTP

Client

PI

User

Interface

Data Connection

Server-FTP Client-FTP

Control Connection

Interest: Service Name

Data: Acknowledgement

Interest: request for file

Data: file

1

2

3

4

(b) NDN FTP: upload file.

Figure 4: Upload and download file process of NDN FTP.

MUA

MSA MTA

MX MDA

MUA

Solid arrows: SMTP

Dashed arrow: POP or IMAP

Figure 5: Email.
the responding Data packets. After the email is delivered to the
MSA, it is forwarded to the Mail Transfer Agent (MTA) and Mail
Delivery Agent (MDA) in the same way (Solid arrows in Figure 5).
Therefore, for the NDN email sending process, it takes a little
longer than that of IP for about a RTT time due to the initiating step.

Secondly, we consider the mail delivery procedure (Dashed ar-
rows in Figure 5). Once delivered to the local mail server, the mail
is stored for retrieval by authenticated email clients (MUAs), us-
ing POP or IMAP. When using POP, clients typically connect to the
email server briefly, only as long as it takes to download new emails.
Therefore, for POP, email clients actively send Interests to email
servers when they want to receive emails, and mail server responds
with emails by Data packets.

For IMAP, clients often stay connected as long as the user in-
terface is active and download emails on demand. In other words,
IMAP pushes emails to mail clients. Therefore, we adopt the same
method for the email sending procedure. Let mail server send an In-
terest to mail client, then mail client acknowledges this Interest by a
Data packet, and next sends another Interest to pull down the emails.

3.1.5 Online games
In current Internet online games, there must be a consistent con-

nection between the client and server since an account logs in until
it logs out, which is demanded by the application requirements. In
NDN, this requirement does not alter, which reveals bidirectional
communications between game client and game server. Therefore,
the game client sends out an Interest with the user name and pass-
word to login to the server. (The Interest’s name is set to a routable
prefix of the game server.) This Interest is extended to a special
kind of Interest that its corresponding PIT entries will not be re-
moved while the user is logged in, in order to support the consistent
connection requirement. By these PIT entries, a consistent channel
from the server to the client is created. The server can arbitrarily
send Data packets to the client. However, this unidirectional chan-
nel is not enough since the client also needs to send messages such
as mouse clicks and keystrokes to the server. Consequently, after re-
ceiving the Interest from a client, the server sends an Interest to the
client as well, which is also a special Interest that its PIT entries will

not be removed until the client logs out. In this way, a channel from
the client to the server is also established, and the two unidirectional
channels form a bidirectional connection between the game client
and server.

3.1.6 Streaming media
Due to the entertainments brought by on-line videos, streaming

media has become one of the major Internet applications, such as
the Youtube website. To watch a video, a client (e.g., Adobe flash
player) sends an Interest to Youtube website, and then Youtube sends
back the video segments to the client in continuous Data packets,
like a stream. If P2P accelerating techniques are used, the Interest is
sent from a peer to another, and another peer sends back the video
encapsulated in Data packets. Refer to HTTP and P2P for how the
corresponding PIT entries are created and removed.

3.1.7 Instant messaging
Instant messaging (IM) has been integrated into people’s lives. It

also pushes out messages like sending emails, which violates the
the NDN’s communication model. In current Internet, IM mostly
uses UDP to transport packets and thus provides best-effort service.
Therefore, we design a mechanism for IM in NDN that consumes
no PIT entry, which offers best-effort service as well.

In our design, an IM client logs into the IM server by sending an
Interest to the server. The Interest’s name is the IM service name
of the server (a routable prefix to the server), and payload includes
an account’s user name, password, and local IM service name (a
routable prefix to the client). The server acknowledges with a Data
packet, which also includes the remote IM service names of the ac-
count’s friends, indicating which friends are online. If the user wants
to initiate a conversation with a friend, he sends out an Interest, with
the friend’s remote service name as the Interest’s name, and the mes-
sage that he wants to deliver to his friend as the Interest’s payload.
This kind of Interest is classified as another special kind of Interests
that intermediate routers will NOT create PIT entry for it. Moreover,
when the Interest reaches the destination client, the client will NOT
return a Data packet either, providing best-effort service.

By now, we have designed working paradigms for the most major
Internet applications on the NDN platform. In next subsection we
will evaluate and quantify the size and access frequency of PIT.

3.2 Measuring PIT size and access frequency
We captured a one-hour trace from a 20 Gbps link in China Edu-

cation and Research Network (CERNET). By mapping or translat-
ing this IP-generated trace to an NDN trace at the perspective of ap-
plication, we quantify the PIT size and access frequency. Videlicet,
to transmit the same data encapsulated in the payload of the IP trace
via NDN (with the data link layer technologies remain the same),
how many PIT entries and how much access frequency of PIT is
required. For example, for a pair of HTTP request and response,
a PIT entry will last since the arrival of the Interest packet until

215

the arrival of the last Data packet of the response message. For an
SMTP connection, we should add an initiating stage right before
it starts, contributing a PIT entry for about a RTT time. We first
parsed out the bifows2 (connections for TCP and bidirectional flows
for UDP) of each application discussed above. The parsing process
takes advantage of multiple tools, including TIE [3, 6], Tstat [4, 8],
l7-filter [2], etc., and we parsed our 88.76% of the total trace. The
numbers of biflows of each application at each snapshot3 are shown
in Table 1 (except the second column is the # of yet un-responded
HTTP requests).

From Table 1, as well as our designed working paradigms of NDN
applications, we translate this trace from the IP scenario to the NDN
scenario. E.g., the second column “Un-responded HTTP requests”
presents the number of HTTP requests that have not been responded.
Because HTTP/1.1 [1] adopts consistent connection and multiple
HTTP packets can be sent via the same connection in a pipelined
manner, but in NDN, each un-responded Interest packet has an as-
sociated entry in PIT, thus the number of PIT entries is related to
the un-responded requests at a snapshot, rather than the number of
HTTP connections. Another example is Online Game, as aforesaid,
two unidirectional NDN channels realize the functionality of an IP
connection, therefore, each Game connection corresponds to 2 PIT
entries. In this way, by translating all the major applications, we de-
rive that the number of PIT entries is around 1.5 million. We only
consider the traffic of network applications, thus the traffic of net-
work management (e.g., ICMP) and services (such as DNS, which
is no more needed in NDN) are not counted (the last two columns in
Table 1). IM belongs to the Conference group, which is not counted,
either.

