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Abstract 

 

Hierarchical Parallel Markov Models for Interactive Social Agents 

Robert Zubek 

In this report I present hierarchical parallel Markov models for the creation of 

interactive social agents for video games and entertainment.  

The approach extends existing, popular character technologies for social, 

communicative interaction. First, adding the knowledge of temporal interaction 

structure enables natural language interaction on a time scale much longer than 

current chatterbot technologies. Second, adding support for hierarchical interaction 

decomposition, where an interaction is represented as a collection of smaller, simpler 

elements, simplifies the authoring of complex engagement. Third, adding support for 

the concurrent engagement of these elements enables engagement in interleaved, 

naturalistic communication. 

The resulting decomposition supports redundancy of representation, graceful 

performance degradation through the simultaneous engagement of behaviors on 

different levels of abstraction, and the stochastic approximation mechanism increases 

robustness in the face of noise and ambiguity.  
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In this report, I present the details of hierarchical parallel Markov models, I examine 

two entertainment agents that use this technique, and explain the implementational 

details of how such an approach can be used in the development of future systems. 
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Chapter 1. Introduction. 

 

 

 

 

 

 

Wierzcie mi: nic bardziej pożądanego,  

a nic trudniejszego na ziemi  

jak prawdziwa rozmowa.  

 

Believe me: there is nothing more desired, 

and nothing more difficult on earth 

than true conversation. 

 

— Adam Mickiewicz 
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1.1. Motivation and Overview 

Game characters connect the player to the game world. They present stories, introduce 

plot elements, compete with players, amuse them, assist them, and work to immerse 

them in the fiction of the game. Like actors in theatre, they are presenters of the 

coherent reality of an imaginary world. Their appeal depends on the believability of 

their performance—on the successful presentation of themselves as living inhabitants 

of the game world, reacting sensibly and intelligently to what happens around them.  

Imagine characters in future games—how might they behave? They should certainly be 

social, conversational, and fully interactive, they should be able to chat with the player 

about what goes on in the game world, and engage in interactions that players enjoy 

with each other. They should behave like believable citizens of the game world, playing 

the roles of player’s snubbed enemies and lost loves, of frustrated friends and cautious 

customers, of enthusiastic street vendors and impatient strangers. The desire for such 

interactive characters, making the game world a living, breathing space, is at the core 

of this dissertation.  

This report presents an approach to adding more knowledge to existing techniques for 

social interaction with the player. Games are filled with interaction—players chat with 

each other, talk about events in the game, exchange information about the world, 
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gossip about others, coordinate trade, and so on. Characters would do well to tap into 

these types of interaction.  

However, the computer entertainment domain imposes difficult constraints on the 

techniques used to achieve such interaction. Techniques for interaction must support 

believable behavior within the game context—that is to say, they must make the 

character appear like a reasonable resident of the game world, supporting the illusion 

that is it more than just an automaton. They must also support easy behavior 

authoring—such that very specific behaviors and aesthetic effects can be developed 

reliably for a wide range of possible player activity, and on a shortened time scale 

characteristic of commercial product development. Finally, the techniques must be 

efficient—such that they can run on a fraction of processing cycles available on 

commodity hardware.  

Finite-state techniques are, to this day, the most common class of approaches for 

interaction modeling. Game developers remain loyal to finite-state techniques, because 

they simplify authoring and encourage efficient implementation—their representation 

of behavior is straightforward, and therefore accessible and easy to implement.  

In particular, popular techniques for social interaction and communication tend to fall 

into two general categories: finite-state “dialog trees”, which represent some of the 

structure of the interaction, but disallow free-form input, and “chatterbots”, which 
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support natural language text, but have very little knowledge of the long-term 

structure of the interaction.  

Unfortunately, it can be quite difficult to represent efficiently the extended temporal 

structure of social interaction. First, player behavior can be noisy, ambiguous, full of 

error, made up of several threads of conversation being interleaved at the same time—

and the finite-state system must be able to deal with the errors, the difficulties, and the 

concurrency as a fact of life. Second, the interaction can be quite complex, and the 

finite-state representation must support such complexity without devolving into an 

authoring nightmare.  

This dissertation is about extending existing approaches to support these kinds of 

phenomena. First, adding the knowledge of temporal interaction structure, to enable 

natural language interaction on a time scale much longer than current chatterbot 

technologies. Second, adding support for hierarchical interaction decomposition, such 

that the interaction could be represented as a collection of smaller, simpler elements, 

combined to reproduce the complex engagement. Third, adding support for the 

concurrent engagement of these elements, to support the interleaved and unordered 

nature of naturalistic human communication. 

Interaction structure is approached by recasting interaction as a stochastic process, 

and using stochastic models such as hidden Markov models (HMMs) to track the 
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development of this process. Stochastic models perform very robustly in the face of 

ambiguous and noisy inputs. 

The overall interaction can be further decomposed into simpler elements, 

corresponding to individual sub-structures of the interaction, modeled as multiple 

separate HMMs. By running all the HMMs in parallel, the system is able to support a 

number of concurrent threads of conversation, whose productions are allowed to 

interleave in arbitrary ways. 

Finally, in order to replicate the ordered performance of the complex interaction, the 

dependencies between the elements need to be made explicit. These dependencies can 

be implemented very efficiently, via a reduction to state coupling and then evidence 

estimation. 

The resulting hierarchical parallel HMMs allow for robust engagement in composite, 

interleaved interactions. The advantages of the resulting technique are multiple. It 

supports decomposition of interaction into smaller elements, which simplifies 

authoring. It supports the simultaneous engagement of elements on different levels of 

abstraction, which enables redundancy, fallback, and graceful performance 

degradation. It is stochastic, allowing for greater robustness in the face of noise and 

ambiguity. Finally, the representation remains finite-state, retaining structural benefits 

so important in artifact production. 
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In the remainder of this chapter, I examine the constraints of game development that 

make finite-state techniques appealing. Subsequently, I describe the hierarchy and 

parallelism requirements in detail, and additional details of the hierarchical parallel 

approach.  

1.2. Domain Constraints 

Entertainment production presents a daunting set of constraints, imposed both by the 

way games are used by the players, and by the game development process itself. These 

constraints are slightly askew from what is commonly expected in general artificial 

intelligence, or even general computer science, as the end result is an entertainment 

title, whose value is in the aesthetic experience it produces.  

The constraints can be seen as falling into three broad classes. The development 

process requires that interactive characters be easy to author and their behavior easy 

to debug. At the same time, interactive characters ought to be more than simple 

automata, but rather believable performers of their given roles—they must act 

believably, just like cartoon characters behave believably in spite of being recognizably 

unreal. Finally, the resulting techniques have to be computationally inexpensive, 

functioning on a fraction of an impoverished CPU.  



7 

 

1.2.1. AUTHORING 

Game development places great emphasis on the aesthetics of the experience. 

However, unlike in other forms of entertainment, the game designer has astonishingly 

little control over the final performance: games allow the player to influence the 

experience, and the designer has to give the player enough freedom to be entertained, 

while at the same time preventing any behavior that could lead to unpleasant or 

undesirable results.  

Developers require tight authorial control over the gameplay, and routinely have to go 

back and forth between desirable experience and an implementation that will produce 

it. Game characters have to be ‘debugged’ not merely in terms of their computational 

correctness, but primarily with respect to the effect their behavior has on the user. For 

example, after engaging the agent for a while, the developer might say: this agent is 

coming off too strongly; I need to make him appear more nonchalant, and more 

trustworthy. So the developer will need to open the hood, and add or debug some 

particular behaviors or turns of phrase that will convey the right sentiment, then test 

the behavior again, and continue debugging until the right effect is achieved. 

Techniques used in game development must support this: make it easy to produce a 

computational representation that will have desirable runtime behavior, and allowing 

one to predict the runtime behavior given the representation at hand. 
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We can analyze this problem of authoring more formally using the 

Mechanics/Dynamics/Aesthetics (MDA) model of game design (LeBlanc 2003, 2004, 

Hunicke, LeBlanc, and Zubek, 2004). We can consider game design and development as 

the simultaneous engagement of three different levels of abstraction. On the lowest 

level, a game is implemented as a set of mechanics: rules of the game and computer code 

that embodies them. When interacting with autonomous players, and with each other, 

the mechanics give rise to system dynamics: the runtime behavior of the pieces that 

make up the system. Finally, the dynamics engaged over time lead to particular 

aesthetics of the player experience: some interesting and enjoyable impressions 

resulting from interaction with the game’s behavior.  

The process of game design usually involves back-solving from top to bottom: starting 

from some notion of the desirable aesthetic experience, then designing a dynamic 

system that results in these aesthetics, and then creating a set of mechanics that will 

produce this dynamic behavior. Unsurprisingly, design decisions propagate across 

layers—as the aesthetic design evolves, it necessitates modifications of the behavior, 

which requires changes to the mechanics, which usually changes some other behaviors 

as a side effect, which reverberates back into the aesthetics, and so on. The game’s 

designer must find a good solution to this highly constrained system of mutually 

dependent effects. However, the designer cannot shape the dynamics or aesthetics 

directly—only the mechanics are available for manipulation. 
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In development practice, the problem is often made tractable by constraining the 

system. Developers adopt constrained techniques that make the mechanic-dynamic 

link easy to design and debug, which lets them concentrate on resolving just the 

dynamic-aesthetic interactions.  

Finite-state machines and menu trees are popular because of their relatively 

transparent mechanic-dynamic mapping, because their inner workings are intuitive 

and easy to map to runtime behavior. As Woodcock (1998b) puts it, finite-state systems 

are “generally predictable and hence easy to test”, which makes them highly attractive. 

1.2.2. BELIEVABILITY 

The second requirement is believability: characters must behave like reasonable living 

creatures, acting attentively and intelligently given the fiction of the virtual world. The 

corollary is that characters do not have to be realistic, but their behavior must be 

consistent with the fiction. 

This is a truism of game production, and the practice of design routinely refers to it. As 

one designer puts it: 

Another potential AI programming pitfall is creating an AI which, though it 

actually performs like a “real” person, ends up detracting from the gameplay as 

a result. In terms of the stories they tell and the settings they employ, games are 
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often contrivances, strictly unreal situations that are specifically set up because 

they are interesting, not because they are authentic, and the AI must support 

this. [ . . . ] If the AI is really very sophisticated but, as a result, the game is 

unplayable or extremely frustrating, a player is not going to remark on how 

smart the AI is. (Rouse 2001: 171-2) 

Concern with believability entered artificial intelligence via animation (Thomas and 

Johnston 1981, Bates, Loyall, and Reilly 1991), from the description of techniques used 

to convey emotion, intention, and reason in animated characters. It can be described as 

selective non-realism: to make a character appear believable, one must not try to make 

the behavior realistic, but rather exaggerate certain important aspects, while ignoring 

others, to let the viewer’s imagination fill in the rest. This is related to the uncanny 

valley principle of anthropomorphic design (Mori 1982), which suggests that iconic or 

caricatured behavior is much more appealing than imperfect realism. 

The approach gained influence in AI largely due to the work of the Oz group, which 

introduced the idea of believable agents as a basis for a number of systems (for an 

excellent overview see Mateas 1997), and similar concerns in the animate agents 

community. The term is usually used to describe a stance, rather than a precise set of 

requirements, although in one of the Oz publications, Loyall does attempt to present a 

number of desirable elements of believability, from very specific such as “concurrent 

pursuit of goals”, to broad, such as “social relationships” (Loyall 1997: 27).  
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Unfortunately, believability is highly problematic in an interactive medium. Agent 

designers cannot mimic the approach animators or writers take to create believable 

characters; believability in film involves capturing some desirable elements of activity, 

and freezing it in the medium. Games, however, are fully interactive—the player is 

inherently unpredictable, and the agent must act appropriately in spite of the player’s 

potentially problematic behavior. Agent designers are not merely scripting believable 

behavior—they must design entire systems whose dynamic behavior turns out 

believably, regardless of what the player does. The developer’s task is to proceduralize 

the complex characteristics of believable performance into algorithms and knowledge 

representation, such that their runtime behavior is robustly believable. 

1.2.3. EFFICIENCY 

Game agents must be reasonable and responsive to the world around them. At the same 

time, they are allowed very little CPU time into which to squeeze the necessary 

computation. This means the system must be very efficient at what it does. 

The popular intuition among practitioners is that out of the overall CPU time available 

to the game, the AI subsystem, broadly construed, receives less than 25%, and most 

often only around 10%. By “AI broadly construed”, I mean a mélange of behavior 

control and other components that, while important to character performance, are not 

usually considered as components of artificial intelligence as such: physics calculations, 
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animation control, world model consistency maintenance, and so on. Furthermore, the 

processor time allowance applies to the entire AI subsystem, and since a game will 

typically employ a number of characters, each character’s individual behavior control 

can only expect a fraction of this allowance.  

The combination of processing poverty, and demand for reactive believable behavior, 

leads to considerable difficulties. Gameplay enforces soft-real-time performance 

constraints on behavior, because untimely reaction to the dynamically changing world 

will damage the illusion of intelligence. But this reactive, dynamic intelligence must be 

achieved using the minimum number of processing cycles, demanding exceedingly 

inexpensive techniques.  

Unfortunately, it is difficult to obtain hard data about the exact processing allowance. 

First, as we mentioned, the ‘AI system’ usually includes much more than character 

control, but the usage of the term varies between developers and studio cultures—for 

instance, some developers count animation as part of AI, some do not. Second, variance 

across genres is considerable—for example, AI takes a tiny slice of processor time in 

arcade-style shooters, but a lion’s share in turn-based strategy games. Third, this 

information is based on informal surveys (Woodcock 1998, 2000, 2002, Kirby 2004), 

since reliable data are simply not available.  
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Even give these difficulties, however, it remains interesting that the reported AI’s share 

of the main processor remained stable over the years, even in spite of the 

popularization of additional processing hardware such as programmable video cards. 

Furthermore, as games develop, more and more components crowd under the AI 

umbrella—most recently, elements of physical simulation and animation control. This 

suggests that even though the raw number of cycles available to the AI will keep 

increasing, so will the demands placed on them.  

1.2.4. CONSTRAINTS RECONSIDERED 

These constraints highlight an important problem in games-related research: the 

evaluation criteria for game technologies differ somewhat from those typical of 

artificial intelligence research, where authoring and believability concerns are 

uncommon, and efficiency is often of secondary interest. 

However, in games, these enjoy great prominence. Authoring is important because 

designers need to create consistent and predictable behavior. Believability is important 

because it enables a wide range of aesthetic experience. And efficiency is important 

because games have to run on inexpensive commodity platforms and underpowered 

handheld devices. 
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1.3. Hierarchy and Parallelism 

Two broad classes of techniques are popularly used in the implementation of 

interactive, social characters. Pattern-matching production systems, à la Eliza, allow for 

interaction via free-form text utterances, but retain practically no information about 

the larger structure of the interaction. Conversation trees, on the other hand, are 

similar to finite-state dialog systems; they represent structure in detail, but disallow 

free-form inputs. Their abilities to express complex behavior are limited. 

As mentioned earlier, this work concentrates on extending these approaches, to allow 

for both natural language input, and the knowledge of temporal structure of 

interaction. This will be achieved by representing the interaction using stochastic 

finite-state models, extended with novel mechanisms for dealing with complexity via 

hierarchical and parallel decomposition. 

