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Abstract 
Computer game character design and robotics share many 
of the same goals and computational constraints. Both 
attempt to create intelligent artifacts that respond 
realistically to their environments, in real time, using 
limited computation resources. Unfortunately, none of the 
current AI architectures is entirely satisfactory for either 
field. We discuss some of the issues in believability and 
computational complexity that are common to both fields, 
and the types of architectures that have been used in the 
robotics world to cope with these problems. Then we 
present a new class of architectures, called role passing 
architectures which combine the ability to perform high 
level inference with real-time performance. 

Introduction 

 As both players and developers will readily admit, game 
agents do not behave as realistically as we would want. 
Even though first-person action games have greatly 
advanced since the times of Wolfenstein 3D, the precursor 
of the genre, game agents have not improved nearly as 
much, especially in emulating real human and animal 
behavior. What we would like to see instead are creatures 
that do not just perform their roles, but which are more 
believable in the sense of responding to situations in a way 
that humans and animals might respond. We want agents 
that:  

• Hide behind corners to avoid being shot  
• Look for good ambush sites  
• Run away from more powerful enemies  
• Are concerned about their own survival  

 In short, we would like game agents that act more like 
us.  
 In this paper we would like to discuss how 
advancements in robot programming could help with 
developing believable agents, and we present a robot 
architecture that can help game developers with agent 
programming. 

What’s hard about believability? 

The problem with many game agents is that they’re 
simultaneously too smart and too stupid. On one hand, 

they have very limited reasoning capabilities. On the other 
hand, the reasoning capabilities they do have may take 
advantage of super-human sensory or motor skills.  

None of this is surprising given the practicalities of 
game design. No one is going to use an exponential-time 
planner to select actions when the system has to run in 
real-time and 95% of the CPU is reserved for rendering. 
Also, AI infrastructure and real-time game infrastructure 
don’t mix very well. 

Modeling human limitations 

Both humans and, to varying degrees, other animals, 
have sophisticated cognitive abilities. However, those 
abilities are severely limited both in speed and attention. 
While people are very good at planning long-range 
strategies, they can’t do it while simultaneously fighting 
off a horde of angry monsters. Human perception is very 
limited. We can’t see behind ourselves. We can’t see 
around corners. We’re much better at detecting moving 
objects than static objects. Perceptual attention is also 
severely limited. When fighting one enemy, we are much 
less likely to even be aware of another enemy approaching. 
Finally, human short-term memory is extremely limited. 
When people are distracted from one task, they often 
forget their previous tasks completely. 

Real military doctrine is based in large part on exactly 
these kinds of limitations. On a tactical level, soldiers do 
everything possible to avoid giving away their positions. 
On a strategic level, misdirection of the enemy is central to 
maneuver warfare. 

Consequently, modeling of attentional limitations is 
crucial to believability in real-time simulations of time-
limited behavior, such as combat. 

How robotics can help 

Unfortunately, today’s robots don’t share the problem of 
being too smart. They’re just too stupid. However, the 
reasons for their limitations are essentially the same as the 
issues with believability. 

Just as agents in computer games, robots need to be 
responsive to changes in the external environment. That 



means they need to be constantly resensing their 
environments and reevaluating their course of action. 
However, there are serious limitations on the degree to 
which this is possible. Just as rendering can eat up 
arbitrary amounts of CPU time in games, vision can eat 
arbitrary amount of CPU time on robots. The high cost of 
sensory processing means that robots have to be extremely 
selective about what they sense and how often they update 
it. It also means that in practice relatively little CPU is left 
over for decision making.  

Because of that, robot architectures may be particularly 
suitable for game AI, as they operate within both the 
computational constraints typical of a game engine, and 
perceptual constraints imposed by the physical world that 
we want to emulate. 

A quick overview of robot architectures 
Historically, robot architecture design has been 

approached from two angles – behavior-based system and 
symbolic systems. 

Behavior-based architectures 
Most autonomous robots use some variety of behavior-

based architecture, at least for sensory-motor control. 
Behavior-based architectures are also being used 
increasingly in computer games, such as Crash Bandicoot 
and Jedi Knight. 

Behavior-based systems consist of a set of simple, task-
specific sensory and motor processes (i.e. behaviors) 
running in parallel, usually with some mechanism to 
arbitrate between them. The basic sensory and motor 
components are typically kept quite simple, so as to help 
guarantee real-time performance. For example, the 
subsumption architecture (Brooks 1986) limits the 
programmer to finite-state machines communicating scalar 
values over fixed communication channels. 

Behavior-based systems offer a number of compelling 
advantages:  

• They’re fast and cheap  
• They give hard real time guarantees  
• They interface easily to most sensors and 

effectors  
• They require little or no infrastructure to support 

them, so they’re convenient to program on a bare 
machine with no O.S.  