Moreover, the read frequency of PIT depends on how many Data
packets (excluding the last Data of a request/response pair) arrive per
second, the insert frequency is determined by the number of emerg-
ing biflows (new Interest arrive), and delete frequency the number
of disappearing biflows (last Data packets arrive). These statistics
of the first 10 seconds (out of 3,600 seconds) of the studied trace
are provided in Table 2. It’s worth pointing that we ignore all the
packets without payload when calculating the PIT access frequency.
From Table 2, the read frequency of PIT is around 1.4 M/s, and the
insert and delete frequencies are both around 0.9 M/s.

4. ENCODING-BASED FAST PIT ACCESS
AND SIZE SHRINKING

In this section, we propose an encoding-based approach to shrink
PIT size, and accelerate the lookup, delete and update performance.

As the NDN names are composed of components and are rela-
tively long compared to IPv4/v6 addresses. Directly storing them
as character strings in a table and search for a match is not a wise
idea. The hierarchical structure of NDN names enable some of them
to share the same name prefixes, thus the names can be organized
in Name Prefix Trie (NPT), which is very likely to the IP Prefix
trie [9, 13] structure. NPT (middle part in Figure 7) makes the PIT
organized and more manageable, but it does not help much in shrink-
ing PIT size and accelerating PIT access frequency.

We propose to assign a code (an integer) to each component of
the name, i.e., the Name Component Encoding (NCE) method, and
use the codes to build the NPT, called the Encode Name Prefix Trie
(ENPT). The codes are utilized to conduct lookup, delete and update
on ENPT (rightmost part in Figure 7) to make PIT access faster. We
should keep in mind the following problems when adopting NCE:

2Each bifow is identified by the five tuple of <
𝑠𝑟𝑐_𝑖𝑝, 𝑑𝑠𝑡_𝑖𝑝, 𝑠𝑟𝑐_𝑝𝑜𝑟𝑡, 𝑑𝑠𝑡_𝑝𝑜𝑟𝑡, 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 >.
3We take 60 snapshots and show the first 20 of them.

Encoding Module

(Encoding Function f)

Lookup, Insert and

Delete Module

name code series

NCE framework

Figure 6: The NCE framework.

1. High-speed Longest Prefix Match (LPM) lookup, insert and
delete, which are the major objectives of the NCE mechanism.

2. Fast component encoding. When a packet arrives, the
name’s components must be assigned codes before starting
the longest prefix matching. Therefore the speed of compo-
nent encoding should be no slower than the lookup, insert and
delete speed.

3. Low memory cost. An effective encoding-based method
should reduce the total memory cost of PIT as well.

The encoding-based solution was first introduced in our previous
work [14]. In this paper, we only adopt the encoding idea, the ways
to allocate codes, lookup, insert and delete is totally different. Based
on our solution, when an NDN name arrives, its components are
extracted and each of them is assigned a code. Then the code series
are used to lookup, delete and update the PIT, as shown by Figure 6.

4.1 Comparing With Pattern Matching
Intuitively, our problem is to look for a string among a set of

strings, which is very similar to the pattern matching problem at
the first glance. However, there are some fatal differences.

1. Pattern matching checks if a string contains a pattern (or
more than one patterns), beginning at arbitrary position of
the string. However, we lookup the NDN names according
to the LPM rule, which begins at the first character of the in-
put string. Moreover, pattern matching resolves at character
granularity, while our problem is of component granularity.

2. The patterns in conventional pattern matching problems are
fixed or update at a very low frequency. While in our prob-
lem, the names in the PIT are all patterns, and the patterns
are inserted and removed at a very high frequency, which will
lead to frequent reconstruction of the Deterministic Finite Au-
tomaton (DFA) if adopted.

Therefore, traditional pattern matching solutions may not apply
here.

4.2 Name Prefix Trie for Name Lookup
An NDN name is composed of explicitly delimited components,

its hierarchical structure inspire us that it can be represented by
Name Prefix Trie (NPT), a data structure very similar to IP Prefix
Trie, but it is not necessarily a binary tree. A sample PIT with 9
names is shown in the leftmost part Figure 7, its corresponding NPT
is illustrated by the middle part of Figure 7, with its edges stand-
ing for name components and nodes representing lookup states. The
NPT is of component granularity, rather than character or bit granu-
larity, since the longest name prefix lookup of NDN names can only
match a complete component at once, i.e., no match happens in the
middle of a component.

Name prefix lookups always begin at the root. When an Interest
packet arrives, its name is extracted and the Longest Prefix Match
lookup starts on NPT. The process is as follows: we first check if the
name’s first component matches one of the edges originated from the
root node, i.e., the level-1 edge. If so, the transfer condition holds
and then the lookup state transfers from the root node to the pointed
level-2 node. The subsequent lookup process proceeds iteratively.
When the transfer condition fails to hold or the lookup state reaches
one of the leaf nodes, the lookup process terminates and outputs the
index that the last state corresponds to.

216

Table 1: Trace Statistics.
Snapshot

Un-responded
HTTP

requests
P2P (TCP) P2P (UDP)

Multimedia
(TCP)

Multimedia
(UDP)

Email
(SMTP, POP, IMAP)

Online
Game FTP Conference

Network
Management Services

1 296964 290259 802510 24124 10981 41680 23815 505 32160 1383 245229
2 297903 300391 802879 24159 10920 42447 23382 510 32214 1363 244204
3 295908 306238 806185 23602 10959 42102 22314 504 31872 1416 233500
4 293035 306394 803680 23719 11073 39462 22128 508 31246 1383 234829
5 289425 313038 814347 24478 11238 39529 23014 505 30771 1422 239554
6 296794 314074 802497 24540 11241 40849 23206 505 30528 1383 238147
7 290364 315705 796327 24280 11094 42456 22051 505 30970 1405 238524
8 292213 317899 794001 24691 11227 43039 22536 507 30711 1350 229399
9 289825 318622 796744 23895 11275 42036 22099 504 31290 1414 227809

10 289100 319768 792193 24174 11113 41097 21579 507 30385 1407 227809
11 291704 320269 800449 24066 11295 41310 22426 507 30120 1375 233416
12 284372 315984 808876 24435 11199 39768 22207 510 30375 1401 226281
13 281394 316593 800140 23904 11259 38079 21801 511 28992 1339 221280
14 285902 317544 785419 24022 11140 37252 20238 511 28993 1321 226810
15 282457 317049 798048 24118 11376 37377 21867 519 29445 1365 229740
16 281691 315820 789139 24081 10525 39309 22384 510 29296 1396 223627
17 284215 318627 794436 24280 10450 38898 22311 517 29481 1389 217819
18 283341 321657 809278 24046 10674 39459 22500 511 29532 1434 225202
19 283813 324276 817171 24126 10788 39729 22462 517 29967 1471 225826
20 281163 322878 800040 24111 10702 38428 22774 513 30255 1503 210875

Table 2: Lookup, insert and delete frequency.
Time (s) 1 2 3 4 5 6 7 8 9 10

Read frequency 1,409,082 1,409,477 1,411,578 1,406,273 1,409,961 1,408,013 1,409,447 1,409,731 1,410,433 1,409,555
Insert frequency 90,278 88,513 89,561 90,597 90,376 88,821 90,457 89,828 90,856 91,079
Delete frequency 91,422 92,264 90,296 89,132 90,280 90,614 90,805 90,303 90,475 90,394

4.3 Name Component Encoding (NCE)
NPT makes names in the PIT well organized and manageable, but

it cannot contribute much to reducing PIT size or greatly improving
PIT access performance.