1.3.1. HIERARCHY AND PARALLELISM IN INTERACTION 

Stochastic finite-state representations, such as hidden Markov models, are a popular 

method for tracking stochastic processes. A hidden Markov model (HMM) can be 

considered a state space, in which both the position and state transitions are 

probabilistic. Transitions are treated as probabilities of moving from state to state, and 

position is replaced with a probability distribution of the possible position likelihoods 

over the entire state space. I will examine these in detail in Chapter 3—it will suffice to 
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say for now that they retain the structural simplicity of standard finite-state models, 

but behave more robustly in the face of noise and input uncertainty.  

Finite-state interaction models allow for easy, structural description of the activity 

itself. Their simplicity enables very efficient implementation, and simplifies authoring 

by supporting greater system transparency—the developer can predict much about the 

system’s runtime behavior given the computational representation, as well as design a 

computational representation that will result in some particular behavior. 

I would like to concentrate on two properties that are desirable in finite state models, 

but rarely expressed together in finite-state systems: the properties of hierarchical 

decomposability, and of independent parallel engagement.  

Rich, believable communication requires engagement in different social protocols, and 

broad competence in human conversational moves. Implementing such a system using 

a single, flat dialog space would be an authoring nightmare: finite-state models with 

non-trivial numbers of states are difficult to design and debug. Rather, it is desirable to 

decompose the overall system into simpler elements, which could be combined 

hierarchically, in a tree or some other topology, such that their ordered performance 

reconstructs that of the original. This should be uncontroversial—decomposition is the 

standard approach for modeling complex phenomena. 
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At the same time, communication is not a simple, clean composite of the elements. 

Many different activities and threads of conversation can be engaged at the same time, 

interleaved or overlapped in the course of an interaction. Systems should be able to 

deal gracefully with a large variety of player moves and behaviors, if only to steer the 

interaction back to the topic at hand; they must recover from failure and error by 

attempting to deal with the situation as a human might. The system should be able to 

support numerous elements acting at the same time. 

1.3.2. THE HIERARCHY REQUIREMENT 

It is desirable to manage system complexity by introducing structural abstraction: 

decomposing interaction into separate modules, which can control each other. 

Consider a typical fantasy role-playing game. When building a shopkeeper agent, for 

example, we can decompose a selling interaction into threads of deciding on an item, 

evaluating the item, haggling about the price, and so on; the evaluation thread can 

consist of praising the workmanship, pointing out features, or defusing criticism, 

praising the workmanship can then finally bottom out in particular speech acts.  

A hierarchical decomposition is beneficial in numerous ways. Such a component 

hierarchy, as illustrated above, allows for an economical representation and code reuse, 

since the individual modules can be written separately, as well as reused across 
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different agents. At the same time, each of the simple elements would also be efficient 

to compute. 

A natural implementation of such decomposition would be as a linked hierarchy of 

elements that transfer control between each other: the root of the interaction relays 

control to a child, which calls another child, which finally accepts and produces speech 

acts, transferring control to another child, or one of its ancestors, and so on.  

These constituent elements can be represented with separate stochastic models, used 

as building blocks of the overall interaction. This improves robustness and aids in code 

reuse: the interaction becomes a matter of sequencing, building up larger interactions 

out of smaller ones. Readers familiar with the problem of action planning may find this 

approach quite natural. 

When such a decomposable interaction is used, the different levels must be able to 

influence each other’s evolution; for example, evaluation requires the focus to be 

settled, then it can be engaged in several different ways, and only once evaluation is 

finished can haggling commence. The parent processes must be able to interact with 

the children, and the children with the parents. This requires that the different 

processes be causally interdependent; that the parent processes be able to influence 

child processes, and vice versa, enabling each other, or affecting their productions in 

some desirable manner.  
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1.3.3. THE PARALLELISM REQUIREMENT 

Social protocols can also be engaged concurrently; for example, the player may switch 

back and forth between the haggling subinteraction and the evaluation subinteraction, 

advancing them both independently on different time scales. Models that track them 

must be capable of changing state independently and asynchronously. The finite state 

representation must allow for numerous, parallel but interdependent protocols.  

For a more concrete example, consider an interleaving of two independent models, for 

a character that sells items to the player. First, we may have a finite-state model of how 

to haggle about an item price. The model has some number of states arranged in some 

specific topology, perhaps one that resembles space A in Figure 1-1.  

But the agent should also be business-savvy, and so it should try to praise the item 

before the player, and defuse any undesirable reactions. This is a completely different 

mini-interaction, and can be described using its own state space; perhaps it has a state 

space akin to B from the same figure.  

In this simple example we assume that these particular models are linear: each 

production α n only leads to α n+1. Actual models do not have to be linear, of course. 
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Nota bene: the following state spaces are simple and linear to make the example easy to follow; 

the discussion is not limited to linear spaces, of course. 

 

A: Haggling about the price: 

 

α 1 : player-asks-for-price   (e.g. “What do you want for this?”) 

α 2 : agent-presents-offer   (e.g. “I’ll take two gold”) 

α 3 : player-counters   (e.g. “How about one?”) 

α 4 : agent-reacts   (e.g. “It’s a deal.”) 

 

B: Praising an item: 

 

β 1 : player-expresses-liking   (e.g. “This looks pretty good.”) 

β 2 : agent-praises  (e.g. “It’s top quality. I just got it.”) 

β 3 : player-finds-flaw   (e.g. “But there’s a button falling off.”) 

β 4 : agent-defuses   (e.g. “I’ll fix that right away.”) 

 

Figure 1-1. Sample spaces A and B and their individual productions. 
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If one were to join these two into a simple hierarchical system, only one of the spaces 

would be active at any time; such a hierarchical system could concatenate or nest the 

two sub-interactions. But human interaction are not so orderly—both protocols could 

easily be engaged at the same time, interleaved arbitrarily, producing interactions that 

perhaps look like the following: 

α 1 α 2 β 1 α 3 β 2 β 3 α 4 β 4, or 

α 1 β 1 α 2 α 3 α 4 β 2 β 3 β 4, or 

α 1 α 2 β 1 β 2 β 3 α 3 β 4 α 4 , etc.  

However, in addition to correct interleavings, a system must not produce invalid 

exchanges that violate the orderings of the protocols. The following examples present 

invalid exchanges, with out-of-order productions crossed out: 

* α 1 β 1 α 1 β 2 α 2 β 3 β 4 . . . , or 

* α 1 β 1 α 2 α 3 β 2 β 1 β 4 . . . , or 

* α 1 β 4 α 2 β 1 β 2 β 3 α 2 . . . , etc. 

When considered in terms of movement through the state spaces, not only does each 

component interaction have to maintain its ordering, but also each of them can be ‘put 

on hold’ at any time and resumed an arbitrary number of steps later.  
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Therefore the two chains should be treated as really separate, active in parallel, 

possibly engaged or disengaged at any time by either participant. In other words, they 

must be allowed to be temporally independent, advancing separately and at different 

rates from each other. 

This parallelism helps accomplish broad behavioral competence, since believable 

activity will routinely involve a large number of different activities on overlapping time 

scales (Bates, Loyall, and Reilly 1991). In real communication, these activities can easily 

be engaged asynchronously, at the same time; they can influence each other, but they 

can also happen concurrently and independently. If these are represented with 

independent state spaces running in parallel, they can all track the situation at the 

same time and respond independently of each other. 

Parallelism also improves failure recovery. The agent must not fail completely during a 

conversation, admitting “I don’t understand what you’re saying”. It is unacceptable to 

just give up, because it is jarring (Mateas and Stern 2004). Rather, the agent must mimic 

human modes of error recovery to keep the interaction going—try to get the missing 

information, force an interpretation, talk around the subject, and so on. It must fail 

gracefully at the edge of competence.  

Parallel models allow for such redundant representation: the same protocol can be 

represented on multiple levels concurrently, from the most specific to the most general 
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level. For example, a shopkeeper could track a question on three levels: with a 

specialized exchange such as answering-questions-about-item-price, embellished with 

exaggeration and flattery, as well as the more straightforward answering-questions 

exchange, and the most basic turn-taking model. This improves error recovery—when 

the more specific interaction fails, the less specific representations will still have some 

knowledge of what goes on, and may be able to steer the conversation in the right 

direction.  

These elements are not necessary or sufficient conditions for believability—they are 

guidelines, bits of “selective non-realism” that, all else being equal, help mimic the very 

human ways in which people deal with communication. However, we must also 

remember that believability is painfully context-sensitive. Believable characters do not 

have to be realistic—rather, they have to behave appropriately given the context of 

their roles in the fictional world. But this context is, in turn, influenced by the game 

design and user expectations; character believability can be completely destroyed or 

restored by manipulating only those two elements. Therefore, believability cannot be 

considered inherent in the behavior itself. It is sensitive to the design of the overall 

system. 
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1.3.4. THE HIERARCHICAL-PARALLEL PROBLEM 

This is the difficulty: models of interaction ought to allow for both hierarchical causal 

dependence, and parallel temporal independence, within the same system. I refer to 

this as the hierarchical-parallel problem. 

The hierarchical-parallel problem makes finite-state modeling difficult. Hierarchy is 

easy to represent using standard pushdown techniques known from theory of 

computation; but a pushdown machine does not support interleaved, temporally 

independent engagement. Parallelism, on the other hand, is easily achieved by 

activating all models separately, at the same time; but this makes no allowance for 

causal interdependence.  

1.4. Hierarchical Parallel Markov Models 

I would like to propose an approach that ameliorates such problems. The solution is to 

extend finite-state models, and in particular HMMs, to support both hierarchy and 

parallelism within the same system. 

The approach can be outlined as follows. The interaction itself can be decomposed into 

simpler elements, represented via simple, separate HMMs. Stochastic models in 

particular improve robustness in face of noisy and uncertain inputs. 
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Parallelism can be accomplished easily, by making all the HMMs concurrent. Running 

all the models at the same time, all the time, makes it possible to track several 

interleaving or simultaneous activities. 

Hierarchy requires an addition of causal dependencies between the HMMs, such that 

the parent models could influence the children, and vice versa. This can be reduced to 

very efficient operations. 

In section 3.3, we notice that two particular types of causal dependencies are of interest 

in this context. First, state dependency, which happens when a single state in one 

model influences another single state from a different model. Second, model 

dependency, which happens when a single state in one model influences a different 

model in its entirety. These dependencies are both cases of state-to-state coupling. 

This coupling can be reduced to evidence estimation. We turn the state of the 

controlling HMM “inside-out”, into a type of evidence that could be used by other 

HMMs. Finally, this bottoms out in a simple and efficient mechanism described in 

section 3.2. 

The result will be a system composed of enhanced HMMs that run in parallel, at the 

same time, while also implementing a hierarchy of control that is required for the 

performance of complex activity. The hierarchical dependencies are implemented 
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using a simple coupling mechanism, which does not require the alteration of existing, 

efficient algorithms for belief estimation. 

The benefit of such an approach is that each space remains inexpensive to compute, 

and the cost of the overall system is merely the sum of the individual costs. The 

approach also keeps the individual models separate and parallel, improving ease of 

authoring, and broad engagement in conversational behaviors.  

The drawback is that the approach is not a general replacement for all sorts of 

hierarchical dependencies; however, it appears to be sufficient for the kinds of 

hierarchies required in player interaction. 

Two systems will be described later, which demonstrate interaction with the player in 

the context of a game, and illustrate the benefits of this approach with regard to 

modeling and performance efficiency. They are built of a number of hierarchical 

parallel HMMs, many of which are shared across the two implementations. 

1.5. Contributions 

To reiterate, the following are the contributions of the work: 

1. Hierarchical parallel Markov models, through which a complex interaction 

could be represented as a collection of smaller, simpler elements, running in 

parallel, and combined to reproduce the complex engagement, and 
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2. Coupling mechanism through evidence separation, which enables hierarchical 

dependencies to be implemented simply and efficiently, without requiring any 

changes of existing belief update algorithms. 

These are the contributions I present explicitly; I also hope you will find useful my 

discussion of knowledge representation and believable behavior development for 

computer games.  

1.6. Dissertation Outline 

The dissertation is laid out as follows. 

Chapter 2 situates my approach in the space of contemporary conversation and 

interaction models. I examine existing approaches in the gaming domain, the state of 

the art in finite-state dialogs and other artificial intelligence systems, and consider 

findings from linguistics and related disciplines, the different approaches they propose, 

their benefits, and limitations. Finally, I use this work to advance a structural stance: 

that simple interaction can be successfully modeled using stochastic finite-state 

mechanisms, and that a large number of interesting in-game interactions belong to this 

simple category.  

Chapter 3 introduces the details of my approach: coupling for hidden Markov models, 

which implements interdependence between concurrent representations. The 
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algorithmic details of Markov modeling are presented, followed by the formal 

description of the extensions, and examination of how coupling leads to hierarchical 

parallel protocol engagement. This chapter concludes with the examination of the 

performance improvement over an equivalent flat mechanism. 

Developing on the model description, Chapter 4 is dedicated to results. I present a 

general description of the system, I describe two game characters developed using the 

engine, and discuss their behavioral effects, such as redundancy and smooth 

performance degradation.  

Following that, in Chapter 5, I discuss how such a system could be re-implemented. This 

describes not only the existing engine’s architecture, but also details of implementation 

of the different modules of the system, and opportunities for optimization. This section 

will be of greatest interest to those interested in building their own variations on such 

a system. 

Finally, Chapter 6 re-examines the contributions of the works, and evaluates the system 

in the larger context of entertainment production. This discussion concludes with 

notes on the future directions for this class of mechanisms. 
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Chapter 2. Perspectives on Interaction. 

 

 

 

 

 

 

 

 

 

 

People know what they do; they frequently know why they do what they do;  

but what they don't know is what what they do does.  

— Michel Foucault 
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In this chapter I survey the different perspectives on interaction and communication, 

beginning with existing approaches from entertainment, followed by contemporary 

techniques for human-computer dialog, both finite-state and planning-based. Finally, 

perspectives from sociology and linguistics are introduced, which will pave the way 

towards a coupled structural approach. 

2.1. Simple Techniques 

In entertainment production, interaction tends to be simple, because of the strong 

demands of easy authoring, believable runtime performance, and efficient resource 

usage. Techniques popularly used in games and entertainment products tend to fall 

into several categories. 

2.1.1. COMMAND INTERFACES 

Perhaps the best-known approach to language-based interaction is the command 

interface used in adventure games and interactive fiction. These games are usually 

text-based, and the player issues commands directly to the game, which also acts as the 

player’s proxy in the virtual world. For example, the player might say: “pick up the first 

gem”, or “attack the goblin with the poisoned dagger”, at which point the computer will 

simulate the performance of the tasks, and inform the player of the new state of the 

world.  
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Technically speaking, the command interface performs standard syntactic parsing, and 

then runs some appropriate actions based on the parse tree. The author of one modern 

text adventure engine describes this situation as follows: 

The built-in parser handles most of the “syntactic analysis” part of parsing: 

dividing a command into individual words (or “tokens”), determining the 

sentence boundaries of command lines with multiple commands, figuring out 

which words specify the verb and prepositions, and identifying noun phrases. 

The built-in portion also defines the execution process by calling a series of 

methods in the objects involved in a command to carry out the action of the 

command. (Roberts 2002, ch. 4) 

Most of the game involves action performance in the world. Consequently, commands 

are issued in imperative voice (second person singular), sometimes chained as 

subordinate clauses of one sentence. This complicates parsing, since off-the-shelf 

parsers are not trained to deal with this unusual convention; product developers 

therefore routinely resort to building their own parsers and command interpreters. 

