
Leveraging Graphics Hardware for

Vision Based Human Computer Interaction

Sven Olsen

ECE 432

September 27, 2005



Abstract

We present a system which allows users to draw on arbitrary display surfaces. The

system is implemented using consumer electronics; data is gathered with a webcam, and

most video analysis is done on a desktop graphics card. Two variants of the core system

are discussed. In the first, users draw on a computer monitor using a laser pointer. In the

second, a light pen is used to draw on a display surface created by back-projecting onto a

plexiglass plate. The laser pointer system presents a more challenging data filtering problem.

These challenges may be addressed through additional processing, though the results from

the back-projection system remain superior.
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Chapter 1

Introduction

Video cameras and computer vision algorithms have often been used to facilitate human

computer interaction. Our system is distinguished by its use of commodity graphics hardware

and by its relative simplicity.

1.1 Motivation

As the hectic pace of development in consumer electronics moves ever forward, high-resolution

video cameras and powerful parallel processors are becoming commonplace. The current gen-

eration of video cards are capable of general purpose parallel computing at 50 GFlops or

more; and a $40 webcam can capture video at a resolution of 640x480 and a frame rate of

30 fps.

The goals of this project are as follows:

• Assemble a vision based interaction system out of cheap and commonly available con-

sumer electronics.

• The system should be both simple and robust.

• Maximize the resolution of the system while minimizing latency. Ideally, users should

be able to draw detailed figures on a display surface in real time using an optical

marker.

• Exploit graphics hardware to the maximum extent possible in order to better achieve

the above.
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1.2 Related Work

This project combines elements from three related subfields: computer vision, general pur-

pose GPU computation, and human computer interaction.

1.2.1 Electronic Whiteboards

The specific goal of building a chalkboard-like computer interaction system has been a theme

of work in human computer interaction systems for some time. One of the earliest systems

was LiveBoard, [4], developed by Xerox research, which used a custom built pen and sensitive

wall display system to allow interactive drawing on a large surface. Currently, the Mimio

whiteboard capture system, a hardware system for turning normal projection surfaces into

interactive whiteboards is being marketed in the $1000 range, and uses ultrasound tracking

technology to pinpoint the location of a stylus on the board.

Another recent system which allows for fairly precise interaction with a projected surface

is the Diamond Touch technology developed at the Mitsubishi Electric Research Labs, which

uses an electric current conducted through user’s bodies to detect touched point positions

on a front projected screen.

Low cost technologies for converting static whiteboards into digital form have been ex-

plored. In Zang ’02 [17], images of a whiteboard taken with a digital camera are processed

to produce a high quality record of the board’s contents.

1.2.2 Vision Based HCI

Researchers in human computer interaction have often made use of cameras pointed at

display surfaces. Olsen and Nielsen [11] and Cheng and Pulo [2] present interactive systems

in which laser pointers are used to interact with projected screens. Data gained from laser

pointers is typically too crude to be useful for detailed drawing, however, it has been used to

good effect for the manipulation of GUI elements, or for capturing raw data which is then

used to drive a gesturing interface. Flachsbart et al. [6] and Apperley et al. [1] present

systems in which videos of people moving around the projected displayed are analyzed in

the course of the interaction.

Another project similar to our own is the “Visual Panel”, presented by Wu [15], in which

the motions of a finger on a normal piece of paper are tracked and analyzed with sufficient

resolution and speed to allow figures drawn on the paper to appear on a computer screen.
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1.2.3 GPUs in Computer Vision

Over the past two years, the increased programmability of graphics hardware has lead to a

range of applications in computer vision. Montemayor et al. [13] presented a preliminary

GPU-based particle filtering system. Fung [7] performed a number of vision tasks on GPUs,

including a Cany Edge detection and simple hand tracking, and all of his code is available for

download as part of the open source OpenVIDIA computer vision library. The OpenVIDIA

functions have been used to build augmented reality systems, in which dynamic images were

superimposed on rectangular surfaces in the user’s environment.
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Chapter 2

Implementation

2.1 Hardware

2.1.1 Video Capture

We experimented with three different video capture devices:

• A Cannon GL2 digital camcorder

• A Logitech Quickcam pro 400 webcam

• An Apple iSight Firewire webcam

All three capture sources could be instructed to capture at a resolution of 640x480.