In this section, we propose the NCE solution to solve the chal-
lenges. Each name component is encoded as an integer (code), and
the bits allocated for a code is dependent on the amount of integers
used. In this paper, a 32-bit integer for each code is sufficient. There-
fore, the NPT will be encoded as Encode Name Prefix Trie (ENPT),
whose edges stand for codes of name components, as shown by the
rightmost part of Figure 7. ENPT is a logical structure and we then
construct the State Transition Arrays (STA) – a data structure simi-
lar to Adjacency List that stores a graph, but more concise – to im-
plement the ENPT, which significantly shrinks the size of NPT and
enables fast lookup, insert and delete. Once an NDN names arrives,
it is encoded to a series of codes, and the name is looked up against,
inserted to, or deleted from PIT based on these codes. Moreover, a
Code Allocation Mechanism is also designed to assign each compo-
nent a (dynamic) code, which eliminates the potential size explosion
problem of PIT.

As Figure 7 shows, the given 9 names can be organized as an NPT
with 14 nodes. Different components (edges) leaving the same node
should be encoded differently to distinguish themselves. A straight-
forward method is to assign unique codes to all the components in
NPT, ranging from 1 to 𝑁 , 𝑁 is the number the edges in the NPT.
However, in our solution these unique codes will not help acceler-
ate the PIT access speed. Moreover, since the amount of edges in
an NPT can be very large, unique codes will lead to codes of large
numerical values and require more bits to store them.

We define the edges in the NPT leaving from the same node as
a Code Allocation Set (CAS). which are illustrated by the dotted
ellipse on the NPT in Figure 7. We propose that we allocate con-
tinuous unique codes within each CAS separately, as depicted by
RULE 1.

RULE 1. Assign each name component in a CAS a unique code.
The codes should be as small and continuous as possible within each
CAS.

By default, the codes start from 1 within each CAS. After en-
coding each CAS, we arrive at the ENPT, which is shown by the
rightmost part of Figure 7. Suppose that a CAS is composed of
edges originated from node 𝑖, we denote this CAS as CAS 𝑖. By
this method, components of the same level but in different CASes
may have the same code, e.g., component “yahoo” in CAS 2 and
“baidu” in CAS 9 share a common code 1. And the same compo-
nent in different CASes may be assigned different codes, e.g., CAS

2 and CAS 9 both contain the component “google”, but “google” in
CAS 2 is assigned code 2 while “google” in CAS 9 is encoded as
3. These two cases, which can be called code assignment collisions,
will not bring any negative effects to the name lookup, however. The
latter case is in fact how to allocate codes to components, and will
be discussed in Section 4.6. Now we assume that each component
has been assigned a code based on RULE 1. We then prove the first
case will not lead to lookup conflict. (A conflict arises when match-
ing different level-𝑖 components of two different names, the lookup
states transfer to the same state/node.) The proof is by contradiction.

PROOF. Given two names 𝐶1𝐶2⋅⋅⋅𝐶𝑖⋅⋅⋅𝐶𝑛 and 𝐶′
1𝐶

′
2⋅⋅⋅𝐶′

𝑖 ⋅⋅⋅𝐶′
𝑛

with 𝑛 level components, and they are encoded to 𝐸1𝐸2 ⋅ ⋅ ⋅𝐸𝑖 ⋅ ⋅ ⋅𝐸𝑛

and 𝐸′
1𝐸

′
2 ⋅ ⋅ ⋅ 𝐸′

𝑖 ⋅ ⋅ ⋅ 𝐸′
𝑛, respectively. Their corresponding lookup

paths are 𝑁0𝑁1𝑁2 ⋅⋅⋅𝑁𝑖 ⋅⋅⋅𝑁𝑛 and 𝑁0𝑁
′
1𝑁

′
2 ⋅⋅⋅𝑁 ′

𝑖 ⋅⋅⋅𝑁 ′
𝑛 (𝑁𝑖 repre-

sents a node in the ENPT, and 𝑁0 is the root). Component 𝐶𝑖 ∕= 𝐶′
𝑖,

and are assigned the same component, i.e., 𝐸𝑖 = 𝐸′
𝑖. Assume that

there is a conflict after matching 𝐶𝑖 and 𝐶′
𝑖, i.e., the lookup states

both transfer to the same state/node, thus 𝑁𝑖 = 𝑁 ′
𝑖 . And because

(allowing for) 𝐸𝑖 = 𝐸′
𝑖, then 𝑁𝑖−1 = 𝑁 ′

𝑖−1. Therefore component
𝐶𝑖 and 𝐶′

𝑖 belongs to the same CAS 𝑖 − 1. According to our code
allocation algorithm, each component within a CAS is assigned a
unique code, due to 𝐸𝑖 = 𝐸′

𝑖, we get 𝐶𝑖 = 𝐶′
𝑖, which contradicts

previous assumption 𝐶𝑖 ∕= 𝐶′
𝑖.

4.4 State Transition Arrays for Encoded Name
Prefix Trie

ENPT is a logical data structure, and is implemented by State
Transition Array (STA), as depicted in Figure 8. (CAS 𝑖 corresponds
to Transition𝑖 of STA.) STA is composed of Transition arrays, each
array of them, say Transition𝑖, stands for a state 𝑖 and its children in
the ENPT, as well as edges originated from state 𝑖. If there is a name
prefix match at state 𝑖, a pointer to the corresponding PIT entry is
included in Transition𝑖.