Interacting with a non-player character (NPC) in a game also has to be expressed in the 

form of action commands. Actions are either canned speech acts (usually ask or tell, e.g., 

“ask the goblin about the gem”), or commands that get parsed recursively from the point 

of view of the character (e.g., “say to the goblin, give me the gem”). 
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While NPC code in such games can potentially be arbitrarily complex, the imperative 

command interface severely restricts what kinds of conversation can take place. In 

practice it is difficult to implement anything other than giving the NPC orders to 

perform specific actions.  

This approach results in a language interaction that is highly unnatural—the grammar 

of the command language is usually tightly constrained and unambiguous in order to 

simplify processing, and the computer tends to be inhumanly pedantic and 

unforgiving. The experience of the system is very reminiscent of interactions with an 

operating system shell, where the novice user has to be tutored in the proper 

construction of commands and dealing with errors. 

2.1.2. NONSTRUCTURAL TECHNIQUES 

Another popular approach to natural language interaction is exemplified by pattern 

matching systems commonly known as chatterbots.  

In its simplest shape, a chatterbot is a reactive pattern matching system, where each 

pattern matches the surface features of the player’s sentence, and suggests the 

production of some particular responses. The first well-known engine of this type was 

Eliza by Weizenbaum (1966), featuring an immensely clever pattern library that 

imitated a Rogerian psychoanalyst.  
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I call this approach nonstructural, because it retains no representation of the temporal 

structure of the interaction as it develops over time. More complex implementations 

sometimes retain a few specific bits of information, which can be used to mimic very 

simple structure—for example, ALICE (Wallace 2000) can set memory registers, to be 

used in subsequent matching. However, this is hardly enough support for the easy 

modeling of long-term engagement. 

A different approach, although similar in spirit, is to use word-based n-gram models, 

such as in the system by Hutchens and Barnes (2002), based on MegaHAL (Hutchens 

1998). The system uses an n-gram of word sequences: when an utterance comes in, a set 

of custom heuristics picks a salient starting word, and the n-gram generates a reply 

utterance.  

The major difference is that the n-gram models can easily be acquired automatically, by 

observing human players conversing in networked games, chat rooms, discussion 

boards, and so on. With regard to behavior, however, the system resembles Eliza in that 

it contains no model of the larger structure of the interaction. 

In general, nonstructural approaches prove popular in certain settings, and a large 

number of chatterbots have been developed for a variety of purposes. Some of the 

popular contemporary implementations include Verbots, used for fielding customer 



33 

 

support questions (based on the Julia engine by Mauldin, 1994), and the open-source 

ALICE engine, used mainly for amusement (Wallace 2000). 

However, nonstructural techniques exhibit considerable problems maintaining 

meaningful long-term coherence in communication. Coherence is important locally, 

among the utterances, as well as globally, among the different segments of discourse 

(Grosz et al. 1995). Structure-impoverished models lose coherence exactly because they 

represent very little about the discourse—which results in failure to participate in 

interpersonal behavior protocols, and failure to produce a focused interaction.  

When these systems do succeed, it is in spite of the lack of structure—because the 

designers set up the interaction to trick the user into an expectation of meaningfulness. 

As sociologists have noticed, when people expect communication to be meaningful, 

they will routinely force a meaningful interpretation upon the communication 

(Garfinkel 1967, ch. 3). The messages do not even have to be produced by an 

understanding, meaningful agent—they can be even produced randomly—but it is 

crucial that the person not be aware of this, otherwise the expectation of 

meaningfulness will disappear. This is akin to the artistic notion of suspension of 

disbelief—the viewer will play along with the fiction of what is being shown, but any 

inconsistencies will cause the entire artifice to fall apart.  
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Chatterbots’ success is contingent on whether they avoid failing this expectation of 

meaningfulness. In practice, failure occurs almost immediately, due to the lack of 

information about the history of the interaction. And while failure can be delayed in 

certain narrow contexts—such as in first-person shooters, where conversation tends to 

be degenerate (Zubek and Khoo 2002)—those are rare and not representative of typical 

game interactions.  

This failure mode of chatterbots is directly related to the nonstructural conversation 

stance they embody—the assumption that it is not necessary to retain much 

information about the long-term structure of the conversation. In chatterbots or n-

gram systems, knowledge representation typically includes little more than stimulus-

response pairs, perhaps supplemented with a small number of specialized variables, 

and no effort is made at retaining structured knowledge about the larger interaction or 

its topics.  

The justification for this stance is uncertain. Most authors are careful not to claim that 

their chatterbots replicate realistic communication, and Wallace only goes as far as to 

propose well-known word distribution regularities (Zipf 1935) as a possible grounding: 

Our experiments with ALICE indicate that the number of choices for the “first 

word” is . . . only about two thousand. Specifically, 1800 words covers 95% of all 

the first words input to ALICE. The number of choices for the second word is 
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only about two. To be sure, there are some first words (“I” and “You” for 

example) that have many possible second words, but the overall average is just 

under two words. The average branching factor decreases with each successive 

word. (Wallace 2004) 

Unfortunately, in choosing the Zipf analysis, the author already assumed that 

structural information is unimportant; a chatterbot can have pre-scripted responses for 

the vast majority of common phrases, but this does not demonstrate that structure is 

unimportant in naturalistic conversation.  

In the practice of implementing conversational characters, pattern-matching 

techniques are rarely enough—without the knowledge of what goes on in the 

conversation, their performance is fragmented and difficult to engage over the long 

term. Furthermore, nonstructurality introduces a formidable technical problem: with 

no concept of the ongoing context, the agent has to re-acquire all the information it 

needs from each incoming utterance, which is only viable in limited situations. Such 

approaches are therefore suited best to exchanges that can be modeled as series of 

mostly disjointed utterance pairs. 



36 

 

2.1.3. MENUS AND CONVERSATION TREES 

Many game designers have noticed that when the activity space is limited and the 

options easy to enumerate, interaction could be easily implemented using standard 

graphical user interface (GUI) approaches.  

The Sims (Maxis 2000) may be the best-known contemporary example of a character 

interaction GUI. The user, controlling a character in the game, orders action 

performance by clicking on objects; at this point an action menu appears, sensitive to 

the subject and object of the interaction, and the user selects which action to perform. 

Dyadic interaction and communication work in exactly the same manner—the player 

clicks on the character that will be the target, then a contextual menu presents the list 

of available interpersonal actions.  

A special case of the GUI is a conversation tree, popular in role-playing games such as 

Neverwinter Nights (Bioware 2002), and commonly used to implement dialog in games. 

As the name suggests, it is a tree-based structure of text blurbs, corresponding to all 

the possible NPC utterances and all the possible player responses. The agent starts the 

conversation by reading out the text of the root node, and the player is presented with 

some response blurbs; the player chooses one of the responses, which leads to another 

text node, potentially another set of choices, and so on.  
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The GUI interface has the unique property of making the player’s action space explicit. 

This revelation carries both positive and negative consequences.  

On one hand, action explication makes it easy for the player to see precisely what they 

can do to advance the game; it removes the need for “verb hunting”, and abstracts the 

interaction away into the level of speech acts, pre-written utterances, or other 

desirable action abstractions. In the context of conversation trees, it also allows for 

very precise control over the dialog text. 

At the same time, explication makes it easy for the player to reconstruct the topology 

of the world state space. It encourages the player to treat interaction as graph 

traversal, and to reduce the activity into path advancement or backtracking. The net 

effect is the transformation of an interaction into a formal puzzle. 

The relative importance of these effects depends on game type and designer’s 

intentions. However, in my experience with conversational contexts, action explication 

is rarely desirable. When the activity is conversation, explication turns it into mere 

graph search; the resulting “puzzle effect” robs the interaction of the aesthetics of 

engaging linguistic performance.   
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2.2. Finite-State Dialog 

The dream of human-computer interaction is as old as the field of AI, but the problems 

it presents are legion. Even a “weak AI” approach, concentrating on the 

implementation of dialog, is immensely difficult. As Scott and Kamp introduce it: 

A central problem which the development of dialogue systems encounters is 

one that it has inherited directly from contemporary linguistics, where one is 

still struggling to achieve a genuine integration of semantics and pragmatics. A 

satisfactory analysis of dialogue requires in general both semantic 

representation, i.e. representation of the content of what the different 

participants are saying, and pragmatic information—what kinds of speech acts 

they are performing [ . . . ] and, more generally, what is the purpose behind 

their various utterances or even behind their entering upon the dialogue in the 

first place. (Scott and Kamp 1995: 230) 

The quotation above only touches upon the issue of language understanding; a full-

fledged dialog system also requires good language generation. 

Commercially used dialog systems can be categorized into two broad categories: finite-

state approaches, and plan-based approaches. We now examine them both, and then 

turn our attention to other aspects of AI that will come to bear on this work. 
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2.2.1. FINITE-STATE APPROACH 

Human dialogue exhibits numerous structural regularities, for example, adjacency 

pairs of questions and answers or requests and replies (Schlegoff and Sacks 1973). These 

regularities can be expressed structurally, as a grammar, and implemented efficiently 

using a state machine.  

Dialog participation becomes explicit state space traversal, collapsing both the evolving 

situation and the conversation into a single finite-state model. McTear succinctly 

describes the application of this approach, as it pertains to question answering: 

In a finite-state model the dialogue structure is represented in the form of a 

state transition network in which the nodes represent the system’s questions 

and the transitions between the nodes determine all the possible paths through 

the network, thus specifying all legal dialogues. (McTear 1998) 

The nodes are not limited to questions, of course, but they can represent valid 

communication actions in general—and the similarity to conversation trees (see 

Section 2.1.3) is evident, although these systems tend to allow for natural language 

input. 

Even though “[m]ost commercially available dialogue systems use some form of finite-

state dialogue modelling” (McTear 1998, sic), finite-state models are routinely criticized 
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as failing to scale. First is the problem of knowledge representation: the explication of 

each possible dialog as a path through the state space leads to explosively large spaces. 

Second, the problem of action estimation: the human’s utterance must be mapped to 

the correct graph edge, otherwise the system’s interaction state will be incorrect. The 

first of these classes of problems can be tackled by language abstractions and 

partitioning the space into hierarchical subspaces; the second by the introduction of 

stochastic models.  

2.2.2. LANGUAGE ABSTRACTION.  

The space of possible user utterances is infinite, but large subsets of them routinely 

share similar meaning; therefore, they should be collapsed into a smaller number of 

abstract ‘conversational actions’. This is routinely done in practice, using speech acts 

(Austin 1962, Searle 1965) as the preferred level of abstraction: some set of speech acts 

is identified, some detection conditions are postulated against which user’s inputs 

could be matched, and those are translated into graph edges. As Traum (2000) points 

out, the taxonomies of such communicative acts are still being worked out. In finite-

state systems, communicative act identification is often based on surface features, such 

as general speech act verbs, like ask, want, or implore (Wierzbicka 1987), more specific 

implicature conventions, such as “can you (do-such-and-such)” (Morgan 1978), or even on 

very specific idioms such as “what’s up”.  
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Most speech acts are predicated on some situation variables, and this can be 

problematic given the propositional nature of finite state models. It is possible to 

implement some variable binding in an essentially propositional system (e.g., Agre and 

Chapman 1987, Maes 1990, Horswill 1998), but the lack of a standard solution remains a 

significant problem. 

With regard to agent behavior modeling in particular, finite-state dialogs stand out in 

several ways. First, spaces are easy to inspect and predict. Given information about the 

current state of a dialog, one can often tell how the space will change given some new 

input; and vice versa, one can often tell what kinds of inputs were detected given some 

change in the model. This is crucial in the process of authoring (and thus debugging) 

desirable behavior. 

Second, the explication of the temporal structure—how a situation is supposed to 

progress from one time slice to the next—allows for a great deal of control over the 

activity. The temporal structure is highly meaningful, and individual interaction 

elements acquire meaning from their position in the activity; a finite state approach 

allows detailed control over this progression.  

2.2.3. STOCHASTIC DIALOGS.  

Stochastic finite-state techniques, such as hidden Markov models, have been very 

successfully applied to the lower-level problems of parsing and spoken language 
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understanding, as they perform robustly in the face of noise and error (Jelinek 1997, 

Roche and Schabes 1997).  

The same approach has recently been extended to dialog modeling (Levin and 

Pieraccini 1997, Young 1999, Roy, Pineau, and Thrun 2000, Singh et al. 2002). Typically, 

dialog is represented as a Markov model with an action policy, otherwise known as 

partially-observable Markov decision process (POMDP). The representation often works 

as follows: 

The domain is represented as the partially observable state of the user, where 

the observations are speech utterances from the user. The POMDP 

representation inverts the traditional notion of state in dialogue management, 

treating the state as unknown, but inferable from the sequences of observations 

from the user. (Roy, Pineau, and Thrun 2000).  

An additional attraction of stochastic approaches is that one can attempt to acquire the 

policies automatically: “dialogue policy can be designed using the formalisms of 

Markov decision processes (MDPs) and reinforcement learning (RL)” (Singh et al. 2002: 

106). Automatic dialog strategy acquisition is a topic of active research (Levin, et al. 

1999, Pietquin and Dutoit 2003).  

However, we will not concern ourselves with automatic model or policy acquisition 

here. As Pietquin and Renals (2002) say: “Though the field of spoken dialogue systems 
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has developed quickly in the last decade, rapid design of dialogue strategies remains 

uneasy. . . [The] quality of the strategy learned by the system depends on the definition 

of the optimization criterion and on the accuracy of the environment model.” 

Unfortunately, as Finney et al. (2002) admit, it is difficult to define the criteria 

appropriately for domains with complex representations, such as those that employ 

situational variables. Automatic model acquisition for a system whose semantics 

include more than a single space—such as the coupled approach presented here—

unfortunately lies outside of the scope of this dissertation. 

2.2.4. STOCHASTIC MODEL DECOMPOSITION AND COUPLING.  

The problem of state explosion led to the exploration of numerous composite 

representations for stochastic models. While not applied to dialogs as such, these 

approaches are relevant and potentially very useful in finite-state dialog modeling.  

Complex space decomposition is usually approached in two general ways. Meuleau et 

al. (1998) describe it well: 

An MDP is either specified in terms of a set of “pseudo-independent” 

subprocesses or automatically decomposed into such subprocesses. These 

subMDPs are then solved and the solutions to these subMDPs are merged, or 

used to construct an approximate global solution. These techniques can be 

divided into two broad classes: those in which the state space of the MDP is 
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divided into regions to form subMDPs, so that the MDP is the union (in a loose 

sense) of the subMDPs; and those in which the subMDPs are treated as 

concurrent processes, with their (loosely) cross-product forming the global 

MDP. (Meuleau et al. 1998: 165). 

Furthermore, once decomposed, the models can be coupled in a number of ways. 

Authors who work with HMMs tend to combine the conditional probabilities of the 

constituent spaces, and change the estimation algorithms to support that. Authors who 

work with POMDPs often combine the action policies instead, by making the reward 

functions in the different MDPs dependent on each other. The latter makes it easier to 

acquire to policy automatically, since the individual models remain small and 

completely separate.  

Space decomposition allows for hierarchical reconstruction. Hierarchical structure is a 

novel enhancement of Markov models. The motivation comes from the observed space 

explosion: flat models induce an undesirable multiplication of redundant substructures. 

Hierarchical approaches seek to abstract away redundancies; as Pineau, Roy, and Thrun 

(2001) put it, “in many tasks the action hierarchy gives rise to state and observation 

abstractions, which can drastically reduce the computational complexity”.  