While the camcorder returns high quality images, the digital out transforms the video to

compressed DV format before sending it to the computer, which introduces a large amount

of latency into the system. The Logitech webcam had less latency, but had low image quality

and operated at a slightly slower framerate (20fps). The iSight had very little latency, good

image quality, and a reasonable framerate (30fps) - therefore we choose to use it in the

final version of the system. This was by no means an exhaustive survey of consumer video

capture devises, indeed, both the iSight and the Quickcam pro are several years old, and

more recently introduced usb2 webcameras may well outperform both of them.

2.1.2 Light Pen and Back Projection

We constructed a back projection surface by attaching a piece of frosted acetate to a plexiglass

plate. We have built a simple “light pen”, consisting of a high intensity red light emitting
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Figure 2.1: The back projection system, which consists of a plexiglass plate, projector, and
webcam. Also highlighted are the drawing devices, the light pen and laser pointer.

diode, secured to the end of a marker in such a way that it activates when pressure is applied

to the tip of the pen. Viewed from behind the back projection surface, the active pen shows

up as a bright circle of diffuse light. This setup is attractive for several reasons:

• Using back projection allows us to avoid occlusion problems entirely

• The interaction of the LED and the frosted acetate creates a strong diffuse optical

marker, so very little filtering is needed.

• The pressure activated pen is easy to control precisely, and well suited to our goal of

creating an interactive drawing system.

The downside of this setup is that the use of a projector strains our goal of constructing

something out of “common consumer electronics”. That said, the cost of the other special
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Figure 2.2: The active back projection system (see associated videos).

Figure 2.3: A pressure sensative light pen, constructed out of an LED and two AA batteries.

materials are negligible; the pen, plexiglass, and acetate have a net value of about $12, and

while projectors are still fairly expensive, smaller, cheaper projectors are being intensively

developed by companies such as Mitsubishi and Toshiba.
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2.1.3 Laser Pointer and Monitor

A back projection system is not the only way that we can allow a user to draw on a display

surface. We may also allow users to draw on their computer monitor. Pointing a webcam

at the screen is easy enough, but, with this arrangement, occlusion tends to preclude the

use of the light pen. In place of the pen, a laser pointer may be shined on the monitor

to impose a user guided optical marker on the screen. Unfortunately, because the laser

is highly directional, the amount of laser light observed by the webcam depends on their

relative angles. In contrast to the light pen, the laser pointer tends to be difficult to control

accurately. However, unlike the back projection setup, this variant of the system is very easy

to construct.

2.2 Software

The software components of our system are implemented in a mixture of C++ and Cg. We

interact with the graphics hardware through OpenGL, and we use DirectShow for interfacing

with the video capture device.

2.2.1 Video Capture

Video frames are captured from the webcam using the Microsoft DirectShow library. A

filter graph is constructed which connects the video capture source to IID_ISampleGrabber

and CLSID_NullRenderer filters. The graph runs in its own thread, which introduces the

potential for resource conflicts, as both the main thread and the capture thread need to

access the captured video frame. One way to avoid such conflicts is to copy the buffer into

a neutral memory area guaranteed never to be accessed by both threads simultaneously. If

both threads copy the data into/outof the shared area before doing any processing on it,

neither will need to wait while the other performs calculations on the data. It is preferable

for the neutral memory to reside on the video card, rather than the main system, so that

when the main thread copies the data into it’s own memory space, it can take advantage

of the higher memory bandwidth available on the graphics card1. The only way we have

1While the L1 cache of the Pentium 4 does have significantly higher memory bandwidth than the NVIDIA
Geforce GT series (44 GB/sec vs. 36 GB/sec), a 640x480 24bit image is far too large to be stored in the
L1 cache (and probably also too large to be practical in the L2 cache as well). Thus, if the neutral memory
space were to be kept on the CPU side, it would need to be stored in system memory, which only has a
memory bandwidth of 6 GB/sec [5].
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found to achieve this is by using the pBuffer OpenGL extensions to specify a neutral patch

of texture memory which is read as a texture by the main thread, but bound as a rendering

context by the capture thread. As the interaction of the Microsoft multithreading libraries

and the OpenGL pBuffer extensions are not well documented, it’s unclear whether or not

a more efficient implementation is possible, or even if the own method is guarantied to be

thread safe. However, thus far the approach has worked well in practice.

