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ABSTRACT

We present a fast, low-cost technique to gather high-contrast ‘relightable’ photographs of desktop-sized objects.
Instead of an elaborate light stage, we follow Mohan et al.; we place the object and a digitally-steered spotlight
inside a white cardboard box, aim the spotlight at the box interior, and move the spot to light the object from
N repeatable lighting directions. However, strong ambient lighting from box interreflections causes ‘shallow’
shadows and reduces contrasts in all basis images. We show how to remove this ambient lighting computationally
from the N images, by measuring an N×N matrix of coupling factors between lighting directions using a mirror-
sphere light probe. This linear method, suitable for any light stage, creates physically accurate ‘deep shadow’
basis images, yet imposes only a modest noise penalty, and does not require external light metering or illumination
angle measurements. Results from our demonstration system support these claims.
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1. INTRODUCTION

Stray unwanted light limits the performance of almost all designs for 4D, 6D, and 8D light-stages. These devices,
intended to capture photographs of objects lit from a wide range of controllable illumination directions, include
many ingeniously diverse designs, ranging from large, elaborately complex high-performance systems for real-time
capture for actors and dancers1 to a simple hand-held light and a video camcorder.2,3 These various light stages
each capture a set of directionally-lit photographs or ‘basis images’, raw data variously processed to describe
illumination fields, reflectance fields, and derived quantities such as silhouettes, surface normals, and detailed
4D,6D and 8D reflectance estimates.

For re-lightable photographs, good basis images capture high dynamic range (HDR) images of objects lit
from a single direction, forming deep, sharp shadows and rich, directionally-lit textures. Weighted sums of these
basis images using positive-only weights produce images that exactly match those made by applying the weights
to the light sources themselves.4 While these re-lighting results are physically accurate, they cannot exceed the
contrasts of their basis images.

Ideally, all the light that arrives at the photographed object in a light-stage comes directly from a computer-
controlled light source, but any practical system will also have unwanted secondary light sources, such as light
leakage from lamp ventilation holes, scattering from smudges on light-source lenses, inward-pointing light sources
that illuminate each other, and broad light beams that spread light beyond the photographed object. Every
illuminated surface of the apparatus reflects some light, and multiple interreflections scatter measurable ambient
light everywhere. In each basis image, this ambient light “fills in” surface cracks and deep shadows to form a
shallower, lower-contrast photo. Accordingly, many light-stage designs combat stray light by absorbing or or
re-directing it; open-frame designs let light escape, flat-black paint reduces interreflections, and baffles, light
traps, and black-velvet curtains around light sources can absorb most of the light energy of each interreflection
step. However, these stray-light reduction strategies are difficult or impossible for one particularly convenient,
low-cost light-stage design introduced by Mohan et al.,5,6 show in Figure 1(a))

Using this or a similarly simple light stage, we wish to make high quality “relightable” digital photos of
desktop-sized objects as easily, quickly, simply, and cheaply as possible, because we believe such photos could be
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a tremendous help to museums as they devise sensible strategies for digital archiving of their collections. It may
help them to share, conserve and compare the vast set of precious objects in their collections that otherwise may
never be included in a public display. Simple, low-risk designs encourage widespread use: rather than design a
more elaborate light stage to minimize ambient light, we chose to remove the ambient light computationally.

Our simple light stage borrows its basic design from Mohan et al.6 We place the object inside a diffuse white
cardboard box, and aim a steerable spotlight or disco light at its inner surface, and the bright spot projected on
the box interior acts as our movable light source. We use a personal computer to place the spot precisely and
repeatably at a series of N locations spread across the entire hemisphere of incoming light directions, and trigger
the camera to capture each of these N directionally-lit basis images.

(a) Disco light casts bright spot on
the foam-core box. Ambient inter-
reflections act as secondary unwanted
light sources.5

(b) Ambient light weakens shadows
caused by the bright spot.

(c) Computed deep shadow image re-
moves ambient light.

Figure 1.

Ideally, the object will receive light only from the one bright spot on the box interior, but as we can see in
Figure 3(b), interreflections within the box distribute small fractions of that light to each of the other N − 1
light-spot locations as well; these other spots are not black. Instead, each one acts a weak directional light source
as well, and the intensity of each source is a fixed fraction, a ‘coupling fraction’ of the bright-spot’s intensity,
depending on spot location, box shape, and its surface material.

