
ECE432: Homework 1

Implementing Lucas & Kanade

Sven Olsen

Compiled at 4:52 AM on June 29, 2005

1 Equations

The equations that I’m using are equivalent to those given in the notes, but in
order to make my implementation faster I’ve defined my terms slightly differ-
ently. Most significantly, I never explicitly define a weight matrix.

The problem we are trying to solve is:

min
v

E(v) =
∑
i∈Ω

(wi∇I · v + wi
∂I

∂t
)2.

Which is of the form
min

x
(Ax− b)T (Ax− b) (1)

where

A =

 w1
∂I1
∂x w1

∂I1
∂y

...
wN

∂IN

∂x wN
∂IN

∂y

N×2

, b =

−∂I1

∂t
...

−∂IN

∂t

N×1

.

Equation (1) goes to:

min
x

(xT AT Ax− 2(AT b)T x + bT b)

This is a quadratic with a symmetric positive semi-definite Hessian1, therefore
minimizing it is equivalent to satisfying the linear equation:

AT Ax = AT b.

Doing out the multiplications, we see that:

AT A =

∑
i∈Ω

(w2
i

∂Ii

∂x

2
)

∑
i∈Ω

(w2
i

∂Ii

∂x
∂Ii

∂y)∑
i∈Ω

(w2
i

∂Ii

∂x
∂Ii

∂y)
∑
i∈Ω

(w2
i

∂Ii

∂y

2
)

2×2

, AT b =

− ∑
i∈Ω

(wi
∂Ii

∂x
∂Ii

∂t)

−
∑
i∈Ω

(wi
∂Ii

∂y
∂Ii

∂t)

2×1

.

1AT A is always a symmetric positive semi-definite matrix, regardless of the form of A.

1

Thus,

vx =
−XT×Y 2

XY + Y T
Y 2X2

XY −XY
, vy =

−XT −XY × vx

Y 2
(2)

where

X2 =
∑
i∈Ω

(wi
∂Ii

∂x
)2, Y 2 =

∑
i∈Ω

(wi
∂Ii

∂y
)2, XY =

∑
i∈Ω

(w2
i

∂Ii

∂x

∂Ii

∂y
),

XT =
∑
i∈Ω

(wi
∂Ii

∂x

∂Ii

∂t
), Y T =

∑
i∈Ω

(wi
∂Ii

∂y

∂Ii

∂t
).

2 Implementation

The algorithms are implemented on an Nvidia nv40 GPU, and nearly all oper-
ations are performed in parallel.

The texture memory is arranged on the card as follows:

texture memory layout

image data old image data

optical flowgradient image

First a grayscale version of each frame is created using the formula

Ii = .30ri + .59gi + .11bi

Then a “gradient image” is created, for which the values of each pixel are
(∂I

∂x , ∂I
∂y , ∂I

∂t).

image data

gcalc

��

old image data

gcalcwwooooooooooo

gradient image optical flow

∂I
∂x and ∂I

∂y are approximated using the Sobel matrices, while ∂I
∂t is calculated

using the difference with the previous image.
Once the gradient data has been found, AT A and AT b are calculated for

each pixel, and the implied linear system solved using (2). A final operation

2

copies the current image data over the old image data.

image data
copy // old image data

gradient image
fcalc // optical flow

3 Results

For each dataset I’ve printed out the optical flow field viewed using vectors,
as well as bitmap captures of the gradient image and optical flow image. The
bitmap captures only represent a truncated potion of the floating point images
that actually exist on the card, but they’re interesting all the same. The format
of the data is:

<dataset_name>-s<sigma>-g<radius>.<image number>.bmp

Gradient and optical flow color bitmap images are prefixed with ’c’ and ’g’
respectively. A sigma of 0 implies that the image used a constant weighted
neighborhood, otherwise, sigma characterizes a Gaussian weighting scheme. Ω
is defined to be a square with the given radius, centered on the current pixel.

As is apparent from the results, constant weighted neighborhoods perform
very poorly, and hardly ever produce noticeable optical flow fields (this perfor-
mance is actually worse than I expected, I almost suspect that there is a bug in
my implementation of the constant case). Larger neighborhoods with broader
Gaussians lead to smoother, more regular data, exactly as one would expect.

I have also hooked the algorithms up to a webcam, and generated fields in
realtime2 from the captured video, but unfortunately such results cannot be
easily saved, because the cost of outputting the data ruins the framerate.

I have yet to get around to either multiresolution experiments or Horn-
Schunck.

3.1 Performance

The total time required to process the 20 images in the ’office’ dataset using
r = 10 and σ = 6 is 2.91 seconds (though when the cost of creating the debugging
images is included, the time increases to 3.63 seconds). The processing times for
r = 1, 2, 5, 10, and 20 are 0.43, 0.53, 1.05, 2.91, and 9.22 seconds respectively.
While I expect that my current GPU implementation will scale better with the
size of the input images than a cpu implementation, it will not scale better with
r (because the accumulations of AT A and AT b are performed using a for loop).
However, assuming sufficient texture memory (sizeof(Image) × sizeof(Ω)), the

2Right now, the system only runs at about 10 fps, but it’s a long way from optimized.

3

accumulations could also be parallelized via sum-reduction techniques. Unfortu-
nately, such a highly parallel implementation would be quite memory intensive,
and thus difficult to implement given the current Nvidia drivers and OpenGL
extensions.

4