2.2.2 Calibration

In order for our system to respond appropriately when it detects a point in the camera buffer,

it must develop a mapping between the camera frames and the screen buffer. A mapping

between points on the screen as viewed by the camera and the representation of those same

points in screen coordinates is a mapping between two different views of points on a planar

surface, and can thus be represented by a 3x3 homography matrix. Finding such a matrix

given a set of known feature correspondences is a common task in both computer vision and

image based rendering, we follow the example of Raskar et al. [14], and use a nonlinear

optimization method, very similar to that introduced by Zang [16]. A range of alternate

calibration algorithms are discussed in Hartley and Zisserman [10].

Gathering Features

In order to generate correspondences between the screen coordinates and points in the camera

image, a series of boxes are displayed on the screen. A subtraction image is generated by

comparing each frame coming from the video camera with the previous frame, and occlusion

testing used to quickly determine whether or not there has been a substantial change between

frames (See Figure 2.4). Assuming the background noise is relatively small, a large change

will indicate that the current thresholded subtraction image contains the newly shown box.

When such a change is detected the thresholded subtraction image is copied back to system

memory, and the centroid of the points that survived the threshold operation are calculated.

This centroid is then considered to correspond to the screen coordinates at which the current

box is being displayed. The screen coordinates for the boxes are generated pseudorandomly

(using a 2D Halton sequence, as in Keller [12]), and if a changed point marker goes unnoticed

for long enough, the program will throw it out, and move on to the next point in the sequence.

This way, a complete set of correspondences can be found, even if portions of the screen are

not visible to the camera. Though any number of set correspondences with more than 4
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elements could be used, we have been using 7-10, as they can be captured quickly (within

about 10 seconds), and seem to produce good results.

Find the Homography Matrix

We need to find a matrix H

H =







h0 h1 h2

h3 h4 h5

h6 h7 1






.

Such that any point on our projected screen (u) will be related to a point on the projected

surface (x) by

u=̃Hx

This is done by solving the following minimization:

min
∑

||Hxi − ui||

for some known feature points. Sadly, this is not a linear least squares problem, as u and x

are in homogenous coordinates. The equation expands to:

min
∑

||

[

h0x0+h1x1+h2

h6x0+h7x1+1
− u0

h3x0+h4x1+h5

h6x0+h7x1+1
− u1

]

|| (2.1)

This is a relatively simple 8 variable unconstrained nonlinear optimization problem. In [16],

a Levenberg-Marquardt solver is used to solve this problem. We have taken a different

route. At the end of the calibration phase our program spawns a temporary process which

uses the free student copy of AMPL and the SNOPT nonlinear solver to solve Equation

2.1. This introduces a considerable amount of overhead, but as the problem is only solved

once, during the initialization of our system, and as it is not a particularly computationally

expensive operation, there would be little to gain in implementing and debugging a C++

solver.

Because of it’s nonlinearity, the problem may contain local minima, so we should be

cautious about our initial choice of H. Zang ’00 uses an approximate analytic solution to

initialize H, but we have found that in our own case, starting with the identify matrix

provides acceptable performance.
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2.2.3 Fragment Shaders

Programmable fragment shaders are one of the components of graphics cards best suited to

general-purpose programming. Fragment processing occurs after the texture coordinates and

screen position for a potential pixel render have been calculated. The role of the fragment

shader in the rendering pipeline is to take this information and use it to determine whether

or not the pixel should be rendered (typically by doing depth testing) and what color the

rendered pixel should have. Programmers can write fragment programs that do anything

they like with the information available to them, the only limitation is that the output of

the program must be limited to a decision whether or not the pixel should be rendered,

and if it is, the color that the pixel should have (several different color representations

are allowed, the most information rich being a 4 element floating point vector). Fragment

shader programs may read from any location in texture memory. Until recently, it was

not possible use branching or looping instructions inside a fragment program, but the most

recent NVIDIA cards have added this feature, and as it is a requirement of Shader Model

3.0, it is scheduled to be included in the coming generation of ATI cards as well. Fragment

shaders are commonly used to implement convolution filters, iterative linear solvers, or fast

matrix multiplications.

In our system, custom fragment shaders are used to filter the incoming video frames in

order to find optical markers, to generate the thresholded subtraction images used by various

other parts of the program, and to display the processed data on the screen.