Suppose we could somehow measure all those coupling fractions for all the basis images; each fraction would
tell us just how much of the unwanted light came from each of the unwanted illumination directions in each of
the basis images. Recall that each of the N basis images shows us how the object looks when lit mostly from just
one chosen direction. If we subtract just a tiny fraction of one basis image A from another basis image B, then
we will remove some of the unwanted illumination in B from the direction of the bright spot in A. As Section 3
will show, we can measure a matrix of coupling fractions with a light-probe, and use it to find just how much
of each basis image we should subtract to remove nearly all the contributions from all ambient light to all basis
images.

Figure 1 (b) shows an unmodified basis image with shallow shadows caused by box interreflections, but
applying our ambient light removal method produces (c), a new, non-negative, physically-realizeable basis image
with deep shadows as if the box itself had absorbed all ambient light. We will describe how to make these results
after a brief review of previous work.

2. RELATED WORK

Image-based relighting is a powerful approach to display real objects under given lighting conditions in computer
graphics.3,4, 7

Like most previous image-based lighting methods, we apply the observations formalized by Nimeroff8 that
lights and materials interact linearly. The basic principle is that a photograph of an object lit from each direction
provide a basis for relightable photographs. A weighted sum of these photographs will match a photo of the
object lit by a weighted sum of light sources.



Given the light intensities and light directions, Debevec et al.4 showed how to compute 8D directional
reflectance as well. Using an early lightstage design, Hawkins et al.7 made a pioneering application to museum
tasks by measuring reflectance with a rotating-arm that hold multiple lights. To measure each lighting direction,
they made a second set of photographs where a mirror ball light probe replaced the object, just as we have done.
Malzbender et al.9 avoided mirror ball calibrations by using a small geodesic dome of electronic flash units for
capturing directional illumination effects. Sen et al.10 applied Helmholz reciprocity to interchange light source
and camera positions in an attempt to speed up the image capture process. To reduce the complexity and cost
of equipment, several other researchers devised novel ways to capture lighting basis images with handheld light
sources.3,5, 11,12 Others found lighting directions without mirror ball light probes, such as the dimensionality
reduction method of Winnemöller et al.,2 or with handheld light sources ,3 or the planar light probe of Alldrin.13

To keep our costs low, we apply the simple card-board box light stage introduced by Mohan et al.,5 but
we found that inter-reflections within that box severely reduced basis image contrasts. In the next section, we
describe a practical solution to this problem. Our solution can be applied to any of above light-stages to improve
the contrast of resulted image.

3. PROBLEM FORMULATION

Under a fixed viewpoint, the amount of light a camera pixel (x, y) receives is a linear combinations of incoming
light, because radiance is additive:12

I(x, y) =
∫

Ω

Rxy(ω)L(ω)dω. (1)

Here L(ω) denotes the incoming light distribution on incoming angle ω = (θ, φ). Rxy(ω) is called the reflectance
field.4 It represents how much light is reflected to the pixel (x, y) when the object is illuminated by unit incoming
light from direction ω. The reflectance field Rxy(ω) subsumes the geometric property as well as the BRDF of
the object. (Each R, G, B color channel is processed separately in our paper.)

In an ideal light stage the incoming light only comes from one direction: Li(ω) = δ(ωi), where δ() is the
Dirac delta function. According to Equation 1, Ii(x, y) = Rxy(ωi), so the ith captured images is the direct
measurement of R sampled at directions ωi. A linear combination of captured images of the object produces a
synthetic image with the new illumination in any form of sampled illumination.

In a real light stage such as ours, some nonzero amount of light will arrive from directions other than the
desired direction. To compute R, we divide the the whole hemisphere of incoming light directions into N small
solid angle regions Ω1,Ω2, · · · ,ΩN . Equation 1 becomes:

I(x, y) =
∑

i=1,··· ,N

∫
ω∈Ωi

Rxy(ω)L(ω)dω

=
∑

i=1,··· ,N

(
Rxy(ωi)

∫
ω∈Ωi

L(ω)dω
), (2)

The second equality holds according to the first mean value theorems for integration,14 where ωi is some angle
in region Ωi. When Ωi is small enough, we suppose ωi is approximately the center of Ωi. In actual computation,
we partition the incoming light space by the Voronoi diagram of the centers of bright spots as shown in Figure 2.