The basic approach is the Hierarchical HMM, or HHMM. Under this approach, each 

hidden state can represent an entire stochastic process: 
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HHMMs generalize the standard HMMs by making each of the hidden states an 

“autonomous” probabilistic model of its own, that is, each state is an HHMM as 

well. [ . . . ] An HHMM generates sequences by a recursive activation of one of 

the substates of a state. This substate might also be composed of substates and 

would thus activate one if its substates, etc. (Fine, Singer, and Tishby 1998). 

This extended Markov model includes a new class of “vertical transitions”, 

corresponding to the transition of activation from a parent node down to the child 

model it represents; each model also contains a unique end state, with an “up 

transition” from the end state, back to the parent. These are independent of the 

standard “horizontal transitions” between nodes in the same model, and the forward 

algorithm is extended to account for them.  

The hierarchy forms a strict tree, in which the children are not shared. If we consider 

the set of observations as an alphabet, and a sequence of events as a string in the 

alphabet, we can see that each child recognizes a strict substring of the string 

recognized by its parent. As the authors observe, “if state q had generated the string 

oi  . . . oj, then its parent state generated the string ok . . .  ol, such that k ≤ i and j ≤ l” (Fine, 

Singer, and Tishby 1998, section 3.2). This scheme of vertical transition does not allow 

for parallel co-activation of different children; it only recognizes interactions that 

result in properly nested sequences of observations.  
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While HHMMs specify that each child has a unique exit node, Theocharous and 

Mahadevan extend this model to allow for “multiple entry points into abstract states 

which we call entry-states, and multiple exit-states” (Theocharous and Mahadevan, 

2002). This allows for easier estimation of likely sequences, since such a non-linear 

child model can be used in a number of ways. The nesting property persists, however. 

Factorial hidden Markov models (FHMMs) decompose a single model into a collection 

of completely independent models that combine only in output production 

(Ghahramani and Jordan 1995). The collection of components is much more efficient 

than a composite model, but its underlying assumption, that the processes are 

independent, holds only in limited circumstances. 

Several other approaches allow for a degree of interdependence, and have been used 

for certain kinds of problems. Linked hidden Markov models are akin to FHMMs 

extended to include joint probabilities for co-occurring states, as a way to model 

interdependence within a time slice (Saul and Jordan 1995). Hidden Markov decision 

trees extend this further, by using the joint probabilities to implement hierarchical 

top-down dependencies, with master processes controlling slave processes (Jordan et 

al. 1997). However, the joint probabilities complicate belief computation. 

Temporal dependence extensions have been made in an elegant coupled hidden 

Markov model approach (Brand 1997), in which separate models are enhanced with 
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conditional probabilities across space and time boundaries, and algorithms over the 

model are enhanced to support that. However, the cross-dependencies can easily 

become numerous.  

Finally, it is worth noting that HMMs can be treated as a special case of dynamic 

Bayesian networks (DBNs), which can efficiently replace them in all manner of 

situations (c.f. Murphy 2002, ch. 2). Both single and separable HMMs are easily and 

efficiently modeled using DBNs. However, networks of interdependent HMMs are still 

problematic, as the resulting DBNs require numerous ‘coordination nodes’ to represent 

the dependencies (ibid, section 2.3.9). 

Having discussed methods for model-based coupling, we should quickly consider 

action-based coupling. This general approach is considerably different, in that the 

component spaces remain independent, usually active in parallel, but the action 

performance is coupled. 

In their robot dialog system, Pineau, Roy and Thrun (2001) use a hierarchical POMDP—a 

tree of separate HMMs augmented with action policies, but where all elements are 

coactive in parallel, and policies are local to each constituent HMM. To perform an 

action, at each iteration the system re-evaluates the policy of the root model, which 

may select the evaluation of a child model, recursing down in a manner very similar to 

teleo-reactive trees (Nilsson 1994) until a primitive action is produced.  
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This “differs from many hierarchical MDP algorithms where an agent ‘remains’ in a 

subtask until a so-called terminal state is reached” (Pineau, Roy, and Thrun 2001, 

section 3.4), because each iteration re-evaluates the most active sub-process, which can 

change at any time. Thus coupling is accomplished on the level of action performance, 

such that in every time slice, the parent chooses whether to hand over control to a 

child, the child to another child, and so on, until an action is finally produced. 

In a different approach, Meuleau et al. (1998) present a system in which action policies 

are coupled through resource consumption—expected action performance reward is 

made conditional on the availability and depletion of some set of resources, such as a 

global resource shared across processes, and resource allocation to one process 

influences the expected reward across the other processes. They found their approach 

to scale very well, such that the individual policies can be computed reasonably quickly 

even for a large number of constituent processes. 

2.3. Plan-based Dialog 

The other major approach casts dialog participation as a special case of action 

planning. Conversation can be viewed as the performance of actions (Searle 1965), such 

as requesting, commanding, informing, and so on, which are part of the speakers’ plans 

to bring about some kind of an effect on the participants and the situation. Under this 

plan-based theory of communication, “the listener’s job is to uncover and respond 
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appropriately to the underlying plans, rather than just to the utterance” (Cohen 1995: 

237).  

2.3.1. DIALOG AS ACTIVITY 

Historically, the approach was an answer to the earlier work on semantic language 

understanding, concentrating on the mapping from syntactic structures to logical form 

and semantic meaning. Under one popular model (Montague 1973), semantics were 

obtained via the application of very simple rules, transforming language elements into 

lambda calculus. The rules were grounded in syntactic constituents, so the logical truth 

value of a sentence could be evaluated by simply transforming the parse tree. An 

extension of such an approach can be seen in certain frame-based language systems 

(Seneff 1992), which collapse the syntactic parsing and semantic recognition into one 

process.  

However, recent work in conversation has been dominated by the treatment of dialog 

as activity. As it had been observed, language understanding requires general reasoning 

about action performance, which requires mechanisms different from theorem proving 

(Allen 1993). Unfortunately, bare semantics of what is being said do not necessarily 

correspond to what the speaker means to communicate given the task at hand (Morgan 

1978, Cohen and Perrault 1979), leading to erroneous response. 
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The observations manifested themselves most clearly with implicatures. To 

disambiguate implicatures and underconstrained speech acts, one has to know 

something about what is being done in the situation. The early work concentrated on 

the addition of speech act theory (Austin 1962, Searle 1965) to the existing work on 

action planning (Fikes and Nilsson 1971), for the purpose of the generation and 

interpretation of speech acts in conversation (Cohen and Perrault 1979, Allen and 

Perrault 1980, Appelt 1985, Litman and Allen 1990). In this manner, figuring out what to 

say was approached using explicit reasoning about action performance.  

This is further extended in several directions. Some activity is noticeably difficult to 

understand as coming from isolated plans, and requires some notion of mutual 

collaboration and understanding, which led to the view of joint activity as the basis of 

understanding (Cohen and Levesque 1990, Grosz and Sidner 1990). Furthermore, 

actions and utterances themselves have meaningful surface forms, which calls for the 

re-examination of how structural and surface patterns can be used in the task of 

understanding (Grosz 1977, Alshawi 1987) and generation (McKeown 1985). 

The major benefits of plan-based dialogs are that they present an elegant method for 

disambiguating implicatures and speech acts (via plan estimation); they embody a clear 

approach to constructing action performance policies (via plan construction), and they 

fit existing cognitive frameworks, by offering “a generalization in which dialogue can 
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be treated as a special case of other rational noncommunicative behavior.” (Cohen 

1995)  

Interactive agents implemented using a plan-based approach, such as Steve (Rickel et 

al. 2000, 2002), or Paco (Rickel, Lesh, et al. 2001), usually exist in the context of 

collaborative, tutoring activity. Teaching and assistance tasks are notoriously difficult, 

since the artificial agent must not only succeed at its part of the task, but also help the 

human—and in order to help, the agent must be able to tell what the human is doing 

and in what particular ways they fail. This is commonly implemented using a model 

based on joint intentions and shared plans. 

In his critique, Cohen cites several theoretical and implementational problems (ibid: 

238-9). First, the problem of act recognition: the correspondence of speech acts to 

atomic actions in a plan is somewhat problematic (Cohen and Levesque 1990). Next, the 

problems of scope: not only is plan recognition and planning computationally 

intractable in the worst case, but the situation may require numerous simultaneous 

plans of different scope (Litman and Allen 1990). Finally, the theoretical foundations 

are yet to be worked out: it remains unclear what the basic theoretical constructs 

should be, and how to evaluate their applicability to observable phenomena.  
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2.3.2. MIXED APPROACHES 

Many approaches treat dialog as a problem of mixed representation, linking both 

finite-state and plan-based approaches.  

In entertainment-oriented research, dialog is usually joined with the task at hand. 

Mateas and Stern’s Façade (2004) uses simple pattern matching to trigger multiple 

speech act possibilities, which are then matched against the dramatic situation “beats” 

arranged by the reactive planner. Utterance production in Façade, however, is the 

assembly of complete pre-recorded blurbs. Loyall’s Woggles (1997), on the other hand, 

produce language from word-level fragments, using goal-based behaviors; this is 

similar to their general action control system, except the outputs are lexical as well as 

behavioral.   

The addition of embodiment in the virtual world takes this even further, since 

embodied language production benefits from linking with action production, including 

gestures, postures, facial displays, and eye movement (Cassell 2000, Cassell, Bickmore, 

et al. 2000, Rickel and Johnson 2000). For example, the Bosnia Mission Rehearsal 

Exercise system (Rickel et al. 2002) uses embodiment in a game-like world to 

accomplish its tutoring tasks—where the agents use their artificial bodies to augment 

the dialog, by guiding the conversation and attention, expressing emotion, or 

demonstrate understanding.  
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Another type of a mixed approach is presented by frame-based dialog systems (Seneff 

and Polifroni 2000, Lamel et al. 2000, Bonneau-Maynard and Rosset 2003). As the name 

suggests, they represent the situation using frames, whose slots need to be filled, in 

order for the activity to proceed.  

Such systems recover some semantics of the user’s utterance, typically through 

inexpensive parsing, fit this information against the situational frame, and perform a 

modicum of dialog management to specify what to do with this information. For 

example, in popular ticket reservation tasks, the details of when and where are easily 

represented as frame slots—so when an utterance was received and matched against 

the situation frames, the dialog manager then produces a new utterance based on 

which information remains missing. The result is an approach related to structural 

situation modeling, though the name may not immediately suggest it. 

As mixed approaches suggest, the distinction between finite-state models and plan-

based models makes for a convenient taxonomy, but is not grounded in an inherent 

dichotomy. Future systems will likely successfully employ a mixture of both 

approaches. The situated activity model suggests that, for reasonable situations in the 

limited worlds of computer entertainment, a situated, structural description of activity 

can be quite sufficient. As the complexity of game worlds increases, however, it would 

be quite beneficial to merge the finite-state and planning-based approaches, to create 
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systems which can not only efficiently engage in known interaction structures, but also 

deal intelligently with novel and unpredictable situations. 

2.4. Perspectives from the Social Sciences 

This work is also influenced by two perspectives from the social sciences: theories of 

situated action, and of structural modeling of cognition. 

2.4.1. SITUATED ACTION  

Sometimes known as the local management model, the stance comes out of 

ethomethodology, the sociological study of the creation and maintenance of shared 

meaning (Garfinkel 1967, Heritage 1984). It has been applied with success in cognitive 

anthropology as well as artificial intelligence (Rosenschein and Kaelbling 1986, Agre 

and Chapman 1987, Suchman 1987, Sibun 1991, Agre and Horswill 1992). 

The approach emphasizes the use of local resources to produce globally coherent 

behavior: 

The local management model sees adaptation as a continuous process of 

reacting to the concrete contingencies of sequentially organized, situated 

action. In this view, abstract act-types and global organizational structures (like 

plans) may be useful as post-hoc, summary descriptions of adaptive behavior, 
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but adaptation itself is made possible by processes not easily described in the 

everyday language of plans and goals [ . . . ] . (Lambert 1992, p. 3) 

Agre describes an application of this approach to artificial systems:  

It is sometimes necessary to engage in symbolic reasoning about the future, of 

course, and to make representations of action to help guide future activities. But 

we would like to suggest that these more complex forms of reasoning about 

action are delimited and controlled to a substantial extent by the structures in 

the world that support simpler forms of moment-to-moment action choice. 

(Agre, 1995, p. 44, citing Agre and Horswill, 1992.) 

With regard to linguistic communication in particular, the stance is expressed 

similarly: that simple situation-sensitive activity is at least as important as abstract 

reasoning. From Herrmann:  

Mental representations of situations, goals adopted, and means chosen to attain 

them—all depend on the speaker’s acquired knowledge, i.e., experience. This 

includes both his declarative knowledge of the world (knowledge that) and his 

procedural knowledge (knowledge how). The mental representations of situations 

and the setting of goals require the activation of both kinds of knowledge [ . . . ] 

(Herrmann 1983, p. 6)  
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Procedural knowledge entails the existence of verbal behaviors applied to particular 

situations. It seems unlikely that these behaviors are recreated from scratch for each 

new situation; indeed, in many domains different people produce communication that 

is very similar in structure and content. This suggests a possible avenue of analysis, by 

decomposition into constituent situational idioms.  

Linde and Labov (1975) suggest that a “conversational idiom” approach works for well-

practiced situations that do not require novel or strategic performances. However, 

recent analysis suggests that even complex communication exhibits idiom-based 

composition. O’Keefe and Lambert (1995) present a series of experiments in which the 

interlocutors are placed in a delicate situation: breaking a date, rejecting admission to 

an honor society, or negotiating drug compliance with a patient. Even in such 

situations, significant regularities emerged in the particular idioms employed, and 

their mutual relations. In the first case, 72 basic types of conversational messages were 

found; in the second, 21 types, grouped into eight consistent themes; in the third, 61 

types, in eleven themes, and only three of them “influencing perceptions of 

effectiveness in meeting task and interpersonal goals.” (O’Keefe and Lambert 1995, 

p. 64)  

Furthermore, O’Keefe and Lambert found an interesting disconnect between the 

semantics and the effects of these messages; as they noticed, messages with similar 

points and effects could have very different contents, and messages with very different 
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effects could have similar content. Also, the antecedents and effects were associated 

with the specific message elements, not the entirety of the message. 

Given the strong evidence of structured idiomatic expressions in conversation, the 

authors thus present an alternative view of message production—as an organization of 

idiomatic expressions, whose sequential performance comes from their mutual 

dependencies: 

We found such an alternative in an image of communication situations as 

organized fields of thoughts, and messages as the result of thought selection and 

expression. Message structures arise as focus moves through the field of 

thoughts. Focus is driven by goals and guided by the route that the speaker 

formulates to move through the field. [ . . . ] The resulting message, rather than 

being a functionally unified act, is a collation of thoughts, each of which may 

have distinctive consequences and effects. (ibid, p. 66) 

This approach recasts behavior and reasoning in different roles than plan-based 

language production. Under this model, the import of a linguistic element is based on 

its position in the conversation, based on what came before it; and the element 

constrains what can be done next. The larger interaction is then modeled as movement 

through this field of locally organized idiomatic expressions. This resonates greatly 

with structural approaches to interaction. The result, although implemented in a 
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connectionist network, is similar to a conversation graph, in that it makes explicit use 

of the mutual occurrence and constraints of higher-level conversational idioms. 