• They’re easy for new programmers to understand  
However, behavior-based systems also have serious 

limitations. For the most part, the only control structures 
they support are parallelism and infinite looping. More 
importantly, they only support very simple representations. 
Typical behavior-based architectures only allow users to 
pass simple scalar values (Brooks 1986, Maes 1991) or 

fixed-size vectors (Arkin 1987) between behaviors. In 
effect, this limits behavior-based systems to propositional 
logic, and makes it impossible for them to represent 
predicate logic (logic with variables) and quantified 
inference. 

These limitations can seriously hinder the programmer. 
Because there’s no good way of expressing parameters, 
Maes’ solution to the blocks world (1991) involves having 
separate behaviors for every possible block motion. 
Behavior-based dialog system by Hasegawa et al. (1997) 
used separate behaviors for every possible utterance by 
every possible speaker. While this kind of behavior 
duplication is fine for small problems, it becomes 
prohibitive for large problems.  

Symbolic architectures 
Symbolic AI architectures, on the other hand, are 

typically Turing-complete. They allow full parameter 
passing, general control structures, including recursion, 
and more or less unrestricted representations, including 
manipulation of arbitrary dynamic tree structures. This 
flexibility allows the programmer to implement very 
general reasoning operations, including generative 
planning from first principles. 

Of course, this flexibility comes at the cost of being 
unable to make real-time guarantees, or even guarantees of 
termination. First-order logic inference is equivalent to 
simulating a Turing machine, so depending on the specific 
problem, reasoning could take arbitrary time and space, or 
fail to terminate entirely. Furthermore, drawing inferences 
is generally an exponential-time operation. 

A more down to Earth problem is that symbolic AI 
systems typically assume all information to be manipulated 
by the system is available in a centralized database. This 
means that the sensory systems have to continually keep 
the database up to date, often without any kind of back-
channel form the reasoner to tell them what information is 
relevant to system’s current task. Worse, in very dynamic 
environments such as combat games, the reasoner must 
continually re-update any inferences it has made based on 
the changing sensory data.  

Many of the computational problems of inference come 
from the presence of variables in the rules. If patterns in 
the rules can contain variables, then those patterns must be 
matched using some form of tree- or graph-matching 
against the entries in the database. In the case of multiple 
matches, the rule may need to be fired on all of them. 
Although a number of excellent techniques exist for 
optimizing the matching processes, chained rule 
application is still exponential in the general case. If each 
rule can match 4 different entries in the database, then a 5 
step sequence has 1024 possible matches.  



Implementing logical inference using compact 
bit-vectors 

Inference can, of course, be fast in special cases. One of 
the principal problems in knowledge representation is 
finding good special cases that are both fast and useful. We 
have developed a family of inference engines for real-time 
systems that allow us to compile all inference operations 
into straight-line code consisting mostly of bit-mask 
instructions. The principle limitations of the technique are 
that:  

• It only supports predicates of one argument. That 
is, it supports predicates like near(X), but not 
distance(X,100).  

• It doesn’t support term expressions. This means it 
allows arguments to predicates to be object 
names, as in near(fido) or variable names, as in 
near(X), but not complex expressions, as in 
near(owner(fido)).  

• It only supports a fixed, small set of object names 
chosen at compile time. Our current 
implementation allows 32 object names.  

The last of these is mitigated by allowing the object 
names to be indexical, meaning that the system is allowed 
to use the names to mean different objects in different 
situations. This effectively means that you never use 
specific names like "fido", you use generic role names like 
TARGET, DESTINATION, THREAT, etc. From a 
programmer’s standpoint, these roles are effectively just 
another variable binding mechanism. However, they are 
implemented very differently – roles are bound by the 
tracking components of the perceptual system and not by 
the inference system. 

By limiting the set of roles in advance we can represent 
the complete extension of a unary predicate in a single 
memory word, one bit per role. For example: 
 

 Agent Patient Source Destination 
in_range(x) N Y N Y 
aiming_at(x) N Y N N 
can_shoot(x) N Y N N 

 
In robotics, the major appeal of this representation is 

that it is easy for sensory-motor systems to generate and 
update in real time. However, it’s simplicity and speed is 
also convenient for computer games.  

Suppose we want the creature to have a set of simulated 
sensors that report when it is near an object, when it is 
within firing range, when it is facing the object, etc. Each 
of these sensors would report its data as a bit-vector 
showing which roles were in range (or: nearby, facing, …). 
At run time, the game would keep a table mapping roles to 
the internal game objects to which they are bound. The 

game can then compute simulated sensor readings using 
the following C code:  
 
 
typedef struct {
/* which roles the predicate

is true of */
unsigned long true;
/* which roles for which we know

whether it’s true */
unsigned long know;

} predicate;

predicate sensor() {
/* don’t know anything yet */
predicate reading = { 0, 0 };

for (int role=0;
role<total_roles; role++)

if (role_binding[role] &&
can_see(role_binding[role]) {

/* we can sense the predicate
for this role */

reading.know | = 1<<role;
if(sensor_internal_implementation(

role_binding[role]))
reading.true |= 1<<role;

}

return reading;
}
 
where role_binding[] is a table mapping the ith role to its 
internal game object, can_see() is a function telling 
whether a given game object is in the agent’s field of view, 
and sensor_internal_implementation() performs the actual 
sensing operation on game objects. The procedure allows 
the game to efficiently determine the set of objects for 
which the agent knows the truth of the predicate and also 
its truth for those objects for which it’s known. 