The incoming light can be measured by taking pictures of a mirror ball in the same place or near the object (see
Section 4.2 for details). We have N unknown variables Rxy(ωi) in Equation 2. By taking N photos I1, I2, · · · , IN
under different lighting conditions by aiming the spotlight on different positions all over the cardbox. We have
N equations, which can expressed as:

I1(x, y)
I2(x, y)

...
IN (x, y)

 =


L11 L12 · · · L1N

L21 L22 · · · L2N

...
...

. . .
...

LN1 LN2 · · · LNN




Rxy(ω1)
Rxy(ω2)

...
Rxy(ωN )

 , (3)



Figure 2. White circles show the positions of the bright spots. Yellow lines show how we divide the hemisphere of incoming
light directions by the Voronoi diagrams of the bright spot centers.

or in compact matrix form by
I = LR, (4)

where Lij =
∫

ω∈Ωj
Li(ω)dω is the amount of light coming from solid angle Ωj in the ith capturing.

The solution of R = (Rxy(ω1), Rxy(ω2), · · · , Rxy(ωN )T ) is then given by

R = L−1I. (5)

We can process each pixel (x, y) using the same L matrix. Because the lighting beams originated from one
point on the box to different positions of the object have almost the same angle, when the target object size is
much smaller than the box size.

4. EXPERIMENT

4.1 Equipment Setup

In our experiment, we need to take a large set of photos viewed at a fixed position under a large variety of
different lighting directions. Although it is possible for us to manually move the light for every image like as was
done by Masselus2002 et al.,3 it can be extremely time consuming and tedious. In addition, the results are not
repeatable, as we may accidentally move the light source closer or farther away from the object.

The center of the experiment is a special piece of equipment we designed to help us collect data for analysis.
It is a simple box-like enclosure made of wood, lined with white foam-core boards that serves as a reflector.
The white foam-core boards are specially treated with a matte finish paint to better approximate a Lambertian
surface. Coupled with a computer-steered moving head spotlight, the box allows us to illuminate our object of
interest from almost any angle. As we move the light around using the computer control software, we use our
camera to record photos. Our setup is intended for high-quality photographic lighting for small objects.

We place the object in the center of the equipment for photographing. To record the amount of light from
each part of the reflector, we replace the object with a mirror ball and photograph the mirror ball.

Figure 3 shows our real light stage.



(a) overall view (b) disco light casts bright spot on the foam-core box

(c) the object is placed inside the box (d) a mirror ball is placed inside the box

Figure 3. Our light stage setup.

4.2 Methodology

1. Collect images of the objects from a wide range of lighting directions. Place the object of interest in the
center of the rig. Use the automated computer software to take object images from N = 119 different disco
light aiming angles. The photos are taken by a fixed camera positioned outside of the rig, near the top of
the rig.

2. Replace the object with a highly reflective mirror ball. The mirror ball images capture the illumination
directions and intensities in the rig for each disco light aiming angle. To collect high dynamic range (HDR)
photo, we took images at two different exposures for each aiming angle, as shown in Figure 4. We use the
technique of Debevec and Malik15 to merge two images with different exposure times.

We assume the card-board has a perfectly diffuse surface. When we illuminate one point on the card-board,
it reflects light evenly in all directions, so that it evenly illuminates every point on the photographed object
(or mirror sphere); it will not make the front of the object brighter or darker than the left, right, top, or
bottom.

3. Compute the L matrix. Each pixel in the photo of a mirror sphere describes the radiance leaving one point
P on the hemisphere in the direction of the mirror sphere. It is the radiance received everywhere on the
object from that point P, because we know that point P emits light evenly in all directions.

Lij =
∫

ω∈Ωj
Li(ω)dω is the amount of light coming from solid angle Ωj in the ith capturing.



(a) Mirror ball long exposure 1 second (b) Mirror ball short exposure 0.05 second

Figure 4. To avoid under-exposure or over-exposure problem, we take pictures with two exposure time.

Once the data is collected, we want to know the radiance of light from all N directions for each of the N
light aiming positions, to fill our L matrix. Since we have one image for each light direction, each image of the
mirror ball would have one single bright spot. We can measure the radiance by measuring the pixel value of the
center of the bright spot.