The program defines three rendering contexts, the video capture context, a main process-

ing context, and the display context. The first two may be used as texture maps as well

as rendering targets, which makes them well suited to general purpose computation. The

memory in the display context, however, is effectively write only.

The main thread acts as follows :

• First the data from the video capture context is copied into the main processing context.

• Then a sequence of fragment programs are applied on the captured data in order

to reduce it to a small number of pixels which we believe represent the point being

indicated by the user.

• Finally, the filtered data is added to a buffer containing the accumulated points from

all prior filtering results. This portion of the texture is transformed by the homography

matrix in order to render an image to the screen.
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640x480
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Old Frame
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0: copy

1:
subtract /
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2: copy

Figure 2.4: The fragment programs used in the calibration step. A similar series of operations

are used to create the initial data for both the laser and light pen systems, though the copy

operation is postponed until after the filtering steps have been completed. In the case of the

light pen system, the incoming data is tends to be clean enough that no subtraction step is

needed.

Because of the overhead of switching between different rendering contexts, it is best to

keep as much data as possible in different areas of the same render texture context, and copy

data from one area of the texture to another in order (copying data over itself, however,

must be avoided, as it would lead to resource conflicts).

Subtraction and Thresholding

Regardless of whether the laser pointer or light pen setup is being used, the data from the

video frame is immediately transformed to create a rough approximation of point indicated

by the user. In any either case, that point should show up as a red blob. Depending on the

angle of reflection, the mark left by a laser pointer on a monitor may be fairly faint, and

difficult to separate from the background noise. However, as we expect that the laser pointer

will be the only large moving red object in the scene, we can threshold use the difference
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Figure 2.5: The fragment programs used to filter the laser pointer data, and display it on

the screen. The shrink or grow operations are performed until the occlusion tests indicate

that number of pixels lies within a given range. The programs used in the light pen case are

nearly identical, except that the initial data does not come from a subtracted image, and

data growing is never used.

of the current frame and the last frame, picking out the larger red values, and thus be left

with a reasonable approximation of the laser point. The light pen, on the other hand, leaves

a much brighter circular profile, and therefore a higher threshold can be applied directly to

the captured frame, with little risk of losing the signal.

Refining the Data

This is were things get interesting. In the case of the light pen system, the threshold results

typically leave us with a large circle centered on the touch position. If the data were on

the CPU, we could find the expected position iteratively, but calculating the centroid of the

points. However, moving the data to the CPU would be expensive, and a similar operation

can be performed on the GPU itself by exploiting the occlusion testing features. Each pixel

which passed the thresholding phase is treated as an active element of a cellular autometa,

and an update rule applied that destroys any cell which is not surrounded by active cells.
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shrink

f loat3 sh r ink ( f loat2 pos : TEXCOORD0,
uniform samplerRECT tex
) : COLOR {

f loat3 v 00=texRECT( tex , pos+f loat2 (0 , 0 ) ) ;
i f ( v 00 . r==0) d i s card ;
e l s e {

f l o a t v 01=texRECT( tex , pos+f loat2 (0 , 1 ) ) . r ;
f l o a t v 10=texRECT( tex , pos+f loat2 (1 , 0 ) ) . r ;
f l o a t v m0=texRECT( tex , pos+f loat2 (−1 ,0) ) . r ;
f l o a t v 0m=texRECT( tex , pos+f loat2 (0 ,−1) ) . r ;

i f ( v 01==0 | |
v 10==0 | | v m0==0 | |

v 0m==0 )
d i s card ;

}

return v 00 ;
}

Figure 2.6: One of the fragment programs used for data filtering, examined in detail.

Using occlusion testing, we can keep track of the number of pixels that survive after each

update, and keep applying the data shrinking rule until the number of surving pixels falls

below a target maximum. In some ways, this is actually preferable to finding the centroid,

as it tends to eliminate any noise in the origional thresholded pixels. 2

In the case of the laser pointer, the situation is more challenging, as, depending on our

2These operations would certainly benefit from Z-Culling optimizations, as explained in [9], and if I ever
get around to carefully profiling the code, I will certainly implement them.
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luck with reflections, we may have ended up with either a very large or very small blob of

red points which passed the thresholding step. Thus the program may decide to grow out

the detected signal, rather than shrinking it, in the case that our occlusion testing indicates

that a small but nontrivial number of points have passed through the threshold.
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Chapter 3

Results

As supplements to this report, we have created a number of videos, which may be downloaded

from the project webpage at http://cs.northwestern.edu/∼sco590/vision/project.

html

As demonstrated by the videos, the assembled back projection system is useable, though

there is clearly room for improvement.

