
Color2gray: Implementation Notes

1 Equations

Let K be a set of unordered pairs of indices, and let L be a set of ordered pairs
of indices, such that each {i, j} ∈ K has exactly one matching element in L,
either (i, j) or (j, i).

We consider the minimization problem:

min
x

f(x) =
1
2

∑
(i,j)∈L

(xi − xj − δij)2. (1)

1.1 Linear Algebra

This is a linear least squares problem, as it has the form

min
x

1
2
(Ax− b)T (Ax− b).

Which can be rearranged to yield

min
x

(
1
2
xT AT Ax− (AT b)T x +

1
2
bT b). (2)

Equation (2) is a quadratic with a symmetric positive semi-definite Hessian1,
therefore minimizing it is equivalent to satisfying the linear equation:

AT Ax = AT b.

1AT A is always a symmetric positive semi-definite matrix, regardless of the form of A.

1

For the N=4 case, with K containing all pairs of indices, the values of these
matrices are:

A =

1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1

N×(N

2)

, b =

δ12

δ13

δ14

δ23

δ24

δ34

(N

2)×1

,

AT =

1 1 1 0 0 0
−1 0 0 1 1 0
0 −1 0 −1 0 1
0 0 −1 0 −1 −1

(N

2)×N

, AT b =

δ12 + δ13 + δ14

−δ12 + δ23 + δ24

−δ13 − δ23 + δ34

−δ14 − δ12 − δ34

N×1

.

Given that, we begin to suspect

[AT b]k =
∑

δkj −
∑

δik.

1.2 Calculus

Doing out some math,
∂f

∂xk
=

∑
(k,j)∈L

(xk − xj − δkj)−
∑

(i,k)∈L

(xi − xk − δik).

∂2f

∂xk∂xk
=

∑
{k,i}∈K

1.

∂2f

∂xk∂xl
=

{
−1 if {k, l} ∈ K
0 otherwise

.

Taking the derivatives of (2) reveals that

∇2f = AT A, ∇f = AT Ax−AT b.

And thus
AT b = (∇2f)x−∇f.

So

[AT b]k =
[
(∇2f)x

]
k

−
[
∇f

]
k

=
(∑
{k,l}∈K

xk −
∑

{k,l}∈K

xl

)
−

(∑
(k,j)∈L

(xk − xj − δkj)−
∑

(i,k)∈L

(xi − xk − δik)
)

=
∑

(k,j)∈L

δkj −
∑

(i,k)∈L

δik. (3)

(Just as we suspected.)

2

1.3 Special Cases

1.3.1 Complete

For the complete case, the Hessian has a very regular form:

∇2f =

(N − 1) . . . −1
...

. . .
...

−1 . . . (N − 1)

 .

Defining
dk = [AT b]k =

∑
δkj −

∑
δik.

We see that AT Ax = AT b expands to

(N − 1)xk −
∑
l 6=k

xl = dk.

For any two indices, this implies

(N − 1)xk −
(∑

l 6=k,j

xl

)
− xj = dk.

(N − 1)xj −
(∑

l 6=k,j

xl

)
− xk = dj .

Thus

dk − dj =
(
(N − 1)xk − xj

)
−

(
(N − 1)xj − xk

)
,

dk − dj = Nxk −Nxj ,

xk =
dk − dj + Nxj

N
. (4)

This is a useful equation, because we know that (1) has infinitely many
solutions. In fact, for any xk = c, there is exactly one solution to (1), which
may be obtained by taking any known minimal vector x′, and shifting all of its
elements by xk − x′k. Thus, for the special case where K is complete, we can
solve the system in O(N) by setting x0 = 0, solving for all other xk using (4),
and then shifting the elements as described in the paper [1] (see also Appendix
A).

1.3.2 Fast Approximate Solve for the Complete Case

For the complete case, we can borrow an idea from [2], and use a quantized
version of the image to accelerate the calculation of dk, dramatically speeding
up the solve at the cost of a little accuracy, and turning the algorithmic bound
of the entire process into whatever the cost of our quantization algorithm is.

3

More exactly, if c is one of the quantized colors, C is the set of all indices of
the source image that are assigned to that color, and si is the color of the ith

pixel of the image, then: ∑
i∈C

δ(sk, si) ≈ |C|δ(sk, c).

I don’t know enough about either statistics or quantization procedures to be
able to say anything specific about the quality of that approximation, but it
seems like it could be quite good.

If Q is the set of indices of the quantized colors, then we can use the above
to approximate d.

dk =
∑

i

δ(sk, si),

and so
dk ≈

∑
p∈Q

|Cp|δ(sk, cp).