2.4.2. CONCEPTUAL STRUCTURES 

Another very influential approach comes from the intersection of cognitive science, 

cognitive psychology, and artificial intelligence, and is concerned with the structural 

representation of knowledge about everyday activity and everyday language use:  

Our focus will be upon the world of psychological and physical events occupying 

the mental life of ordinary individuals, which can be understood and expressed 

in ordinary language. [ . . . ] Here we are concerned with the intentional and 

contextual connections between events, especially as they occur in human 

purposive action sequences. (Schank and Abelson 1977, p. 4)  

The overall approach encompassed a number of interrelated elements rooted in the 

conceptual dependency theory of understanding, which used a structural cognitive 

representation using a handful of general primitives (Schank 1972). From this, the 

approach extended to handle scripts for mundane everyday activity; plans with which 

novel situations can be understood, and existing scripts can be extended; and themes 

which organize an agent’s goals, which in turn influence the creation of plans and 

engagement of scripts.  
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A number of systems were implemented to test this general approach: MARGIE 

(Riesbeck 1975) and ELI (Riesbeck and Schank 1976) systems for language processing, in 

which the sentence was fitted against a conceptual representation to determine word 

and utterance import; SAM (Cullingford 1981), the Script Applier Mechanism which 

processed newspaper stories using stereotyped story representations; PAM (Wilensky 

1981), which explained classes of stories using goal representations and planning; and 

many others (Schank and Abelson 1977, Lehnert 1977, Schank and Riesbeck 1981). 

Two elements of this approach are particularly relevant to our discussion of finite-state 

interaction. First is the concept of a script, a structural conceptual representation of 

stereotyped activity, which is a particularly powerful approach for dealing with the 

complexity of everyday interactions: 

We use specific knowledge to interpret and participate in events we have been 

through many times. Specific detailed knowledge about a situation allows us to 

do less processing and wondering about frequently experienced events. We 

need not ask why somebody wants to see our ticket when we enter a theater, or 

why one should be quiet, or how long it is appropriate to sit in one’s seat. 

(Schank and Abelson 1977, p. 37) 

This approach was further extended in ASK systems (Schank and Cleary, 1995), which 

used script-like conversations to motivate learning. Even though the question-and-
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answer conversation itself was completely scripted, it was based on the insight that the 

situation developed in a particular manner, and this development constrained what 

was likely to be asked. 

Second is the idea that language is so intimately related to the activity, that the latter 

should lead the processing of the former. One can notice that only a minimum of 

syntactic processing is necessary in a particular context: 

Probably the major theoretical hypothesis of conceptual analysis is the claim 

that a separate syntactic analysis phase is unnecessary in language 

understanding. (Birnbaum and Selfridge 1981) 

The connection between these ideas, and finite-state dialog models discussed 

previously, is somewhat surprising. Even though the latter are much more limited than 

the conceptual dependency systems, they share a similar emphasis on the structure of 

interaction, and use the structure to inform language processing.  

2.5. Personal Perspective: Towards a New Model 

Having considered the wide spectrum of perspectives on interaction, I would like to 

shift gears for a moment, and discuss my own take on the issue, which grounds the 

work presented in this report at the intersection of the various related disciplines. 
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But let me begin with a personal anecdote, which I hope will illuminate the reasons 

behind my particular synthesis. 

2.5.1. STRUCTURE IN INTERACTION 

Having immigrated to the United States as a teenager, a considerable period of my life 

was spent learning English. But unlike somebody learning the language as a child, I was 

unfortunately completely aware of my situation. 

Without the language, interacting with people becomes a terrifying but fascinating 

activity. If you ever tried to get around a foreign country, you will immediately 

recognize the feeling. As linguistic understanding drops to zero, the numerous 

previously unnoticeable aspects of the situation suddenly come to the foreground, 

shedding new light on even the most mundane of interactions. Grocery shopping, for 

instance—I would go into a store and try to buy something, the cashier would scan the 

items, say something incomprehensible, and I would find myself having no idea what 

he said. What would you do? 

Fortunately, there are ways of coping with people. The intonation will indicate if it’s a 

question or a statement, the gaze will inform you whether you’re expected to say 

something back. Maybe you can even recognize some terms or phrases that you already 

knew—although the way Chicagoans speak, you’ll be lucky if you can tell where one 

word ends and the next one begins.  
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If there were no questions, it was enough to just pay and get out of there. Statements 

made at the end were usually just confirmations, and the “thank you” or “good 

evening” never carried any expectation to stay around and chat. There were also the 

occasional pleasantries that merited a response—statements with “have a” or “happy” 

or “pleasant” were always good candidates for a smile and a “you too”.  

Questions and requests presented a larger problem: figuring out what was actually 

being asked. Fortunately, there was only a limited set of issues that routinely came up. I 

could be asked if I had smaller change, a discount card, an ID; if I remembered the price 

on some unmarked item or knew about today’s two-for-one sale; whether I wanted 

paper or plastic, whether this was all or there was anything else.  

Recognizing these was tractable, since it only required capturing a few key elements 

and fitting them against the situation. Question form was important—“do you have”, 

“would you like”, “is this”. Figuring out the topic was also important—the ID, the bag, 

the item on the scanner. But even if only one of these matches succeeded, this was 

often enough, since the situation state itself was meaningful. Whether the utterance 

was made before activity commenced, as an interruption while scanning an item, while 

paying for the groceries, or after bagging them—the particular position was significant. 

It set the focus, it circumscribed the possibilities; all that was left was filling in the 

blanks. 
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These strategies did fail sometimes—with results only in retrospect hilarious—but most 

of the time they worked very well. It is surprising how well one can get by with only 

the most basic of language comprehension, when understanding is not yet fluent. Even 

without linguistic fluency one can get through situations very successfully, by relying 

on knowledge of the situation, and picking out relevant details. It is on this base of 

basic interaction that layers of linguistic sophistication can eventually deposit. 

2.5.2. INTERACTIONS TEND TOWARDS STRUCTURE 

Recapitulating some of the previous discussion, sociology and linguistics suggests that 

common interactions can exhibit a great deal of structure, shared and stable across a 

number of particular conversations. 

Within the utterance, on the low level, stability is clearly seen with speech acts. 

Particular acts usually have conventional expressions and surface form. While it has 

been suggested that implicatures work because of the logical entailments they encode 

(Searle 1975), the much simpler explanation is that they behave more like idiomatic 

fixed expressions, carrying meaning thanks to a usage convention (Morgan 1978). For 

instance, the standard “can you” or “do you want to” are requests thanks to being used 

as requests.  

Stable structure can also be observed across utterances. Many classes of speech acts 

occur in sequences—such as questions and answers, requests and responses, and so on 
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(Schlegoff and Sacks 1973). Unfinished sequences can be nested, and position in the 

nesting changes communication interpretation—for example, when one expects an 

answer, even unintended utterances will be routinely interpreted as one. 

Structure is also observed in larger sequences, such as in familiar interactions—buying 

items, asking clerks for information, asking for directions, coordinating trip details, etc. 

Some of the ‘scripts’ are so familiar, we don’t even think about them. When the 

situation is well known and does not require novel strategies, people easily fall into 

highly predictable patterns (Linde and Labov 1975).  

Somewhat surprisingly, even when the situation is not all that familiar, people still fall 

into patterns, due to the constraints of the situation. As section 2.4.1 mentions, O’Keefe 

and Lambert (1995) found that even in uncommon situations, people still 

communicated using stable structures based on “conversational idioms”. The surface 

manifestations of these idioms were somewhat more varied than with speech acts, and 

the particulars of the form paid attention to the social roles and emotions of the 

participants, but analyzed with regard to what they accomplished in the situation they 

fell into stable and surprisingly constrained categories.  

For just a single example, one experiment studied conversations between a hospital 

employee and a patient, about following a prescribed drug schedule. The surface form 

of the utterances was varied, but there were only 61 idioms, or conversational “moves”, 
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that those utterances accomplished, such as imparting the importance of taking the 

drug, or asking the patient to wait for it to take effect. The sequencing between the 

idioms was highly meaningful—even though an expression of concern could potentially 

elicit countless response types, that did not happen, and only some responses that 

made sense in the situation were observed. Furthermore, in a manner very reminiscent 

of speech acts, it was not necessarily the raw semantics of the utterance that endowed 

it with meaning, but rather its place in the sequence and the success or failure at 

fulfilling its expected role. 

And when meaning in dialog arises at least partly from its structure, it is an aspect we 

can attempt to exploit. 

2.5.3. VIRTUAL WORLD SIMPLIFIES ONTOLOGY 

Simplifications inherent in virtual worlds make this structure easier to analyze. In 

actual real-world interactions, the environment is huge and unwieldy; it contains all 

sorts of physical entities that require multiple levels of representation, and that can be 

manipulated in very complex ways.  

Not so in game worlds. Due to deliberate design abstractions, as well as limitations of 

the interface, games routinely limit what can be done, supporting only a small set of 

discrete actions on a relatively small and well-defined set of discrete objects. Even 

though the visual representation of these worlds tends to be detailed and 
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photorealistic, the internal representation of the world is usually very coarse and 

selective; the vista is merely a backdrop, and most of the props are glued to the set. One 

can only manipulate objects the designer intended to be manipulable, in ways the 

designer intended they be manipulated.  

Games are not comprehensive simulations of the real world. They do not have the 

infinite granularity of the physical universe, and do not force living entities to 

construct their own complex and contextual representations from scratch. Instead, 

they come with an ontology already built in, with prefabricated representations 

already imposed by the game’s design. In games, all objects are explicit, and their 

affordances few and available for inspection. Granularity is only as detailed as it needs 

to be given the expected gameplay and the allowances of the development process.  

This can simplify dialog modeling. A tightly constrained world model imposes limits on 

what can be done within the universe of the game; it becomes easier to represent 

conversation if the number of topics and activities is limited. Structure is easier to find 

in circumscribed contexts.  

Due to this limitation, it can also be easier for the player to leave the boundaries of the 

game context—for example, to start a conversation about something completely 

unknown to the system. However, these violations can be recognized as such, and the 

designer can provide appropriate mechanisms to deal with them. 
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In the end, because games are simpler, and the designer has total control over the 

universe, it makes structural approaches that much more appealing. Indeed, as we have 

already observed, structural approaches, albeit very simple ones, are already very 

popular in game production.  

2.5.4. PROCEDURALIZING ÉMIGRÉS  

Being a stranger in a foreign land gives you an immediate, visceral understanding of 

the situated nature of communication. And it suggests an approach of how language-

based communication could be implemented in artificial agents.  

We know a considerable amount about getting through common social situations. We 

also carry highly contextual knowledge of language use in these situations. The 

intersection of this knowledge and language use suggests an intriguing, if inherently 

contextual, model of dialog. We can endow our systems with the ability to get through 

interactions even without full understanding of what is being said, by representing the 

details of human situations and the language used to get through them. Then more 

complicated reasoning can be built on top of such situated foundation. 

What can be successfully proceduralized in this manner, and how such 

proceduralization should proceed, are still largely unknown. I hope this work presents 

a positive development towards answering these questions. 
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Chapter 3. Markov Modeling of  Interaction. 

 

 

 

 

 

Maďar se bavil s Němcem zvláštním způsobem, jelikož znal z němčiny jenom jawohl a 

was? Když Němec mu cosi vykládal, Maďar kýval hlavou a říkal Jawohl, a když se 

Němec zamlčel, řekl Maďar Was? a Němec spustil znova. 

The Hungarian was having fun with the German in his own way, as the only 

German words he knew were jawohl and was? When the German was explaining 

something to him, the Hungarian kept nodding his head and saying Jawohl, then 

when the German finished talking, the Hungarian asked Was? and the German 

started all over again. 

— Jaroslav Hašek. Osudy Dobrého Vojáka Švejka za Světové Války. IV-3. 
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Now I turn to the formal analysis of hierarchical structural models of interaction. First, 

to ground the discussion, I present the stochastic tool of hidden Markov models, and 

discuss their role in modeling interaction elements. Next, I introduce my extensions to 

the HMM approach that afford coupling between different independent models. Third, 

I show how this coupling can be used to represent the types of interdependence found 

in hierarchical approaches.  

The result is a conversion of hierarchies of interdependent spaces, into a collection of 

coupled parallel spaces. While the outcome retains the causal dependence between the 

elements, it also allows for temporal independence. The following section then shows 

that this collection of parallel spaces is computationally equivalent to a flat HMM, but 

smaller and more efficient to update. 

But first, a quick note on nomenclature. I use the term sequences to denote particular 

sequences of communicative elements that make up some particular interaction 

between humans, the term protocols for the unknown interpersonal mechanisms by 

which humans produce the meaningful sequences, and processes for the stochastic 

processes that represent these interaction sequences, albeit without any of the human 

knowledge about what goes on. Subsequently, models will refer to the hidden Markov 

models that follow the processes. 
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3.1. Hidden Markov Model Overview 

Consider an unknown social protocol that gives rise to some particular interaction. We 

can observe the results of its engagement, as a sequence of communicative elements 

exchanged between the participants, such as requests, evaluations, demands, and other 

types of communicative acts. When such interaction exhibits a stereotyped structure, it 

can be successfully represented as a stochastic process.   

A Markov process is a stochastic process that exhibits the Markov property: its state is 

dependent only on a finite history of previous states. Many natural phenomena can be 

approximated faithfully and efficiently through such simplification. Without loss of 

generality, we now examine first-order processes, which exhibit dependence on just 

the immediately previous state. 

A hidden Markov model (HMM) is a model of the stochastic Markov process, where the 

state of the process is not necessarily directly observable. Even though the state cannot 

be observed, we can estimate it based on a history of evidence. 

A discrete finite-state HMM is conveniently visualized as a directed graph. Edges are 

labeled with two factors, the probability p of state transition, and the probability q of 

observing some linguistic action during this transition; this linguistic action serves as 

evidence of the state transition. 
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3.1.1. HMM DEFINITION 

The formal definition is as follows. Let  = [0, 1] be the subset of  representing valid 

probability values. Let  be a collection of hidden Markov models, such that each 

M ∈  is defined as a tuple M = ‹ S, A, p, q ›, where: 

S = { s1, s2, . . .  } is the set of discrete states, with a unique initial state s1, 

A = { γ1, γ2, . . .  } is the set of discrete communicative actions that can be observed, 

p : S × S →  is the state transition probability, and 

q : S × S × A →  is the expected action observation probability. 

 

 

 

Figure 3-1. Topological view of a sample state space (sans edge details). 
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To indicate the semantics of the probability functions, we will write p (s’ | s) signifying 

probability of transition to s’ from s, and we require that ∀s ∈ S, ∑
∈Ss '

p (s’ | s) = 1. We 

also define q (γ | s, s’) as the probability of action a being performed at transition from 

state s to s’. Note that this defines action as dependent on transition. 

3.1.2. BELIEF DISTRIBUTION COMPUTATION 

Conversation state is not directly observable—we cannot assume to know where 

exactly we are at any given time—but we can estimate it given an HMM and a history of 

observations.  

The belief distribution b :  × S →  is a function over states in the model, signifying 

the probability that the underlying process is at each of the different states at that 

point in time. The notation bt (s) denotes the probability of being in state s at the 

discrete time slice t, under the constraint that ∀t ∈ , ∑
∈Ss

bt (s) = 1.  

For the initial time slice t = 1, define bt (s1) = 1, and bt (s) = 0 for all s ≠ s1. 

We can calculate bt using the popular forward algorithm for hidden Markov models 

(Jelinek 1997, Jurafsky and Martin 2000). Consider a sequence of actions γ1, γ2, . . . , etc. 