• Calibration is simple and effective.

• The total latency of the the system is such that electronic drawing with the light pen

is possible, but only at a slow rate.

• The resolution and picture quality are low, but again, good enough to allow for careful

interactive drawing.

The laser pointer is less useful for drawing, as it typically moves too fast for the tracking

algorithms to keep up with it. A laser pointer reflected off a monitor is also harder to track

than the diffuse light sources created by reflections from the frosted acetate used as the back

projection surface.

3.1 Comparisons with previous systems

This project occupies and unusual niche – an attempt to build a high performance electronic

whiteboard out of cheap consumer electronics. As such, it is difficult to directly compare

it with similar systems. For example, the resolution which we have achieved appears to be

better than that in the “Visual Panel” system presented in [15]; but this is to be expected, as
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we are using more advanced hardware and solving a much simpler vision problem. Expensive

electronic whiteboard systems such as [4] are built with special purpose hardware, and so,

by rights they should perform better than our own system. Our calibration algorithms run

more slowly than those in [14], but are also more robust, as they do not require the entire

display surface to be viewed by the camera. The fragment shader techniques which we have

used are not revolutionary, but they do represent novel variations the emerging themes of

general purpose graphics processing.

3.2 Conclusions

The system which we have created is functional but crude. The accuracy could be helped

by improving the filtering algorithms, and sufficiently effective filtering could lead to results

with a resolution exceeding that of the source frames captured from the webcam. However,

implementing such algorithms without increasing the latency in the system would be chal-

lenging. A particle filter would seem to be a particularly attractive approach, as it parallelizes

well, and can implemented entirely on the graphics card. (The particle filter implementation

presented in August of 2004 [13], was a preliminary system and had not been tested in a

practical system such as this.)

The latency in the system is very close to that implied by camera and DirectShow over-

head. Careful engineering could improve the latter, and better hardware the former. The

present system, used without modification, is suitable for interaction tasks which demand less

high resolution, low latency data than interactive drawing; such as manipulating components

of a GUI, or gesture based control.
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Appendix A

Personal Statements

A.1 My Views on Computer Vision

I started my undergraduate career studying philosophy and physics. It was only near the end

of my degree that I switched my focus to applied science. I had become disheartened by the

glacial pace of my chosen disciplines, and moving to computer science allowed me to become

involved in a more active field. Of all the subdisciplines of computer science, computer

vision is one of those that best satisfies my desire for a lively research environment. There

are interesting and immediate applications, and a steady stream of novel algorithms are being

developed to address them. The underlying computational technology is rapidly evolving,

and for the next decade at least, researchers will be scrambling to keep up with it.

As a computer graphics specialist, I am particularly interested in the role that the rise

of cheap parallel computing is likely to play in computer vision. Many vision problems can

benefit from the features offered by graphics cards: limited SIMD instruction sets that act on

large volumes of data. Developing algorithms designed to exploit such hardware remains an

under-explored research area, and one sure to see increased attention as this type of parallel

device becomes ever more common.

A.2 Course Feedback

I enjoyed this course - the lectures introduced a range of important algorithms and techniques,

and the presentation was thorough. Before taking the class, I had already encountered many

of these algorithms in passing, and the course gave me the opportunity to strengthen my

knowledge of computer vision.
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In some of the lectures I was relatively unfamiliar with the underlying math, and as a

result became a bit lost. The homework only partially covered the scope of the presented

material, and thus I never had cause to reexamine the mathematics that had escaped me.

If the homework had covered more of the material presented in the lectures, I would have

finished the course with a more complete understanding of the material.

That said - as taught the workload for this class is already fairly heavy. There is a tradeoff

here: more homework ensures that students leave the course with a broader understanding

of computer vision, but less homework opens up space for projects, which then have a chance

of provoking interesting research. Though I like the emphasis on projects, the next time the

course is taught, I would suggest adding at least one small homework assignment related to

Bayesian analysis.
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