Because finding d was the dominant cost of solving the complete case, and
it now appears that a good approximation to d can be found in O(N |Q|), the
bound on the cost of finding this approximate solution will reduce to the cost
of the quantization algorithm, which is presumably O(N) or greater.

A similar acceleration could be arranged for the incomplete case, but, be-
cause that solve is actually at least as expensive as the dk calculation, it prob-
ably wouldn’t gain you anything. More attractive for the incomplete case is a
multiresolution solver, which could be implemented independently of any quan-
tization.

2 Code

Calculating the δij ’s tends to be one of the largest computational costs. Luckily,
because of (3), there is no need to keep all the δij ’s in memory, we can just build
up the d vector incrementally. (Which is a very good thing, because when N is
the number of pixels in an image,

(
N
2

)
is uncomfortably large.)

2.1 Complete K
for (i =0; i<N; i++) d [i] = 0 ;

for (i =0; i<N; i++) for (j=i +1; j<N; j++) {

f loat de l t a = c a l c d e l t a (i , j) ;
d [i]+=de l t a ;
d [j]−=de l t a ;

}

Calculate the d vector for a given image, using a complete K

4

// s o l v e by s u b s t i t u t i o n .
//assume something s e n s i b l e i s in data [0]
// (0 or the source luminance both work f i n e) .
for (i =1; i<N; i++) {

data [i] = d [i]−d [i −1]+N∗data [i −1] ;
data [i] /= (f loat)N;

}

Solve the complete case, given d.

A faster approximate solve using quantized data looks about the same as
the above; the only difference is that the d vector calculation iterates through
quantized bins, instead of through all pixels.

2.2 Sparse K
In [1], we used conjugate gradient iterations to perform a general solve, but the
cost of solving the sparse case tends to be small, and so we can get away with
an unsophisticated solver. Restating some choice equations from Section 1:

AT Ax = AT b.∑
{k,l}∈K

xk −
∑

{k,l}∈K

xl = dk.

Thus we can define an iteration:

xn+1
k =

∑
{k,l}∈K

xn
l + dk∑

{k,l}∈K
1

.

(Which can be trivially rearranged to yield your favorite variant of a Gauss-
Seidel or Jacobi iteration; alternatively, you can work a little harder, and do
something similar to end up with a preconditioned conjugate gradient iteration.)

for (i =0; i<N; i++) d [i] = 0 ;

for (x=0;x<w; x++) for (y=0;y<h ; y++) {
f loat sum=0;
int count=0;

i=x+y∗w;

for (xx=x−r ; xx<=x+r ; xx++) {
i f (xx<0 | | xx>=w) continue ;
for (yy=y−r ; yy<=y+r ; yy++) {

i f (yy>=h | | yy<0) continue ;

5

int j=xx+yy∗w;
f loat de l t a = c a l c d e l t a (i , j) ;
d [i]+=de l t a ;
d [j]−=de l t a ;

}
}

}

Calculate d for the sparse case.

for (k=0;k< i t e r s ; k++) {

// perform a Gauss−Se i d e l r e l a x a t i o n .
for (x=0;x<w; x++) for (y=0;y<h ; y++) {

f loat sum=0;
int count=0;

for (xx=x−r ; xx<=x+r ; xx++) {
i f (xx<0 | | xx>=w) continue ;
for (yy=y−r ; yy<=y+r ; yy++) {

i f (yy>=h | | yy<0) continue ;
sum+=data [xx+yy∗w] ;
count++;

}
}

data [x+y∗w]=(d [x+w∗y] + sum) / (f loat) count ;
}

}

Solve the sparse case, given d.

References

[1] Amy A. Gooch, Sven C. Olsen, Jack Tumblin, and Bruce Gooch. Color2gray:
Salience-preserving color removal. To Appear in SIGGRAPH 2005.

[2] K. Rasche, R. Geist, and J. Westall. Re-coloring images for gamuts of lower
dimension. To appear in Eurographics 2005.

A Post Solve

We shift the image found by the solve to be as close to the source luminances
as possible. Formally, if x are the gray values returned by the solver, and y are

6

the source luminances, we want

min
s

f(s) = ||x− y − s||

where s is some scalar, and s =

s
s
...

. This minimization is equivalent to

min
s

f(s) =
∑

(xi − yi − s)2

which is, once again, a linear least squares problem. This time,

A =

−1
−1
...

 , b =

y1 − x1

y2 − x2

...

 , AT A = N, AT b =
∑

(xi − yi).

So the solution is simply to shift by the average difference,

s =
∑

(xi − yi)
N

.

or, in code:

f loat e r r o r =0;
for (i =0; i<N; i++)

e r r o r+=data [i]−(source . data) [i] . l ;
e r r o r/=N;
for (i =0; i<N; i++) data [i]=data [i]− e r r o r ;

7