Figure 8 also shows the process of looking up “cn/google/maps”,
which is encoded as “2/3/1”. The lookup process always begins at
the root node, i.e., Transition1. Searching in Transition1 for code
2, the next state, 9, is obtained. Then we transfer to Transition9

and continue to search for the second code – 3. The lookup process
iterates like this and finally reaches Transition𝐵 , where the pointer
to the PIT is stored. By now, we successfully finds the PIT entry
and the lookup process terminates. This lookup process make use of
the codes (integers) to find a valid transfer from one state to another,
compared to matching a component (character string) of variable
length, matching an integer is much more easier.

217

Name Ports

/com/yahoo 1

/com/yahoo/news 1

/com/yahoo/maps/uk 2

/com/google 2

/com/google/maps 1, 2

/cn/google/maps 3

/cn/sina 2, 3

/cn/baidu 4

/cn/baidu/map 4

1

2

9

3

7

A

D

4

5

8

B

E

maps

map

maps

6
uk

level-1 level-5level-2 level-4level-3

ma

C
sina

1

2

9

3

7

A

D

4

5

8

B

E

1

1

1

6
1

level-1 level-5level-2 level-4level-3

C
2

An example of PIT
Name Prefix Tree Encode Name Prefix Tree

Figure 7: PIT, NPT and Encode NPT (ENPT).

2 1 2

^ 3 7

Transition1:

Transition2:

Transition3:

2 1 2

^ 2 9

2 1 2

^ 4 5

Transition9:
3 3 2 1

^ A C D

Transition4:
0

1

Transitioni:

of edges leaving

this state

1st edge 2nd edge …

Pointer to PIT

entry

Next state Next state …

Name Codes Ports

/com/yahoo /1/1 1

/com/yahoo/news /1/1/1 1

/com/yahoo/maps/uk /1/1/2/1 2

/com/google /1/2 2

/com/google/maps /1/2/1 1, 2

/cn/google/maps /2/3/1 3

/cn/sina /2/2 2, 3

/cn/baidu /2/1 4

/cn/baidu/map /2/1/1 4

TransitionA:
1 1

^ B

TransitionB:
0

6

Legend:

Figure 8: The STA data structure.

However, this matching method still requires linearly searching a
code in a Transition𝑖, which brings low frequency. To relieve this
problem, we further propose to directly locate the next state by the
code, videlicet, taking code as an index of the Transition array. By
this scheme, the STA data structure is simplified to what is shown
by Figure 9, and we name it Simplified STA (S2TA). The codes are
no longer stored in the STA, but act as the indexes to locate the next
lookup state. The lookup process now can simply be implemented
by sequentially accessing four Transition elements: Transition1[2],
Transition9[1], Transition𝐴[1] and the Pointer to PIT entry field of
Transition𝐵 . Significant advantages of this scheme include: 1) no
need to move data when inserting and deleting names, 2) no compli-
cated memory management involved. By this means, the required
storage by S2TA is reduced compared to the STA in Figure 8, and
simultaneously the access frequency is markedly improved! There-
fore, PIT is conceptually transferred to ENPT, and eventually imple-
mented by S2TA.

However, this method calls for strict requirements on the codes,
which should be as continuous as possible and starting from a code
of a numerical value as small as possible. Otherwise the memory
consumption of PIT can be enormous. We address this problem in
next subsection.

4.5 Dynamic Code – A solution to potential
PIT explosion

We have demonstrated the benefits that NCE and S2TA bring, but
there is still one problem before the actual deployment of PIT. Be-
cause PIT is quite dynamic, though the number of PIT entries is rel-
atively stable, the names are inserted (Interest arrives) and deleted
(Data arrives) at a high frequency, which has been shown by the
evaluation results in Section 3.2. Names arrive disorderly, therefore
as well as the name components since names are composed of com-
ponents. RULE 1 implies that, within each CAS, the code assigned

^ 3 7

Transition1:

Transition2:

Transition3:

^ 2 9

^ 4 5

Transition9:
^ D C A

Transition4:
0

1

Transitioni:
Pointer to PIT

entry

Next state Next state …

Name Codes Ports

/com/yahoo /1/1 1

/com/yahoo/news /1/1/1 1

/com/yahoo/maps/uk /1/1/2/1 2

/com/google /1/2 2

/com/google/maps /1/2/1 1, 2

/cn/google/maps /2/3/1 3

/cn/sina /2/2 2, 3

/cn/baidu /2/1 4

/cn/baidu/map /2/1/1 4

TransitionA:
^ B

TransitionB:
0

6

2

2

2

3

1

1 2

1 2

1 2

1 2 3

1

of edges leaving

this state
1st index 2nd index …

Legend:

Figure 9: The Simplified STA (S2TA) data structure.

to a specific name component is unique, as well as consistent. As-
sume that a name component 𝐶𝑚 of CAS 𝑖 arrives, and 𝐶𝑚 has a
consistent code 1, then Transition𝑖[1] in the S2TA will be occupied
by the next state of 𝐶𝑚. Immediately following 𝐶𝑚, another com-
ponent 𝐶𝑛 in CAS 𝑖 also arrives, which has a consistent code 1000,
and Transition𝑖[1000] will also be occupied by the next state of 𝐶𝑛.
Therefore, elements from Transition𝑖[2] to Transitions𝑖[999] are all
wasted. The worst case is, names are all composed of new compo-
nents, if we assign a consistent and unique code to each component,
the numerical value of codes will increase to be extremely large.
Because we utilize codes as indexes of the Transitions in S2TA, af-
ter a specific name is deleted, the corresponding elements in S2TA
can not be used by other names, cumulatively the actual memory
consumed by PIT will be quite huge!

Due to the above situation, though PIT contains 1.5 M valid en-
tries, the memory actually consumed by the S2TA can be extremely
large. Therefore, only using RULE 1 is impractical to deploy. To
address this problem, we propose assigning dynamic codes to com-
ponents, which is summarized as RULE 2.

RULE 2. Assign each name component in a CAS an available
code. An available code means this code has not been assigned to a
name component, or is freed by a leaving name component.