Having implemented primitive sensing, we can now 
implement forward-chaining, universally quantified 
inference rules, such as: 

for all x, P(x) if Q(x) and R(x) 
using simple bit-mask operations. For example, in C we 
would translate the rule: 

for all x, can_shoot(x) if in_range(x) and 
aiming_at(x) 

as: 
can_shoot.true = in_range.true &
aiming_at.true;

which computes the inference rule for all values of x 
simultaneously using only one machine instruction plus 



any loads and stores that may be necessary. It can also 
compute the know bits using: 

can_shoot.know = in_range.know &
aiming_at.know;

although in this particular case the agent presumably 
always knows whether it is aiming at a given object, so a 
good compiler will optimize this to: 

can_shoot.know = in_range.know;

It is straightforward to extend the representation to handle 
reasoning about goals and knowledge goals. See (Horswill 
1998) for details. 

Role passing 

This technique is the basis of a class of architectures, 
called role passing architectures, which we believe 
combine (much of) the utility of symbolic reasoning 
architectures with the performance of behavior-based 
systems. 

A role-passing system represents the agent’s task and 
environment in terms of a set of situations and bindings of 
external objects to roles. Situations classify the current task 
and environment. For example, the agent might have a 
search situation, which would mean the agent was engaged 
in searching, and a intruder containment situation, which 
would mean the agent was attempting to prevent an 
intruder from moving outside some specified perimeter. 
Either, both, or none of those situations might be active at 
any given time. When the search situation is active, the 
agent will use the inference rules associated with it to solve 
the search task, and similarly with intruder containment. If 
both are active, it will run both rules and try to achieve 
both goals. The specifics of what intruder is being kept 
within what perimeter, and of what object is being 
searched for, are specified by role bindings. 

A role passing system is composed of a set of inference 
rules, expressed in a simple forward-chaining rule 
language, and a set of sensory-motor systems that track 
designated objects, follow them, grab them, shoot at them, 
etc. The inference system tells the sensory-motor systems 
what to follow or grab by passing it a bit-vector specifying 
the role of the object to be followed or grabbed. On each 
cycle of its control loop, the system resenses all the 
properties of all the objects bound to roles, reruns all of its 
inference rules, and feeds the output of the inference rules 
back to the sensory-motor systems to retarget them. By 
rederiving inferences on every cycle, the system can 
continually adjust its activity as the environment changes. 
This is important to avoid the kinds of non-fluencies that 
are common in plan-based systems where a set of firing 
conditions are checked at the time the plan is initiated, but 
are not rechecked during the course of the plan. A classic 

example in robotics is a robot trying to deliver and package 
to a destination. If the package falls out of the robot's 
gripper enroute, many robot systems won't notice and will 
continue the delivery operation without reacquiring the 
package. Parallel examples are easy to construct in 
computer game design, such as monsters that continue to 
chase other monsters, even when the latter slip into pits of 
lava. 

Using role passing techniques, we estimate that current 
mid-to-high end PCs could easily run a rule base of 1000 
inference rules at 100 Hz (100 complete revisions of the 
system’s inferences per second) using less than 1% of the 
CPU. However, this assumes that the perceptual systems 
(in the case of robots) or the graphics engine (in the case of 
games) could keep up with that speed, which is probably 
unrealistic. 

Conclusion 
Computer games and robotics share many of the same 

goals and computational constraints. We believe that role 
passing provides many of the benefits of symbolic 
reasoning systems, such as:  

• Limited parameter passing, both to predicates and 
to behaviors  

• Explicit subgoal decomposition  
• Universally quantified inference, and  
• Explicit reasoning about the agent’s state of 

knowledge  
while simultaneously the simplicity and real-time 
performance of behavior-based systems. On robot systems, 
the performance of role passing systems comes from 
taking into account the inherent limitations of the sensory-
motor and short-term memory systems. Since these can 
only track a few objects simultaneously anyhow, we can 
simplify the inference system by having it operate directly 
upon the set of objects in short term memory, performing 
inferences on all of them, in parallel. This simplifies 
interfacing and also allows the system to stream data from 
the sensory systems, through the inference system, to the 
motor systems. 

We are currently working implementing role passing 
architectures in Unreal. We are writing behavior-based 
sensory-motor controllers for the game and are porting our 
role passing compiler to support UnrealScript. Our intent is 
to use role passing to implement intelligent characters that:  

• Find environmental features for ambush, hiding 
from enemies, and so on,  

• Show animal-like hunting behavior (e.g. stalking 
prey), and  

• Adopt interesting group strategies. 
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