
While working on the XDoG Compendium paper we ran into a fairly strong negative
result. Essentially, while most DoGs aren’t actually very good approximations to an
LoG, the space of sharpening filters that can be created using a DoG with k ≤ 1.6 is
more or less identical to the space of LoG sharpeners. In other words, while changing
the k value certainly will change the output of our filters, in almost all cases, the new
output is one that could have been achieved using the original k along with a different
set of p and σ values.

We considered adding an appendix on the significance of k values to the paper, but
ultimately decided against it. What follows is the draft writeup.

1 Choice of k

In their seminal paper on the theory of Edge Detection, Marr and Hildreth noted that
as k approaches 1, the difference of Gaussians approaches the Laplacian of Guassians
(LoG) up to a factor of scale. More exactly, given

gσ(x) :=
1

2πσ2 e
||x||2

2σ2 ,

dσ(x, k) := gσ(x)− gσ(kx).

We can show that,

lim
k→1

k

1− k
dσ(x, k) = σ2∇2 gσ(x).

Unfortunately, the scale factor k
1−k

approaches negative infinity as k approaches 1. For
this reason the DoG responses at more accurate k values require increasingly large scal-
ings, resulting in a tradeoff between the accuracy of the approximation and the preci-
sion that can be achieved. Marr and Hildreth suggested k = 1.6 as a precision/accuracy
tradeoff likely to be appropriate in most electrical engineering applications.

However, it is not clear that k = 1.6 is necessarily the best choice when the DoG
is being used in the context of an edge stylization filter. Might a smaller k, one that
provides a more accurate LoG approximation, produce superior results? Might using
an exact LoG calculation, rather than an approximation, lead to a higher quality filter?

The answer to both these questions is a strong “no”. To see why, first recall that the
XDoG is defined in terms of a sharpening filter, which may be written as follows,

s(x,σ, p, k) := gσ(x) + pdσ(x, k). (1)

We can define a similar sharpening filter using the scale invariant Laplacian,

s′(x,σ, p) := gσ(x)− pσ2∇2 gσ(x). (2)

Changing the value of k used in Eq. (1) from k to k′ is only useful if it somehow
improves the range of possible sharpening filters. More formally, it is only useful if
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Figure 1: The left graph shows the frequency response of the Laplacian sharpening
filter, S′(ω, 1.2, 7.5), in blue. The optimally approximating DoG sharpener of the form
S(ω, 1.2, p, 1.6) occurs when p ≈ 17.24. It is shown in purple. Clearly, there are
significant differences between the two filters. These differences exist because the DoG
calculated with k = 1.6 can provide only a crude approximation for the Laplacian when
the two filters are applied at identical scales, i.e., when σ′ = σ. However, if we allow
the DoG to be applied at a different scale than the LoG, then it becomes possible to
find a nearly exact match. Such a match is shown by the purple curve in the right hand
graph, which plots S(ω, .96,15.86, 1.6).

there are values p′ and σ′ for which s(x,σ′, p′, k′) produces interesting edge images,
and for which it is impossible to find values p and σ such that s(x,σ, p, k) implies a
similar sharpening filter.

Analyzing the degree to which changing k may influence the range of edge images
thus requires a means of measuring the similarity between two filters. There are many
ways this might be done. We choose a simple Fourier space metric.

We start by comparing DoG sharpening to Laplacian sharpening. The filters in
equations (1) and (2) are rotationally symmetric, and thus they can be reduced to one
dimensional functions by the substitution ||x||2 → r2. Transforming those functions to
Fourier space yields,

S(ω,σ, p, k) = e−2π2σ2ω2
(1+ p)− e−2π2σ2k2ω2

,

S′(ω,σ, p) = e−2π2σ2ω2
(1+ 4pπ2ω2).

We now define the error in any approximation of the Laplacian sharpening filter
s′(x,σ′, p′) by a DoG sharpening filter s(x,σ, p, k) as the squared sum of differences
between their responses to frequencies above the Nyquist rate,

E(σ, p, k,σ′, p′) :=

∫
1
2

− 1
2

�

S(ω,σ, p, k)− S′(ω,σ′, p′)
�2 dω.

Let us assume that we will use σ values large enough that our filters will have little
response to frequencies beneath the Nyquist rate, so σ′ > 1. Numerical optimization

2



Figure 2: Result images generated using a sharpener based on the LoG (left) compared
with that generated via a DoG (right). The parameters for each filter are those given
for the right hand graphs in Figure 1. Note that there are no noticeable differences
between the two results.

can be used to find values σ and p such that the approximation error E(σ, p, k,σ′, p′)
is minimized.

When both p and σ are allowed to vary as needed to provide an optimal match,
experimentation reveals that for all p′ and σ′ > 1, any changes introduced by switching
from a LoG to a DoG can be compensated for by making adjustments to both p and σ.
Figure 1 provides some example matches.

Testing on real images shows that even in a case selected to maximize the error in
the optimal DoG match, there are no noticeable differences between the edge image
implied by an LoG sharpener and that of its optimally approximating DoG sharpener.
Figure 2 compares two filtered images resulting from a relatively high error case.

Thus, there is no advantage to changing from the k=1.6 DoG to an exact LoG, as
the space of possible edge effects remains the same. Reducing k below 1.6 results in
sharpening filters that more accurately approximate the space of Laplacian sharpening
filters, but, as that filter space is already effectively captured given k = 1.6, such a
change can have no appreciable effect on the range of edge images that may be created
using the XDoG filter.
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