The radiance L(x ← Ψi) can be computed by a mirror ball image that records the incident illumination
conditions at a particular point in space.16 A mirror ball has constant reflectivity and is made by highly specular
steel. We place a mirror ball in the same place as the object and capture the image with the camera in the same
position. The irradiance L(x,← Ψi) is proportional to the the radiance E(x, y), where the point x makes light
incoming angle Ψi equal to the light outgoing angle Θ. Section 4.2 shows how the to find the bisection point x
for each directions.

We assume the distance from the camera to mirror sphere is large enough to reasonably approximate the
camera projection as orthographic. In other words, all rays from this sphere to the camera are very nearly
parallel. This is shown in Figure 5(a).

Each pixel in this mirror ball image measures a different fraction of solid angle, and this fraction depends on
the pixel’s distance from the center of the sphere’s image as shown in Figure 5(b). Let us examine the mapping
from pixel position (x, y) to illumination direction ω = (θ, φ). First, we find the pixel (xc, yc) at the center of the
mirror ball image and measure the distance dmax from that center to the sphere’s silhouette. Next, we find the
distance d from camera pixel (x, y) to to (xc, yc) and divide this distance by dmax. The incoming lighting angle
ω = (θ, φ) can be computed according to φ = 2α = 2 arcsin(d/dmax), and cos(θ) = (x−xc)/d, sin(θ) = (y−yc)/d.

4) Use the inverse of L matrix to compute the deep-shadow image. This step is straightforward by using
equation (5). We process each color channel and each pixel of image individually. Making 119 ambient-free
3072 × 2304 resolution images takes around one hour in Matlab 7.0 running on an computer with Intel Core 2
Duo 2.13GHz CPU and 2GB memory. As all the operations are linearly combinations and matrix multiplications,
it should be straightforward to accelerate by GPU programming.

5. RESULTS AND ANALYSIS

5.1 Results
Our deep shadows algorithm is able to selectively enhance the contrast of shadows in the image without affecting
other parts of the image, which Histogram equalization is not able to do.
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Figure 5. Compute the L matrix by mirror ball images.

Even though histogram equalization can also increase the local contrast of an image, its result is not equivalent
to ambient light removal. Through the adjustment, the pixel intensities is better distributed on the histogram:
the most frequent intensity values are spread out. We show the original image, deep shadow image, and histogram
equalized image in Figure 6 and their histograms in Figure 7.

Our result cannot be obtained by using histogram equalization. First, in histogram equalization, two image
pixel of different positions with the same pixel values will be mapped to the same pixel value, this is not the case
in our method. Second, in histogram equalization, the output image gray level is a monotonically non-decreasing
function of the input, while our method is not. I marked two interesting regions in Figure 6(b). The printed
flower petals of small region is darker than the shadow of large region both in original image ( Figure 6(a)) and
histogram equalized image (Figure 6(c)), but brighter in our deep-shadow image (Figure 6(b)).

We show another original image and deep shadow image in higher resolution in Figure 8.

(a) Original Image (b) Deep shadow image (c) Histogram equalized image

Figure 6. Comparing original image, deep shadow image and histogram equalized image: although we have deep shadows
and high contrast after histogram equalization, we lost the details of the flowers on the cup!

6. CONCLUSIONS AND FUTURE RESEARCH

There also seems to be some quantization noise (contouring) which is sensible for 8-bit images. One possible
solution is to combine our images in the gradient domain instead of the intensity domain. It is shown that
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(a) Histogram of the original image

0 50 100 150 200 250

0

1

2

3

4

5

6

7

8

9

10

x 10
4

(b) Histogram of the deep shadow im-
age
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(c) Histogram of the histogram equal-
ized image

Figure 7. Comparing Histograms of original, deep shadow, histogram equalized images in Figure 6.

(a) One Input Image Directly Captured by Camera (b) One Deep Shadow Image Synthesized by Linear
Combinations of N Captured Photos

Figure 8. Experimental Results, Green Channel Only

Poisson solvers hide zero-mean quantization of gradients very well.17 This suggests that after finding the weights
for each photo, we take the gradients of each photo, make a weighted sum of gradients, then use a Poisson solver
to reconstruct the final result. The quantization would be in the gradients and not the intensities of the image,
and over-constrained: Poisson solver gives smoother result.

We illuminate the scene by hundreds of spot samples at different positions. An interesting and basic question
is what are the best positions and what are the best shapes for the light patterns.
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