The probability of the entire model accepting this sequence is: 
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P (γ1, γ2, . . . , γt) = ∑
s

bt*(s) 

 

This is the sum of the probabilities of all possible state sequences accepting these 

actions. Each individual sequence is defined as the probability of ending up in state s 

after accepting the sequence of actions. Because the system is Markovian, we can 

define this probability recursively, using the finite history window instead of the 

complete history. 

bt *(s) = ∑
∈Ssi

p (s | si) q (γt | si, s) bt-1* (si)  

 

Our probabilistic model will likely be imperfect, and for large values of t this value may 

lose precision, so it will be necessary to renormalize it. If we choose positive values ηS,1, 

ηS,2, etc. for the state set S such that ηS,t ∑
∈Ssi

bt*(s) = 1, then the normalized belief 

distribution function is: 

bt (s) = ∑
∈Ssi

p (s | si) q (γt | si, s) bt-1 (si) η S,t (1) 

Since each time slice requires its own normalization value, we omit the index t of ηS  

unless an ambiguous context demands it. This formula will be the basis for our usage of 

Markov models.  
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3.1.3. ACTION OBSERVATION ON STATES 

Discussion thus far treated action observation as a function of node transitions. In 

practice, however, it is much easier to use a Markov model with observation as a 

function of nodes. The two representations are interchangeable, and can be easily 

derived from each other. 

The informal intuition is that we invert the state space, turning each transition into a 

state, and each state into a transition, thus tying action observation to states. More 

formally, following Jelinek (1997), we transform a transition-based model into a state-

based model as follows. Define a new model M*, whose state space is a product of the 

old state space with itself: 

 

 

Figure 3-2. Belief distribution over the sample state space. 
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 S* = { (s, s’) : s, s’ ∈ S } 

Then define the action observation and transition functions as follows for each 

s*, s*’ ∈ S: 

q* (γ | s*)  = q (γ | s, s’) 

p (s’’ | s’)   if s*’ = (s’, s’’) and s* = (s, s’) 

p* (s*’ | s*) = 







 

0   otherwise 

At first it may seem that the resulting state space will be a square of the original. This 

will be a matter of the edge density of the original graph. In practice, however, most of 

the newly generated states end up dead, and their elimination reduces the new space to 

a size comparable with the source.  

The belief computation equation (1) can now be easily updated to work with state-

based observation (Roy, Pineau and Thrun 2000, Zubek 2004). We omit the asterisks 

from the above, since the definition of q shows we are dealing with state-based 

observations: 

bt (s) = ∑
∈Ssi

p (s | si) q (γt | s) bt-1 (si) η S,t (1b) 
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My own implementation is based on state-based observations. Thus, in the following 

discussion, I will switch into the state-based model as needed, omitting the asterisks 

except when ambiguous context demands it.  

3.1.4. ACTION PERFORMANCE 

An action performance policy is also necessary, to specify the actions to be generated 

by the system based on the belief distribution.  

This is commonly approached as a matter of specifying some decision policy 

π : (S → ) → A, which maps belief over the states to the space of actions. The policy is 

often calculated from the model and some action reward function—ideally, one tries to 

find an optimal policy, which always produces the best action. However, an optimal 

policy can be hard to find, depending on the problem at hand, and the issue of policy 

production and optimization will have to remain unaddressed here. 

For the purposes of this section, I do not commit to any particular policy or policy 

production mechanism. It will suffice to say that a complete system will include some 

decision mechanism that drives action production. Later, I will discuss my particular 

choices and implementation in section 5.2. 
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3.2. Additional Architectural Choices 

We should describe two additional architectural choices, which work in tandem with 

the hidden Markov models, to enable engaging and complex performance. Those two 

are: a method for evidence observation decomposition, such that it could be estimated 

as a product of simpler components, and a method for implementing a modicum of 

topic retention. 

3.2.1. ACTION OBSERVATION DECOMPOSITION 

Belief computation requires that the function q (γ | s) be provided—it is the conditional 

probability of observing some communicative action given the state. We can use Bayes’ 

rule to derive this conditional from simpler elements. 

To refresh, we follow Bayes’ rule: 

P (γ | s) P (s) =  P (s | γ) P (γ) 

 

Substitute as follows: 

e (γ)  =  P (γ) 

g (γ, s)  =  P (s | γ) / P (s)  

  =  c P (s | γ), where c = 1 / P (s) = 1 / ∑
∈Aγ

P (s | γ)  
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q (γ | s)  =  P (γ | s) 

This way we get a usable decomposition of the evidence observation function: 

q (γ | s)  =   e (γ) g (γ, s) 

 

The function e represents evidence estimation: it is the confidence level that some 

communicative action γ was actually observed from the system input, independently of 

the state. This is used to categorize the current input into likely speech acts, 

interpersonal actions, and other classes of expression, based on state-independent 

surface features. For example, the probability of a request should be quite high for a 

phrase beginning with “can you”, but rather low for a phrase beginning with “you can”. 

We will sometimes subscript e with the time value, to emphasize the dependency on 

the changing system inputs. 

Note that it’s quite possible for a given input to fit into a number of distinct categories 

simultaneously. An emotive gesture such as “Rob nods” can be interpreted in a number 

of ways: simultaneously as a possible sign of affirmation, as a greeting, as a positive 

response to a yes-or-no question, as a turn-taking acknowledgement in a conversation, 

and so on. Each of these evidence values can be non-zero independently of the others. 

This is valid behavior of the system, and it reflects the ambiguity of the inputs.  
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The expectation function g is the probability of that type of evidence leading to the given 

state. This ties the observed evidence to the specifics of the situation. For example, 

given the observation of a request, function g specifies whether the new state is likely 

given the request. This way, a protocol can specify which communicative acts 

accomplish movement through its different stages. 

The multiplication of e and g accomplishes ambiguity resolution. Conceptually, e 

represents the likely interpretation of the input utterance, while g specifies whether 

such interpretation makes sense at that state of conversation. If the utterance fails to 

fit the interpretation, or the interpretation is unexpected, one of e or g will return a 

negligible or zero value, and therefore so will their product. The resulting value of q 

thus represents the intersection of what was recognized with what was expected.  

While this separation may seem unnecessary, it aids the designer. The separation of act 

estimation on one hand, and act expectations on the other, allows for more flexible 

authoring. The communicative act abstraction helps deal with more ambiguous 

situations—and as we will see when discussing implementation, the evidence function e 

can be quite expressive when separated from the specifics of the particular model. 
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The separation also achieves a useful architectural simplification. Evidence estimation 

is independent of states and models; therefore it can be computed independently of the 

belief estimation, as seen in Figure 3-3. This will assist us in abstracting out 

interdependent elements. 

3.2.2. TOPIC RETENTION 

Topic retention is required, so that different spaces could share a reference to external 

elements such as conversational objects: for example, some item under consideration is 

mentioned, and subsequent utterances can refer to it without mentioning it explicitly. 

 

 

Figure 3-3. Functional view of belief distribution computation. 
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Thus, in addition to the structure of the interaction, some memory of the topics of the 

interaction must also be maintained. 

Some dialog models deal with this problem by embedding the different variants 

directly into the state space. For example, in the conversational robot by Roy, Pineau 

and Thrun (2000), the conversation includes separate states for the different TV 

stations one could talk about, such as want-NBC-info, want-CBS-info, or want-ABC-info; for 

the different locations where the robot could be ordered to go, such as send-robot-to-

kitchen, send-robot-to-bedroom, and so on. This is a standard propositional expansion: 

each combination of variants and values is explicated in the state space.  

Another approach, used in planning-based dialog systems, is to use predicate calculus 

representations, implementing the variants as straightforward, unrestricted memory-

based variables. Unfortunately, this cannot be done easily with finite-state HMMs since 

they are weaker than Turing machines. 

Instead, finite-state models can use situational variables to store and access variant 

values (based loosely on deictic representation by Agre and Chapman, 1987). This is 

essentially a task-sensitive global variable binding mechanisms, made up of a set of 

task-oriented variables (e.g. the-topic, the-goal, etc.) and an apparatus for monitoring 

and maintaining bindings.  
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The operational insight is that only a handful of task-specific variables will be used at 

any given point in time. For example, if we only need to track “the topic right now”, 

then there is no need to implement this using multiple, general variables. The number 

of these variables can be easily assumed to be finite and small, without imposing 

excessive restrictions on the system designer. Furthermore, since the elements they 

track are inherently dynamic, one must ensure the variables are not out of step with 

reality—it is assumed that the tracking is computationally inexpensive, and the value of 

each variable is re-evaluated every time it needs to be accessed. 

The system uses situational variables to track references to abstract conversational 

topics. We require that the system carry a structured representation of the different 

topics that can felicitously be talked about in the course of the interaction. The set of 

variables, and the structured set of possible bindings, are both relatively small and 

known in advance; thus we could model context-sensitive variables using a finite-state 

binding mechanism (Horswill 1998).  

The particular implementation will be discussed in section 5.2. For now, it is important 

to emphasize that the state of the situational variables can be available for inspection 

by the system. Variable binding, in general or to some particular value, can be treated 

as a new action γ’, its observation can be estimated through an estimator e (γ’), and 

used to advance or modify sub-interactions using inspection mechanisms described 

below. 
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3.3. Hierarchical Parallel HMMs 

The following describes my extensions to the HMM approach that allow for the easy 

implementation of hierarchical-parallel activity.  

First, I consider the decomposition of a Markov model into separate components. 

Second, I show how to implement state coupling between the components, without 

changing the basic nature of the models. Third, I show how hierarchical dependencies 

can be reduced to this coupling. With dependencies reduced, the resulting system 

becomes computationally equivalent to a collection of small, parallel HMMs. 

3.3.1. CARTESIAN DECOMPOSITION 

Large state spaces make belief computation expensive. However, it is often possible to 

decompose them into a number of smaller and simpler ones. 

As has been mentioned before, two HMM decomposition approaches are popular: first, 

splitting the HMM state space into sub-regions, and second, finding different, smaller 

HMMs, whose combination reconstructs (or approximates) the original (Meuleau, et al. 

1998, Boutilier, Dean, and Hanks 1999). I take the latter approach, also called the cross-

product or Cartesian decomposition. Not all HMMs can be decomposed—but for those 

that can, the efficiency improvement is substantial. 
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Intuitively, a Cartesian product is one that can be decomposed into constituents, such 

that the cross product of their state spaces, and some modification of the probability 

functions, recreates the original Cartesian space. Figure 3-4 illustrates a sample 

Cartesian space, and its constituents. 

 

The constituents are completely independent HMMs, whose belief computation can be 

done in parallel, concurrently with each other. In section 3.4, I will show how the 

 

 

Figure 3-4. Cartesian model C, and its constituents, A and B. 

Arrow between states indicates p, the probability of transition.  

Symbol on arrow indicates q, the probability of production. 
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constituents can be computationally equivalent to the Cartesian model under simple 

mapping functions; however, it is asymptotically faster to update their belief 

distributions than that of the product.  

A model is considered Cartesian if it is in the range of the Cartesian composition 

operator ×C. Define ×C :  ×  →  such that, given some A, B ∈ : 

A ×C B = ‹ SA × SB, AA ∪ AB, pC, qC › 

Here, Cartesian evidence and transition probabilities pC and qC are defined as follows. 

Let ν be the number of spaces involved in the cross product; here, ν = 2. Let the set SC = 

SA × SB be indexed by the source state indices, such that SC = { cij : 1 ≤ i ≤ |SA|, 1 ≤ j ≤ |SB| }. 

Require that AA and AB be disjoint (if they are not disjoint, they can be made so by 

redefining either to be a new set, mapping one-to-one over the old one).  

Then we define transition and action observation functions as follows: 

∀  i, k ≤ |SA|, j, l ≤ |SB|, α ∈ AA , β ∈ AB:  

 pC (cij | ckj) = pA (ai | ak) / ν  (Transitions from the first constituent) 

 pC (cij | cil) = pB (bj | bl) / ν  (Transitions from the second constituent) 

 qC (α | ckj, cij) = qA (α | ak, ai)  (Actions from the first constituent) 

 qC (β | cil, cij) = qB (β | bl, bj)   (Actions from the second constituent) 



86 

 

 

Figure 3-5 illustrates how we calculate transition and evidence probabilities for some 

particular cij.  

 

Observation: This preserves model validity, since ∀cij ∈ SC, ∑
∈ Ckl Sc

pC (ckl | cij) = 1. 

Proof: Let m = |SA|, n = |SB|.  

For each cij ∈ SC: ∑
==

nm

lk

,

1,1
pC (ckl | cij) = 

    ∑
=

m

k 1
pC (ckj | cij) + ∑

=

n

l 1
pC (cil | cij) = 

 

 

Figure 3-5. Cartesian product detail. 
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    ∑
=

m

k 1
pA (ak | ai) / ν + ∑

=

n

l 1
pB (bl | bj) / ν = 

   2 / ν  = 1 

  

We now turn to examine how constituent models can be coupled together. 

3.3.2. MODEL COUPLING 

Independent HMMs are self-contained units, and their belief calculations do not take 

external elements into account—in other words, they do not afford the kind of 

interdependence required for hierarchical engagement. However, we can extend 

evidence estimation and action performance to implement a modicum of coupling 

between the spaces.  

The term coupling is used ambiguously in the literature; it can mean any kind of a 

connection between models. For example, Brand (1997) uses coupling to denote joint 

probabilities across time slices, while Meuleau et al. (1998) couple their POMDPs 

through action policies, such that action production in one process affects the utility of 

productions in others. My approach is different still, although related in spirit to the 

work by Brand (1997) or Ghahramani and Jordan (1995), in that it couples belief 

distributions, rather than action policies.  
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I would like to suggest that state-to-state coupling be accomplished by turning belief 

distributions into something that can be observed. Information about other spaces can 

be encapsulated as evidence observation, and used to influence belief distributions or 

produce limited activity—in a sense, turning the HMMs inside-out, into a system that 

can observe itself.  

This is accomplished by inspection—a mechanism by which the state belief distribution 

of one model can serve as evidence for belief calculation in another model in the 

system. Define it formally as follows. Given two models A, B ∈  with states sA ∈ SA, 

sB ∈ SB, for each case when sA inspects sB, we augment AA with a unique action γ’ that 

signifies the inspection, and define et (γ’) = bt-1 (sB), and g (γ’, sA) = 1. Notice that 

inspection imposes the delay of one time slice.  

One can also couple states via modification, by which state belief distribution of one 

model directly affects that of another within the system. Even though I moved away 

from this approach in favor of inspection, we can also consider it, for the sake of 

completeness. Given two models A, B ∈  with states sA ∈ SA, sB ∈ SB, for each case 

when sA is modified by sB at t, we introduce a new action a’ such that the performance of 

a’ at time t defines bt (sA) = bt (sB), and without committing to a particular policy, we 

ensure that πt (sB) = a’. Note that action policies can only be evaluated after belief 

distribution update, so the effect of modification will only be useful at time t+1. 
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Both methods work across time slices—inspection uses the previous iteration to affect 

present belief, and modification changes present belief for use in the next slice. They 

happen, respectively, before and after belief estimation—it may be useful to 

conceptualize them as similar in spirit to the :before/:after methods of Common Lisp. 

3.3.3. TYPES OF HIERARCHICAL DEPENDENCIES 

Hierarchical engagement requires a representation of causal dependencies between the 

different elements of the hierarchy. We observe the following salient kinds of 

dependencies:  

1. State dependency. This is when the state of one model influences the particular 

state of another. For example, a selling interaction may need to be rolled back a 

step if the player does not like the item.   

2. Model dependency. This is when the state of one model influences whether an 

entire other model should be engaged or disengaged. For example, the 

activation of a selling interaction should enable a number of specialized 

protocols for barter and kissing up to the customer, but the end of the selling 

routine should disable them.  