RULE 2 also ensures the code assigned to each name component
in a CAS is unique. RULE 2 proposes that we assign dynamic (and
maybe different) codes to the same component at same level in the
ENPT while they arrive at different time. In fact, we can view each
CAS as a code pool. When an Interest packet arrives, we encode
its name by selecting the available codes in the CAS. Assume that
the encoding function is 𝑓 , which takes component as one of its
parameters and returns a code. (𝑓 will be discussed in detail in Sec-
tion 4.6.) Each time 𝑓 is called for each component of the Interest
name, it picks up the smallest available code for this component

218

and writes the <component, value> pair to a hash table. As the re-
sponding Data packet returns, 𝑓 returns the same code series for its
name. After the Data packet name is looked up and deleted from the
S2TA based on its code series, all the codes are freed and denoted
as available. These codes will be reused for subsequent Interest and
Data packets. An example is as follows (refer to Figure 7): an In-
terest with name “cn/sina” comes, and its name is encoded to “2/2”.
After the responding Data packet returns, the second level code (2)
in CAS 9 is freed (assume that the first level code, 2, is occupied
by another names, such as “cn/google/maps”). When another Inter-
est name comes, e.g., “cn/yahoo”, “cn” is still encodes as 2. For
“yahoo”, if consistent code allocation is adopted, it should be en-
code to 4. However, by dynamic code method, we find that in CAS
9, code 2 is an available code, and consequently assign 2 to “ya-
hoo”. It’s worth pointing out that, a freed code also indicates that
the corresponding element of the CAS in S2TA is vacant, and thus
this element can be reused to save memory consumption. Evalua-
tion results show that the dynamic code method effectively reduces
the amount of codes within each CAS and makes the codes as con-
tinuous as possible. Therefore, the numerical value of the largest is
reduced, as well as the memory actually consumed by the STA.

Adopting RULE 2 involves searching for an available code for a
component within a CAS, which will bring extra time cost compared
to consistent code allocation. Assume that the largest code of a CAS
is 𝑁 , then the worst time complexity of searching a CAS is 𝑂(𝑁).
However, evaluation results show that 75% search operations suc-
cessfully return after only one try (edges to leaf nodes in ENPT),
and 10% search operations successfully return with less than 5 tries.
At last the average time complexity is approximately 𝑂(𝑁

4
).

4.6 Code Allocation Function f
Previously, we assume that the codes, either consistent or dy-

namic code, are correctly assigned to components. In Section 4.3,
we have found that identical component may be assigned multiple
codes. However, given a specific component in a specific name, only
one code is correct for that component. In this subsection, we will
present how to allocate correct codes to components, videlicet, how
to implement the function 𝑓 mentioned in Section 4.5.

Based on the fact that components of domains are sep-
arated by special delimiters, we can get which level
a given component belongs to. We define a function
𝑓(𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡, 𝑙𝑒𝑣𝑒𝑙, 𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔_𝑐𝑜𝑑𝑒) that maps a compo-
nent to its appropriate code by a hash function, which is borrowed
from Python. 𝑓 takes three parameters, the first is the component
that is to be assigned a code, the second is its level in the whole
name, and the third is the code of its preceding component. 𝑓
returns the correct code of current component by hashing. If current
component is the first component, 𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔_𝑐𝑜𝑑𝑒 is set to 0.
Note that 𝑓 behaviors differently for Interest name and Data name.
For Interest name, 𝑓 assigns available codes to components within
each CAS separately. As a result, identical component in different
CASes may have different codes. For Data name, 𝑓 is responsible
for finding the correct code for a component that has multiple codes.
An example of code assignment is as follows. Suppose that the
looked up name is still “cn/google/maps” (refer to Figure 7). First
we take “cn/google/maps” as an Interest name. “cn” is encode as
2 by invoking 𝑓(“𝑐𝑛′′, 1, 0), then 𝑓(“𝑔𝑜𝑜𝑔𝑙𝑒′′, 2, 2) is invoked to
encode “google”, the second argument, 2, indicates that this is a
second level component, and the third argument, also 2, indicates
the branch or subtree that current component belongs to, and further
figures out which CAS this component belongs to. In this example,
“google” belongs to CAS 9. Assume that the code 3 is available
within CAS 9, thus 𝑓 returns 3 as the code of “google”, and writes
3 to the appropriate entry of the hash table. Similarly, “maps” is

Backplane

Li
ne
-ca
rd
i

In
ter
est

com.google.maps

Not found in

PIT, lookup

in FIB and

insert to PIT

co
m.
go
og
le.
ma
ps

PIT

co
m.
go
og
le.
ma
ps

Interest

switched to line-card j

insert

Li
ne
-ca
rd
j

PIT

Lookup in

PIT, but will

fail to find.

co
m.
go
og
le.
ma
ps

In
ter
est

Da
ta

co
m.
go
og
le.
ma
ps

Lookup

Figure 10: Place PIT on incoming line-cards.

Backplane

Li
ne
-ca
rd
i

In
ter
est

com.google.maps

Not found in

PIT, lookup

in FIB and

insert to PIT

com.google.maps

co
m.
go
og
le.
ma
ps

Li
ne
-ca
rd
j

co
m.
go
og
le.
ma
ps

insert

PIT

co
m.
go
og
le.
ma
ps

lookup

co
m.
go
og
le.
ma
ps

co
m.
go
og
le.
ma
ps

PIT

co
m.
go
og
le.
ma
ps

Interest

In
ter
est

Data

Da
ta

Da
ta

switched to line-card j

switched to line-card i

insert

Figure 11: Place PIT on both incoming and outgoing line-cards.
encoded to 1 by invoking 𝑓(“𝑚𝑎𝑝𝑠′′, 3, 3). Assume that the arrival
of another Interest name, say “com/google/maps”, makes “google”
be assigned another code 2 in CAS 2, the code 2 is appended to the
appropriate hash table entry. Consequently, as a level-2 component,
“google” has two corresponding codes – 2 and 3.

Next we take “cn/google/maps” as a Data name. Obviously,
𝑓(“𝑐𝑛′′, 1, 0) encodes “cn” to 2. 𝑓(“𝑔𝑜𝑜𝑔𝑙𝑒′′, 2, 2) first hashes
“google” to the appropriate entry of hash table and finds that
“google” has two corresponding codes (2 and 3), then 𝑓 recog-
nizes that this “google” belongs to CAS 9 and returns code “3”. (Of
course, information about which CAS each code belongs to is also
maintained.) At last, 𝑓(“𝑚𝑎𝑝𝑠′′, 3, 3) returns 1.

Though at level 2, “google” has two corresponding codes (2 and
3), but this will not bring any negative interference when selecting a
correct code for “google”. A potential drawback is, the code of the
𝑖-th component depends on the code of the (𝑖 − 1)-th component,
which makes the encoding process of each component in a name
sequentially executed and may degrade the throughput. However,
evaluation results show that, by a four-module accelerated hash-
based encoding function 𝑓 , this is not the bottleneck of the system.

5. WHERE PIT RESIDES?
Figure 1(a) and Figure 1(b) illustrate the Interest and Data packet

forwarding process within a router, from which the PIT lookup and
update process can be derived as well. NDN takes PIT as a global
table and conceptually assume that all the Interest and Data packets
can access that table, which is, however, impractical to implement
in current router architecture. The router architecture is illustrated
in Figure 10, with multiple line-cards plugged in the backplane.

219

Backplane

Li
ne
-ca
rd
i

In
ter
est

com.google.maps

Lookup in

FIB and

NOT insert

to PIT

com.google.maps

co
m.
go
og
le.
ma
ps

Li
ne
-ca
rd
j

co
m.
go
og
le.
ma
ps

insert

PIT

co
m.
go
og
le.
ma
ps

lookup

co
m.
go
og
le.
ma
ps

co
m.
go
og
le.
ma
ps Interest

In
ter
est

Data

Da
taDa

ta

switched to line-card j

switched to line-card i

FIB

co
m.
go
og
le.
ma
ps

PIT

lookup

Figure 12: Place PIT on outgoing line-cards.

Packets are received by line-cards and are switched to another line-
card via the backplane and switch fabric (not shown). Conceptually,
a router is composed of two parts: data plane and control plane.
Data plane is simply the line-cards, and the control plane is a CPU
that draws network topology and computes FIB. For brevity, control
plane is not shown in Figure 10.

When implementing PIT, a fundamental problem is where and
how to reside PIT in current router architecture.4 Obviously, it’s
impossible to place PIT on router’s control plane since delivering
every Interest and Data packet into control plane is not a wise idea
and costs a fortune. Therefore, we place the PIT on the data plane
(line-cards).

The most straightforward way is that each line-card maintains its
own PIT – creates a corresponding PIT entry for every incoming
Interest packet and removes the associative PIT entries for received
Data packets, as shown by line-card 𝑖 in Figure 10. However, this
means will encounter serious problems. The first problem is, sup-
pose that an incoming Interest packet 𝐼 arrives at line-card 𝑖, and
line-card 𝑖 looks it up in its PIT first. If not found, an entry is in-
serted into 𝑖’s PIT for this Interest. Then the Interest is switched to
line-card 𝑗 and further forwarded to the downstream routers. When
the responding Data packet returns, due to the symmetric routing
property, the Data packet will be received by line-card 𝑗. However,
line-card 𝑗 fails to find the Data packet in its PIT because the corre-
sponding PIT entry is on line-card 𝑖, thus this Data packet does not
know where to go and will be discarded. The second is problem,
imagine that immediately after Interest 𝐼 arrives at line-card 𝑖 (𝐼 is
not responded yet), an identical Interest 𝐼 ′ arrives at line-card 𝑘 for
the first time, and line-card 𝑘 looks it up in its PIT, and will certainly
not find it since line-card 𝑘 has never received an Interest identical
to 𝐼 ′ before. But according to the design of NDN, Interest 𝐼 ′ should
be found in PIT since an identical Interest 𝐼 has been received by
this router and is not responded yet. If we really want this, line-card
𝑖 has to send 𝐼’s corresponding PIT entry to all the other line-cards
for synchronization after the entry is created, which will definitely
consume a lot of resources and incur extra burden on the router.

A possible solution is to create entries for an Interest on both in-
coming and outgoing line-cards, as illustrated in Figure 11. When
an Interest packet arrives at this router, line-card 𝑖 and 𝑗 both insert
its carried name into their own PITs. When the responding Data
packet comes back to line-card 𝑗, line-card 𝑗 looks up the name
of the Data packet in its PIT, obtains the proper destination inter-
face and forwards it to line-card 𝑖. Thus this method solves the first

4Though NDN is a clean-slate network architecture, we believe that
it will not make significant modifications to the router architecture.

aforementioned problem. But for the second problem above, Interest
𝐼 ′ still cannot be found in line-card 𝑘’s PIT, and will be forwarded
to line-card 𝑗. However, if we lookup 𝐼 ′ in line-card 𝑗’s PIT, 𝐼 ′ is
there! This fact inspires us to lookup Interest names against the PITs
on the outgoing line-cards. Therefore, the PIT entries on the incom-
ing line-cards are over-provisioned. In Figure 11, the PIT entry for
the incoming Interest “com.google.maps” on line-card 𝑖 is redundant
since it will never be looked up.

Consequently, we propose to only place the PIT entries on (egress
channel of) the outgoing line-cards. This means each line-card only
have to create PIT entries for outgoing Interests (in the egress chan-
nel) that are switched to itself from other line-cards, rather than
the incoming Interests (in the ingress channel) from the outside,
as depicted by line-card 𝑗 in Figure 12. By this design, the Inter-
est lookup and forwarding process slightly changes, as illustrated in
Figure 1(c). (For brevity, the CS, which is a global buffer shared by
all the line-cards, is not shown in Figure 12.) For a Interest packet
that comes in through interface 𝑥 of line-card 𝑖 and goes out through
interface 𝑦 on line-card 𝑗:

1. line-card 𝑖 checks if CS has cached the desired data chunk, if
so, returns a copy by a Data packet,

2. otherwise, looks up the Interest against FIB for the outgoing
interface 𝑦, and switches it to line-card 𝑗,

3. line-card 𝑗 checks if PIT has an entry for this Interest, if so,
appends 𝑥 to this entry and discards this Interest,

4. otherwise, creates a PIT entry and fills it with Interest name
and the arrival interface 𝑥. Then forwards the Interest to the
interface 𝑦.

Data packet is looked by by the line-card that receives it, and the
lookup and forwarding process does not change.

6. EVALUATION
6.1 Experimental Setup

We measure the performance of NCT and ENCT on the platform:
Intel Xeon E5520, 2.27 GHz, 15.9 GB RAM.

The one-hour trace is captured from a 20 Gbps gateway link
in CERNET, 17:00∼17:59, Dec. 21st, 2011. The domain names
are collected from ALEXA, DMOZ and our web crawler, and
9,834,747, about 10 million, domain names are collected in total.
We also extracted 7,624,393, around 8 million, real URLs from the
HTTP GET and HEAD requests in the trace. For brevity, we refer
to these two name sets by 10M Name Set and 8M Name Set, re-
spectively. The statistics of these two Name Sets are presented in
Table 3.

The evaluation can be generally divided into two parts: 1) The
size and access frequency of PIT, which have been previously il-
lustrated by Table 1 and Table 2 in Section 3; 2) The performance
of our proposed encoding-accelerated PIT access scheme (NCE and
S2TA), such as memory consumption, access frequency, and com-
parison with other methods.