All possible dependencies are innumerable, but these two are crucial for hierarchical 

models, and can be reduced to coupling methods. The reduction proceeds as follows. 
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3.3.4. STATE DEPENDENCY 

State dependency happens when state belief in one space influences state belief in 

another space. Consider two states, the controlling state sC ∈ SC, and the target state 

sT ∈ ST, such that the belief in the controlling state is intended to influence the belief in 

the target state.  

We implement this dependency via inspection. Set sT to inspect sC via some 

modification function f: define some unique action γC to correspond to the inspection, 

and define et (γC) = bt-1 Î†f (sC), and g (γC, sT) = 1. The result is that the target’s belief value 

will be a function of the controller’s previous belief value. 

3.3.5. MODEL DEPENDENCY 

Model dependency happens when the state of one space influences the engagement in 

an entire other state space; for example, some particular state belief leads to an entire 

different space being completely disabled, as in push-down hierarchical models. 

We implement this dependency via inspection. Consider the target state space ST and 

some controlling state sC belonging to a different space. Allow ST to contain a unique 

disable state s0, with incoming links from all states, and an outgoing link to the initial 

state s1; belief distribution over s0 signifies confidence that the entire space is 

disengaged.  
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Specify that s0 inspects sC in two ways: there exist two unique actions γE, γD that 

correspond to the engagement and disengagement of the subspace, mediated through 

some function f. Define et (γE) = bt-1 Î†f  (sC), et (γD) = 1 – bt-1 Î†f  (sC), and expectations 

g (γD, s0) = 1, and g (γE, s1) = 1. The result is that the engagement and disengagement of 

the target space will be a function of the controller’s previous belief value. 

3.4. Cartesian Composition Details 

I now examine the details of Cartesian composition, and show that belief updates on 

constituents are equivalent, but asymptotically faster than on a flat Cartesian model. As 

mentioned before, different approaches to Cartesian composition have been used in 

other work on the simplification of Markov models (Brand, Oliver, and Pentland 1997, 

Meuleau et al. 1998), and the following describes my particular approach. 

The diagram of a Cartesian composite is reproduced below, in Figure 3-6. 
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3.4.1. PROOF OF EQUIVALENCE  

Informally speaking, when I say that parallel models are equivalent to a Cartesian 

model, I mean that a Cartesian belief distribution can be reconstructed from individual 

parallel belief distributions, but without actually having to construct the Cartesian model 

itself. The formal definition is as follows. 

Definition. For each C ∈ , iff there exist A, B ∈  such that A ×C B = C, we say C is 

separable into A and B.  

 

 

Figure 3-6. Cartesian model C, and its constituents, A and B. 
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Definition. For some HMMs A, B, C ∈  with belief function b :  × SC → , given some 

belief mapping function b’ :  × SA × SB →  and a state mapping function s’ : SA × SB 

→ SC:  

 A and B are equivalent to C under b’ and s’ if: 

1. A ×C B  = C  (constituency requirement), and 

2. b’ = s’ Î b   (belief equality requirement) 

 

Observation. The belief equality requirement means that: 

∀ ai ∈ SA, bj ∈ SB : bt’ (ai, bj) = bt (s’ (ai, bj)) 

Claim of Parallel Equivalence. For all Cartesian models as defined earlier, their 

constituents are equivalent to the Cartesian model under:   

bt
P (ai, bj) = bt (ai) bt (bj), and 

s P (ai, bj) = cij 

Before we attempt to prove this claim, we need a few extra tools. 

Lemma 1. Initial belief equality under bt
P and sP. 

For any Cartesian model C separable into A and B, belief equality holds at time t = 1. 
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Proof. By definition, at t = 1 spaces SA, SB, and SC begin at their initial states, a1, b1, 

and c11, respectively. Therefore: 

 

bt
P (a1, b1) = bt (a1) bt (b1) = 1  

bt (s P (a1, b1)) = bt (c11) = 1 

∀ ai ≠ a1, bj ≠ b1, cij ≠ c11 :  bt
P (ai, bj) = bt (ai) bt (bj) = 0  

∀ ai ≠ a1, bj ≠ b1, cij ≠ c11 : bt (s P (ai, bj)) = bt (cij) = 0. 

 

 

 

Lemma 2. Subsequent belief equality under bt
P and sP. 

For any Cartesian model C separable into A and B, if only one production is observed 

between times t-1 and t, previously existing belief equality is preserved. 

 

Proof. Assume previous equality under bt-1
P and sP holds, such that bt-1

P (ai, bj) = 

bt-1(sP (ai, bj)) = bt-1(cij). Given m = |SA|, n = |SB|, and some observed production γt ∈ 

AC , it follows by definition of b and ×C that: 

bt (cij)  = ∑
==

nm

lk

,

1,1
p (cij | ckl) q (γt | ckl, cij) bt-1 (ckl) η C (2) 
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  = ∑
=

m

k 1
p (cij | ckj) q (γt | ckj, cij) bt-1 (ckj) η C + 

   ∑
=

n

l 1
p (cij | cil) q (γt | cil, cij) bt-1 (cil) η C 

  = ∑
=

m

k 1

p (cij | ckj) q (γt | ckj, cij) bt-1
P (ak, bj) η C + 

   ∑
=

n

l 1
p (cij | cil) q (γt | cil, cij) bt-1

 P (ai, bl) η C 

  = ∑
=

m

k 1

p (ai | ak) q (γt | ak, ai) bt-1 (ak) bt-1 (bj) η C / ν + (3) 

   ∑
=

n

l 1
p (bj | bl) q (γt | bl, bj) bt-1 (ai) bt-1 (bl) η C / ν 

 

If γt ∈ AA then ∀ bj, bl ∈ SB : q (γt | bl, bj) = 0, and bt (bj) = bt-1(bj),  

we set η C =  η Aν, and consequently from (3): 

bt (cij)  =  [ ∑
=

m

k 1
p (ai | ak) q (γt | ak, ai) bt-1 (ak) ] bt-1 (bj) η A  + 0  

  =  [ ∑
=

m

k 1
p (ai | ak) q (γt | ak, ai) bt-1 (ak) η A ] bt (bj)  

  =   bt (ai) bt (bj)  
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If γt ∈ AB then ∀ ai, ak ∈ SA : q (γt | ak, ai) = 0, and bt (ai) = bt-1(ai),  

we set η C =  η Bν, and consequently from (3): 

bt (cij)  =  0 + [ ∑
=

n

l 1
p (bj | bl) q (γt | bl, bj) bt-1 (bl) ] bt-1 (ai) η B 

  =  [ ∑
=

n

l 1
p (bj | bl) q (γt | bl, bj) bt-1 (bl) η B ] bt (ai)  

  =   bt (bj) bt (ai) 

 

 

Lemma 3. Total belief equality under bt
P and sP. 

For any Cartesian model C separable into A and B, given any sequence of temporally 

disjoint productions, parallel spaces satisfy the belief equality requirement with 

Cartesian model under b 
P and sP.  

 

Proof. The claim is true if ∀ t ∈ , ai ∈ SA, bj ∈ SB : bt
P (ai, bj) = bt (s P (ai, bj)). By 

induction, if t = 1, then they are equal by Lemma 1. If t > 1, and they were 

equivalent at t - 1, then they remain equal by Lemma 2.   

 

 

Finally, we prove the original claim of equivalence.  
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Theorem of Equivalence. For any Cartesian model C separable into A and B, the 

constituents are equivalent with the Cartesian model under bP  and s P. 

Proof. Both conditions of compositional equivalence hold: 

1. A ×C B = C by definition of separability. 

2. bt
P (SA, SB) = bt (s P (SA, SB)) by Lemma 3. 

 

 

3.4.2. PERFORMANCE IMPROVEMENT 

Parallel spaces offer asymptotically better performance than a Cartesian space. Recall 

that belief distribution over the entire space is a matter of computing (1b) over each 

state: 

∑
∈Ss

bt (s)  =  η S,t  ∑
∈Ss

∑
∈Ssi

p (s | si) q (γt | s) bt-1 (si) 

The computation of the expression p (s | si) q (γt | s) bt-1 (si) for any combination of s and 

si is invariant on the number of states, and bounded by some O (c). The computation of 

normalization value η is bounded by O (|S|). Thus the calculation of belief distribution 

over the entire space bt (S) is bounded by O (c |S|2). 

Let a Cartesian model C be given. Since it is in the range of ×C, it can be decomposed 

into constituent models M1, . . . , Mn ∈ , such that C = M1 ×C . . . ×C Mn.  
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Let m = max (|S1|, . . . , |Sn|) be the size of the largest state space of those models. It 

follows from the definition of ×C that |SC| ≤ m n. Thus, belief computation over a 

Cartesian composition is bounded by O (c m 2n). 

The parallel space model is more tightly constrained. Each parallel space computes its 

belief distribution individually, bounded by O (c |S|2), but now there are n separate 

computations of at most m-sized spaces. The cost of belief computation over parallel 

composition is bounded by O (c n m 2). 

3.4.3. HIERARCHICAL PARALLEL PROPERTY REVISITED 

The hierarchical parallel property complicates modeling; both causal interdependence 

and temporal independence are demanded of the system at the same time. Treating 

dialog as a composite of simpler, separate elements makes this tractable, due to better 

knowledge authoring and simpler computation. 

Extending the HMM approach to include simple coupling allows us to build large sets of 

independent, coupled space models. These run inexpensively and in parallel, thus 

providing the necessary temporal independence. Coupling also allows for a modicum of 

hierarchical control, thus providing the desirable causal interdependence. 
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Sweet is the remembrance of troubles when you are in safety. 

— Euripides, Andromeda 
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Given the algorithmic description of the last chapter, I now examine systems 

implemented using the hierarchical-parallel approach, and the behavioral results of 

using a flat collection of coupled HMMs. Note this is the discussion of their behavior—

details of implementation are presented in the following chapter. 

4.1. Implemented Systems 

I implemented two systems for two video game characters, concentrating on different 

strengths of the approach. Xenos the Innkeeper is a stereotypical computer non-player 

character (NPC) for a fantasy role-playing game, who sells items and offers hints about 

things to do in the game. The demo concentrates on fallback mechanisms and graceful 

performance degradation, thanks to multiple redundant representations of the actions 

supported by the system. The Breakup Conversation, on the other hand, is a 

conversational “sim game” that offers a parody of the familiar personal drama: the 

conversation at the end of a relationship. It demonstrates an implementation of broad 

competence—even in a situation as extreme and nuanced as a breakup conversation, 

the system can nevertheless find its way through. 

Both systems share similar performance characteristics. The hierarchical-parallel 

spaces introduce multiple levels of representation of the same phenomenon, and 

therefore increase redundancy—even if some particular space loses track of the 

interaction, its parents retain broad understanding of what goes on, and can cope with 
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the situation. This allows for gentle performance degradation at edge of competence, 

and steering the conversation back to familiar grounds.  

Colloquial language used in games is usually noisy and ambiguous, and the stochastic 

approach helps us greatly in its resolution. In particular, the separation of observations 

into evidence estimation and expectation matching was immensely beneficial. 

Informally speaking, evidence estimation presents the system with multiple guesses 

about the player’s utterance, which are then matched against the state-specific 

expectations. In this manner, even ambiguous inputs become handled if they were both 

partly recognized, and expected in the situation; this aids in graceful recovery from 

confusing and uncertain situations. 

The result is an interaction that is significantly more complex than standard 

deterministic finite-state (or pattern-matching) techniques, without a significant 

increase in processing cost. The approach manifests long-term consistency of a level 

unexpected in conversation trees, including coherence within a particular interaction 

‘stage’, and coherent transitioning between stages. 

4.1.1. XENOS THE INNKEEPER 

Xenos the Innkeeper is an NPC for the fantasy game Neverwinter Nights. The character is 

a barkeeper, who sells items, introduces quests, or offers some bar goods via natural 

language conversation. The language utterances are deliberately ungrammatical, set up 
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to sound like “foreigner’s English” by the omission of pronouns and articles, to curb the 

player’s expectation of fluency. Figure 4-1 presents a screenshot of the character being 

engaged in the game. 

 

 

 

Figure 4-1. Xenos the Innkeeper screenshot. 
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Xenos conversation fragment. 
Computer’s utterances and emotes in boldface: 
 
Player says: hi there 
Xenos says: greetings 
Player says: whats going on 
Xenos says: me just working, you know 
Xenos nods: hmm 
Player says: :) 
Xenos says: i have something for you 
Xenos says: what about a task? 
Player says: what is it 
Xenos glances 
Player says: well? 
Player says: what 
Xenos says: the mayor has a letter for me 
Xenos says: could you bring it from the mayor? 
Player says: how much are you paying 
Xenos says: i asked you a question 
Xenos nods: you will get a free lunch 
Player says: not enough 
Xenos says: please? 
Player says: i need a new sword first 
Xenos smiles 
Xenos says: i have for you sword 
Player says: a good one? 
Xenos says: it's a spectacular sword 
Player says: how much 
Xenos says: i'll trade for a health potion 
Xenos nods: you get a free meal 
Player says: i don't have one 
Xenos says: too bad 
Xenos says: me beg you 
Player says: for what 
Xenos smiles 
Xenos says: i need to get a letter from the mayor 
Xenos says: can you go bring it from the mayor? 
Player says: fine 
Xenos says: really? 
Xenos says: what about an important letter? 
Player says: i'll bring it 
Xenos smiles: that's fantastic! 
Xenos nods: well off you go then 
Xenos says: you've got to hurry 
 
 

Figure 4-2. Xenos conversation excerpt. 
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The system is composed of different protocols, concentrating around the agent’s three 

core competencies: selling weapons, serving bar goods, and introducing possible 

quests. Figure 4-2 presents an excerpt from one such interaction. 

In addition to the core models, the system contains more general, redundant models of 

interaction; for example, in addition to the particular models of a weapon request, it 

also includes models for dealing with requests in absence of a recognized topic, for 

dealing with topic mention in absence of a recognized speech act, and for dealing with 

player’s utterance in absence of both recognized speech act and topic, based on its 

perceived emotive components. All of these are active at the same time, all the time, 

and monitor the ongoing interaction; if the player steps outside of the specific model’s 

area of competence, for example by using an unexpected speech act, the interaction 

will fall back onto more general components, which will deal with the situation. 

The result is an interaction system that exhibits the desirable hierarchical parallel 

property: the interaction retains hierarchical composition, into levels of sub-

interactions which retain control over each other, but at the same time allows for the 

parallel and independent engagement of different levels of generality. The redundant 

representation softens the performance drop-off at the edge of competence, and can be 

used to mimic some of the human ways of dealing with error. 
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4.1.2. THE BREAKUP CONVERSATION 

The Conversation is an application of the system to a very broad context. The situation is 

a parody of the conversation at the end of a romantic relationship—the player is 

expected to perform a breakup over instant messenger, with the computer playing the 

role of the soon-to-be-ex, who will attempt to guilt and emotionally manipulate the 

player to give in and abort the breakup. The title is a sim rather than a game in the strict 

sense of the word, in that it presents the interaction as a goal in itself, rather than 

being oriented towards a particular winning condition. 

The player begins by selecting the personal information of the simulated soon-to-be-

ex, then a window that simulates instant messenger opens, as illustrated in Figure 4-3 

and Figure 4-4. The player engages in the natural language interaction, happening in 

real time entirely via typed text, which takes the player on an exploration of the 

breakup space. Figure 4-5 presents an example excerpt from such a conversation. 
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Figure 4-3. Breakup Conversation 

intro screenshots. 