6.2 Evaluation Results
6.2.1 Memory Usage

For the two Name Sets, we first measure their memory consump-
tion of the: 1) original size, i.e., directly store the names as character
strings in a table, 2) NPT, 3) ENPT (S2TA) + hash table. (Hash table
is required by function 𝑓 .)

The overall results are shown in Table 3, more detailed results are
given in Figure 13 and Figure 14. Some facts can be derived from
these statistics. By comparing the # of edges/components in the NPT
with the # of total components in Table 3, we find that 8M Name Set
is more aggregatable than the 10M Name Set. Moreover, besides

220

1 2 3 4 5 6 7 8 9 10

0

50

100

150

200

250

300

M
e
m

o
ry

 c
o

n
su

m
p

ti
o

n
 (

M
B

)

of names (Million)

 NPT size (MB)

 original size (MB)

 ENPT(S TA) (MB)2

Figure 13: 10M Name Set memory consumption–original size,
NPT size, ENPT size.

1 2 3 4 5 6 7 8

0

50

100

150

200

250

300

350

400

450

22222

M
e
m

o
ry

 c
o

n
su

m
p

ti
o

n
 (

M
B

)

of names (Million)

 NPT size (MB)

 original size (MB)

 ENPT(S TA) (MB)
2

Figure 14: 8M Name Set memory consumption–original size, NPT
size, ENPT size.

the name components, each NPT node stores additional informa-
tion, such as state number, pointer to children, pointer to parent, etc.
Therefore, the NPT of 10M Name Set is even larger than its original
size. But these additional information makes NPT easier to manage
than storing names directly.

As mentioned in section 4.6, we assign codes to components by
invoking function 𝑓 , which in turn resorts to a hash function. Thus a
hash table is required, for the 10M Name Set, the size of hash table
is approximately 67.11 MB, and around 33.55 MB for 8M Name
Set. At last, the compression ratio of the 10M Name Set and 8M
Name Set is 63.66% and 12.56%, respectively.

Please keep in mind that, ENPT is a logical data structure and we
do not implement it directly. However, it is implemented by S2TA.
We can think of operations on the ENPT, but we actually operate the
S2TA to carry out those operations.

6.2.2 Lookup, insert and delete performance
Subsequently, we measure the PIT access (lookup, insert and

delete) performance by ENPT. We do not measure the update perfor-
mance, because updating PIT means appending interfaces to a spe-
cific PIT entry, whose performance it very close to that of lookup.

Deleting a name involves backtracking a path, which is easy to
implement by NPT since NPT has parent pointers. The deleting
process in ENPT is: first go straight to the leaf node, delete the leaf,
then backtrack to see if the parent node still needs to be removed, so
and so forth. (If a parent node’s all the children are deleted, and it
does not have a pointer to the PIT entry, it needs to be removed too.)
Because there is no such pointer to parent node in S2TA, we keep
track of the node information along the path to a specific leaf when
deleting a name. We do not actually delete the node and free the
space of ENPT, in fact, deleting a node means the code of its pre-
ceding edge/component is freed, and that code can be reused within
its CAS, as well as the corresponding space in S2TA. (Refer to func-
tion 𝑓 .)

1 2 3 4 5 6 7 8 9 10

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

F
re

q
u

e
n

c
y

 (
M

/s
)

of names (Million)

 ENPT-lookup (M/s)

 ENPT-delete (M/s)

 ENPT-insert (M/s)

 NPT-lookup (M/s)

 NPT-delete (M/s)

 NPT-insert (M/s)

Figure 15: Lookup, insert and delete performance for the 10M
Name Set.

1 2 3 4 5 6 7 8

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

F
re

q
u

e
n

c
y

 (
M

/s
)

of names (Million)

 ENPT-lookup (M/s)

 ENPT-delete (M/s)

 ENPT-insert (M/s)

 NPT-lookup (M/s)

 NPT-delete (M/s)

 NPT-insert (M/s)

Figure 16: Lookup, insert and delete performance for the 8M
Name Set.

1 2 3 4 5 6 7 8 9 10

-4

-2

0

2

4

6

8

10

12

14

16

18

20

22

24

S
p

e
e
d

u
p

of names (Million)

 8M Name Set - lookup speedup

 8M Name Set - delete speedup

 8M Name Set - insert speedup

 10M Name Set - lookup speedup

 10M Name Set - delete speedup

 10M Name Set - insert speedup

Figure 17: PIT access frequency speedup based on ENPT.

The lookup, insert and delete performance for the two Name Sets
are illustrated in Figure 15 and Figure 16, respectively. The lookup,
insert and delete performance on the 10M Name Set can achieve
3.27 M/s, 2.93 M/s and 2.69 M/s, respectively, and that on the 8M
Name Set achieve 2.51 M/s, 1.81 M/s and 2.18 M/s, respectively.

Obviously, the PIT access frequency based on ENPT is phenom-
enally promoted compared with that of the NPT, which is more
clearly depicted by the speedups in Figure 17.

6.2.3 Code allocation function 𝑓
Each incoming name will be decomposed to multiple name com-

ponents and each component will be assigned a code by invok-
ing function 𝑓(𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡, 𝑙𝑒𝑣𝑒𝑙, 𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔_𝑐𝑜𝑑𝑒), which in turn
calls a hash function. The hash function is borrowed from Python.
The way how 𝑓 works has been discussed in Section 4.6. Because
this step of encoding components is just right before the step of
lookup, insert or delete, the encoding performance should be no less
than the lookup, insert or the delete performance. Otherwise, the en-
coding step will be the performance bottleneck. We utilize 4 parallel
modules to improve the encoding throughput, and the performance

221

Table 3: Name Component Statistics of Two Name Sets.
URL set # of names

of total
components

average
component

length (Byte)

average # of
components

per name

original
size

(MB)

of components
/edges in NPT

NPT size
(MB)

ENPT
size

(MB)

ENPT+Hash
Table size

(MB)

compression
ratio

10M
Name Set 9,834,747 24,808,603 7.35 2.52 182.26 12,228,081 236.57 48.91 116.02 63.66%

8M
Name Set 7,624,393 26,882,827 15.35 3.53 412.78 4,570,563 125.03 18.28 51.83 12.56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0

2.0x10
5

4.0x10
5

6.0x10
5

8.0x10
5

1.0x10
6

1.2x10
6

1.4x10
6

1.6x10
6 Consistent Code - largest numerical values of codes

 Dynamic Code - largest numerical values of codes

 Consistent Code - PIT’s memory consumption (MB)

 Dynamic Code - PIT’s memory consumption (MB)

time (s)

L
a
rg

e
st

 n
u

m
e
ri

c
a
l

v
a
lu

e
 o

f
c
o

d
e
s

0

5

10

15

20

25

P
IT

’s
 m

e
m

o
ry

 c
o

n
su

m
p

ti
o

n
 (

M
B

)

Figure 18: Largest numerical values of codes and PIT’s memory
consumption.

is 20.67 M components per second and 18.96 M components per
second for the 10M Name Set and 8M Name Set, respectively. Di-
vide them by the average number of components per name, we fur-
ther compute the encoding performance: 8.20 M names per second
and 5.37 M names per second for the 10M Name Set and 8M Name
Set, respectively. Therefore, the encoding performance is better than
the lookup performance and will not be the performance bottleneck.

6.2.4 Results of dynamic code
The drawback of assigning consistent codes to components has

been discussed in Section 4.5. To demonstrate the effects of dynamic
code, we replay the HTTP packets in the captured trace to mimic the
packet (name) incoming and outgoing process, which will lead to a
PIT of around 300 K (refer to Table 1) entries, and measure how
large the numerical value of the codes will be. For comparison, both
consistent and dynamic code method will be measured, as well as
the PIT’s actual memory consumption. The result is shown by Fig-
ure 18, the dotted curves represent the largest code of all the CASes,
which show that as times goes on, names keep coming and going,
the largest code increases. For consistent code, the largest keeps
increasing at a high rate after the PIT reaches 300 K valid entries,
thus the consumed memory of PIT increases as well. However, for
dynamic code, after the PIT reaches 300 K valid entries, the largest
code greatly slows down its increasing pace, making PIT’s mem-
ory consumption remains stable (solid curves). In fact, the largest
code by RULE 1 at each snapshot is the number of total components
observed by a CAS until this snapshot, while the largest code by
RULE 2 is the amount of components a CAS contains at each snap-
shot. The PIT’s memory consumption exhibits similar growth law
of the codes. The hash table size (not shown in Figure 18) is almost
the same for both consistent and dynamic code methods, since the
received names are the same, and thus the name components. The
hash table size is 33.55 MB (for the 8M URL Name Set). Therefore,
with NCE and dynamic code, PIT exhibits good scalability.

7. RELATED WORK
This section compares our NCE solution to our previous work

in [14], and we name it Original NCE. In fact, this paper only con-
tinues the encoding idea, but the ways to assign codes, lookup, in-
sert and delete are different. We conclude three major distinctions:
1) The data structure to implement the ENPT in Original NCE in-
volves complicated memory management, such as data movement,

fragment management; 2) Original NCE allocates consistent codes
to components and does not allow identical components be encoded
to different, dynamic codes, which fundamentally contradicts with
the code allocation function 𝑓 in this paper; 3) Original NCE only
achieves lookup speedup, but does not exhibit good support for in-
sert and delete operations. However, in this paper, NCE not only sig-
nificantly accelerates lookup, but also insert and delete operations.

8. CONCLUSION
NDN/CCN propose that PIT caches yet un-responded Interests,

when the responding Data packets return, the names are removed
from PIT. PIT brings significant features to NDN/CCN. However,
none has conducted a measurement study to show the size and ac-
cess requirements of PIT. Without these knowledge, we have no data
to support the design of NDN routers or the actual deployment of
NDN. In this paper, we are the first address three problems asso-
ciated with the PIT: 1) the size and access (lookup, insert, delete)
frequency of PIT; 2) how to address the large size and high access
frequency problem with a scalable solution; 3) where does PIT re-
side within a router.

We emulate NDN’s application-layer working paradigms by
transferring the existing IP applications to the NDN platform. By
mapping/translating a captured 20 Gbps gateway trace from IP to
NDN scenario at the application perspective, we quantify the size
and access frequency of PIT, which demands an efficient and scal-
able solution. Therefore, NCE is proposed to accelerate the access
throughput of PIT, as well as to reduce its size. Moreover, the dy-
namic code allocation technique makes the NCE solution practical,
and further keeps the actual memory consumption of PIT stable. At
last, we propose to place PIT on the packets’ outgoing line-cards
(egress channel) when actually implementing PIT, which meets the
PIT design in [15] and eliminates the cumbersome synchronization
problem among multiple PITs on line-cards.

9. REFERENCES
[1] HTTP/1.1 RFC. http://www.ietf.org/rfc/rfc2616.txt.
[2] l7-filter. http://l7-filter.clearfoundation.com.
[3] TIE. http://tie.comics.unina.it.
[4] Tstat. http://tstat.tlc.polito.it.
[5] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I. Stoica,

and M. Walfish. A layered naming architecture for the internet. In Proc. of
SIGCOMM, 2004.

[6] A. Dainotti, W. de Donato, and A. Pescapé. TIE: A community-oriented traffic
classification platform. In TMA’09, May 2009.

[7] C. Esteve, F. L. Verdi, and M. F. Magalhaes. Towards a new generation of
information-oriented internetworking architectures. In Proc. of ACM CoNEXT,
2008.

[8] A. Finamore, M. Mellia, M. Meo, M. M. Munafò, P. di Torino, D. Rossi, and
T. ParisTech. Experiences of internet traffic monitoring with tstat. IEEE
Network, 25(3), May-June 2011.

[9] E. Fredkin. Trie memory. Communications of the ACM, 3(9):490–499, Sep
1960.

[10] V. Jacobson, D. K. Smetters, J. D. Thornton, M. Plass, N. Briggs, and
R. Braynard. Networking named content. In Proc. of ACM CoNEXT, 2009.

[11] H. Jiang and S. Jin. Exploiting dynamic querying like flooding techniques in
unstructured peer-to-peer networks. In Proc. of IEEE ICNP, 2005.

[12] A. Kumar, J. J. Xu, and E. W. Zegura. Efficient and scalable query routing for
unstructured peer-to-peer networks. In Proc. of IEEE INFOCOM, 2005.

[13] S. Nilsson and G. Karlsson. IP-Address Lookup Using LC-tries. IEEE Journal
on Selected Areas in Communications, 17(6):1083–1092, JUNE 1999.

[14] Y. Wang, K. He, H. Dai, W. Meng, J. Jiang, B. Liu, and Y. Chen. Scalable name
lookup in ndn using effective name component encoding. In Proc. of IEEE
ICDCS, 2012.

[15] L. Zhang, D. Estrin, V. Jacobson, and B. Zhang. Named Data Networking
(NDN) Project. In Technical Report, NDN-0001, 2010.

222