 

 

Figure 4-4. Breakup Conversation 

gameplay screenshot. 
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Breakup Conversation excerpt. 
Computer’s utterances in boldface. 
 
 
Alice: hey there 
Bob: how are you 
Alice: not bad :) 
Alice: and you? 
Bob: what was that you said 
Bob: that we should talk about the relationship? 
Alice: yeah about that 
Bob: :P 
Alice: look 
Bob: what did i do 
Bob: look why wouldn't you just talk to me 
Alice: no it's not you 
Bob: oh really? then what? 
Bob: what does that even mean? 
Alice: it's me 
Bob: i know it's me 
Bob: why wouldn't you just talk to me about what's going on 
Alice: i was thinking about us 
Bob: it's because i stay at home 
Bob: you loathe that i'm lazy 
Bob: don't you 
Alice: no i don't loathe you 
Bob: it's not because of that? 
Bob: how can you do this to me 
Bob: then what is it? 
Alice: i don't know 
Bob: :( 
Bob: i suppose i'm a naive loser 
Alice: i'm feeling, well, like i'm suffocating 
Bob: you're just messing with me 
Alice: i need space 
Bob: i can't believe that 
... 
Bob: you can't seriously be doing this 
Bob: don't you love me? 
Alice: i thought i did 
Bob: but no longer? 
Alice: i don't know 
Bob: well then 
Bob: do you hate me 
Alice: you do things 
Bob: do you despise me 
Bob: did you really make up your mind? 
 

Figure 4-5. Breakup Conversation excerpt. 
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Even though the situation is not stereotyped in the same way as a fantasy barkeeper’s 

job, the system can still manage the conversation by recasting it into its own scripts. 

The computer has the knowledge of some patterns typical of a breakup conversation 

and the ways of getting through them: these include the “it’s not you it’s me” ritual, the 

“why are you doing this to me” blame, the refusals to discuss issues, and other ways in 

which people panic, reason, plead, lay guilt, and so on. The rituals are treated 

informally, and meant to be exaggerated and entertaining, rather than psychologically 

felicitous—they were inspired by Berne’s interpersonal games (1964), as well as sitcoms 

and personal anecdotes. The computer agent will attempt a number of different guilt 

games, and the player’s goal is to not give in. And while this approach is not capable of 

dealing with the player’s invention of new background information or reasons, it is at 

least able to steer the conversation in a direction familiar to the system.  

The overall interaction is modeled by decomposing breakup conversations into a 

hierarchy of simpler protocols, corresponding to breakup components. The highest-

level protocols coordinate general ‘stages’ of a breakup – e.g. reasoning with the player 

about the breakup, making them feel guilty about it, and so on. Below them are 

protocols for getting through particular stages – for example, the guilt-laying stage will 

decompose into a number of strategies involving emotional blackmail and pleading for 

pity. At the bottom of the hierarchy we finally have very specific, low-level protocols: 

reacting to the player’s evaluations, reacting to an apology, offering apology, making a 



109 

 

particular emotional blackmail maneuver, recognizing a rationalization, recognizing a 

breakup reason, trivializing the reason, rejecting the reason, and so on. 

4.1.3. SYSTEM OVERVIEW  

To consider how the system accomplishes its effects, let us quickly examine its 

architecture. The following is just a quick overview—full details will be presented in the 

next chapter. 

Recall that each HMM is represented using a separate, parallel state space, with 

optional coupling. The main engine is composed of a sequence of stages: estimation of 

all communicative actions, belief computation of each HMM, and action generation 

over all HMMs. In particular, at each iteration of the control loop, the following stages 

are executed in order. 

 Parsing and preprocessing takes utterance from the player, and prepares it for Markov 

state estimation. 

 Evidence estimation evaluates e for each speech act and communicative action, based 

on the outputs of the preprocessor. This includes evidence for coupling 

mechanisms and topic tracking. 

 State estimation computes the new belief distributions for each parallel space, given 

the evidence and the last known state.  
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 Action production and generation evaluates action production policies for all spaces, 

arbitrates among them to produce a single output of the system; this gets translated 

into specific utterances or emotes, and sent to the game. 

 

Figure 4-6 illustrates the architecture. Thick arrows correspond to data flow between 

the stages. Dotted lines, on the other hand, represent the effect of coupling. This can be 

thought of as “backward” influence over a time step boundary, since inspection links 

the evidence estimation to last iteration’s beliefs, and modification links beliefs to last 

iteration’s actions. 

 

 

Figure 4-6. Engine architecture. 



111 

 

Thus the incoming utterance ‘flows’ through the system in a simple, single pass. First, 

the utterance is preprocessed, and turned into a list of words. Second, communication 

estimators and variable trackers trigger off the list of words, and the last known state 

of the system. Third, the belief is re-estimated based on the estimators and the last 

known state as well. Finally, action policies suggest an action to produce based on the 

new belief distributions. In other words, the stages form a linear pipeline, with each 

stage executed once to process the results of the previous stage.  

Data flow across the entire engine is diagrammed in Figure 4-7. Details of computing 

just one state space pulled out from the overall system is then shown in Figure 4-8—this 

is the same space as previously introduced in Figure 3-1, rearranged for readability. 

Since each space is completely independent, this separation is easily done. The left side 

of the figure represents the effects of evidence estimation used by each state. Each 

estimator is implemented using pattern matching over the inputs, except for the 

inspection estimator “is help-handler done”, which is a simple lookup of b from previous 

iteration (cf. implementation details in section 5.2.3).  
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Figure 4-7. Data flow overview. 

(Solid lines signify direct data flow, dashed lines signify coupling) 
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Table 4-1 examines the different spaces used in the two implementations—it is a rough 

overview, meant to provide a sketch of the different sub-components of the overall 

interaction.  

 

 

Figure 4-8. Data flow details. 
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Shared Spaces 
 
Low level monitors: 
  Conversation timer 
  Silence monitor 
  Monologue monitor 
 
Ambient movement: 
  Fidget machine 
  Turn enforcement  
  Ambient emote 
  Stock response 
  Turn monitor  
  Topic monitor 
 
Insult management: 
  Direct insult 
  Indirect insult 
  Insult accumulation  
 
General routines: 
  Topic recognized  
    but not the form 
  Question recognized  
    but not topic 
  Question about object 
  Question about health 
  Request general 
  Request item 
  Disagreement 
  Player evaluation 
  Agent evaluation 
  Condemnation monitor 
 
Conversation structure: 
  Greeting 
  Intro conversation 
  Outro conversation 
 

 
Breakup 
 
Breakup intro: 
  Allude to breakup 
  Giving in monitor 
  Guilting coordinator 
 
Guilting: Self-pity 
  Self-criticize 
  Reject compliment 
  “You must hate me” 
  “Why are you mean” 
  “Will you help me” 
 
Guilting: Indignation 
  “I thought you loved me” 
  “I thought you cared” 
  “I don’t deserve this” 
  “How can you do this”  
 
Guilting: Pleading 
  Beg for second chance 
  Promise change 
  “But I love you” 
 
Guilting: Reasoning 
  Guess at reason 
  Demand reason 
  Evaluate reason 
  Treat as excuse 
  Deny reason 
 
Panicking: 
  Silence 
  Impatience monitor 
  Resignation monitor 
  Rejection monitor 
  Start panic 
 

 
Xenos 
 
Quests: 
  Quest monitor 
  Perform quest injection 
  Deal with agreement 
  Deal with rejection 
  Rush the player 
 
Special routines: 
  Job request 
  What question 
  Where question 
  Payment question 
  Evaluate object 
  Barter for object 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 4-1. Outline of the different spaces used in the two implementations. 
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4.1.4. SYSTEM PERFORMANCE 

Two figures that follow illustrate the performance of The Breakup Conversation, version 

from November 2004. This latest implementation includes 958 estimator fragments, 

and 75 state spaces, ranging from 1 to 11 states each, whose union contains a total of 

417 states. Estimator fragments are individual word or sequence tests, possibly reused 

across a number of estimators, as well as combination operations.  

Latest version of Xenos includes 629 estimator fragments, and 38 spaces, which together 

consist of 234 states. Xenos is demonstrably less complex than the Conversation; at the 

same time, it is more difficult to benchmark, because it runs as part of a larger game 

server. Therefore, I only present performance numbers for the Breakup Conversation 

implementation. 

The results presented below show average processing time taken per iteration of the 

system, as a function of input length. The data was based on 1150 iterations on a 1.8GHz 

Pentium 4. The system ran one iteration per second on the average. 

Performance benefits greatly from the system’s straightforward design. Figure 4-9 

demonstrates the overall performance of the engine, including parsing using the Link 

parser, and all stages of the engine—but excludes user interface and presentation 

elements.  
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As the figure shows, the system’s performance is roughly linear with utterance length, 

has the average base cost of 10 milliseconds, plus 3 milliseconds per word. Processing is 

dominated by parsing in the external Link parser. 

Figure 4-10 illustrates the performance of my part of the system—it shows the timing 

results for all parts of the system except parsing.  

System Performance Including Parsing
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Figure 4-9. System processing time, including the parser. 

The Breakup Conversation, version from November 2004. 
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The average processing cost for the entire hierarchical parallel system, including 

evidence estimation, belief update, and action production, is less than 500 microseconds 

per iteration.  

Additional technical details about engine implementation are provided in the next 

chapter; now we turn to the details of how hierarchical effects are achieved using the 

previously introduced coupling. 

System Performance Excluding Parsing
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Figure 4-10. System processing time, excluding the Link parser. 

The Breakup Conversation, version from November 2004. 
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4.2. Behavioral Results: Interleaving, Fallback, Recovery 

I can now discuss the details of hierarchical coupling, and how it allows for the 

implementation of interleaved interaction, as well as fallback and recovery 

mechanisms. 

First, I would like to illustrate hierarchical coupling in greater detail. Then I describe 

two particular classes of errors supported by the hierarchical parallel approach. First is 

the case of getting lost in interaction, resolved by fallback on simpler representations 

of activity. Second is the case of failing to advance in interaction, which is addressed by 

reflexively monitoring the state of the system.  

4.2.1. HIERARCHICAL COUPLING 

Parent-child dependency requires that parents be able to enable or disable the 

children, and children be able to inform the parents about their progress. Figure 4-11 

illustrates how this dependency is used to implement hierarchical engagement in The 

Breakup Conversation. First, the overall interaction is decomposed into stages, then each 

stage into several specific “themes”, such as pleading for mercy or reasoning about 

what happened. Each theme includes a number of parallel protocols that handle the 

different aspects of the theme, and a starter space that jump-starts the theme if 

necessary (for example, making some sobbing accusation jump-starts self-pity). 
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Coupling can mimic synchronous or asynchronous control. In asynchronous control, 

the parent enables the child, and lets it run independently of itself. It can disable the 

child, of course, perhaps based on the activation of some other space, but this is not 

necessary. In Figure 4-12, the relationship between the guilt-laying controller and 

pleading space is an example of asynchronicity—the parent controls the child, but itself 

does not depend on the child’s state. 

 

 

Figure 4-11. Fragment of space hierarchy from the Breakup Conversation.  
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Such interleaved interactions require the parent to include a controller state sC that 

enables or disables the entire child space. Per previous description, the belief in state sC 

becomes an activation signal for the child, and allows it to transition into the initial 

state s1.  

 

 

Figure 4-12. Coupling details among three different spaces.  
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Synchronous coupling can be implemented by adding a reverse inspection, from the 

child to the parent. In addition to enabling the child, we add a special monitoring node 

to the parent which inspects some end-node of the child space; in this manner, the 

parent effectively ‘blocks’ until the child has reached some satisfactory end state. In 

Figure 4-12, the relationship between pleading and pleading-starter is an example of 

synchronicity. 

The parent space includes a controller state sC, with only one out-edge leading to a 

return-checking state sR. Let the child space be enabled by the activation of sC through 

inspection. Reciprocally, the child space includes some end state sE that is being 

inspected by sR. Activation of sC enables the child, as well as transfers parent activation 

 

 

Figure 4-13. Nested dependency.  
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to sR; the parent will “wait” at sR until the child reaches its end state sE. See Figure 4-13 

for illustration. 

4.2.2. TECHNIQUES FOR FALLBACK 

To err is human, and to recover even more so. Interactive systems must be able to deal 

with inevitable communication problems in a believably human-like way, resolving 

them without breaking the player’s immersion in the interaction. One ought to avoid 

the mechanical answer of “I don’t understand”, leaving the human to do all the work. 

In actual interactions, we do not simply give in; rather, we use the knowledge and 

expectations about the situation to resolve miscommunication. 

Players will inevitably attempt sub-interactions for which the system is not prepared—

but those nevertheless need to be resolved amicably. People do not give up on 

misunderstood conversational moves, and neither should our agent. 

Suppose that Xenos hears an odd utterance that it cannot possibly understand: “What’s 

the population of United States”, or “I hate it when the slithy toves gyre and gimble in 

the wabe”. The shopkeeper agent knows about the United States about as much as 

about slithy toves—which is to say, nothing at all. But it would not be very sporting to 

just admit failure, or worse yet, ignore the utterance altogether.  
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Instead, the agent ought to attempt recognize as much as it can about what goes on in 

the interaction. Even if the slithy toves are not in the lexicon, one can detect from the 

sentence surface that it’s an evaluation: the negative beginning “I hate” followed by the 

clause is a dead give-away. Thus it should be recognized as a negative evaluation of 

something unknown, and dealt with as such—replying, “I don’t know enough to judge, 

really”, or perhaps “what have they done to you?”  

If the player is even more obscure, for example using an IM neologism such as “I h8 

slithy toves”, the evaluation might not get recognized either. But at least the “I” in the 

agent role that can be used, and the overall utterance treated as some kind of an 

information statement. This in turn can trigger a segue that retains a little bit of the 

subject continuity—e.g., “By the way, I think you might like this sword I just got.” 

This is implemented naturally using hierarchical parallel approach. Each type of 

utterance is represented by several different spaces, modeling different levels of 

generality. Their action production is arranged so that, if several of them suggest 

activity, productions from the more specialized handlers win over the more general 

ones.  
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For example, question answering happens on multiple levels. The most specific 

handlers look for particular questions such as “how much is” or “where is”, and deal 

with them appropriately. Less specifically, a generic question handler deals with 

situation where the topic was recognized, but not the question type—and it asks for 

clarification, such as: “what about the job?” Finally, at the least specific level, if the 

meaning of the question was completely misunderstood, the system must realize that 

something was being asked, and respond uncertainly—perhaps shrug or try to change 

the topic. Figure 4-14 illustrates a sample layout, with multiple redundant question-

handling spaces. 

 

 

Figure 4-14. Fallback example with redundant question handlers.  
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4.2.3. TECHNIQUES FOR RECOVERY 

Failure to advance in the interaction is another common possibility. Artificial systems 

often respond to failure by resetting the stage and trying again, but a believable agent 

must be careful about doing this.  

Suppose that the Breakup Conversation had been going on for a while, but the pleading 

cycle reached an impasse—the player does not appear to be navigating through it. How 

to deal with the situation? It would be unacceptable to just restart the pleading from 

the beginning, or even worse, to keep repeating the last phrase hoping to hear 

something different. The situation has to be handled as it stands, ambiguous, and 

misunderstood. 

Instead, the system must realize that it is not advancing. This requires an intermediate 

monitor space, including a special stuck state, which inspects the different spaces in the 

pleading cycle. As long as the pleading spaces are running, the belief in the stuck state 

keeps increasing a little with every time slice. At the same time, a reset state is set up to 

monitor when the stuck state crosses some acceptable threshold, at which point 

another cycle is enabled and ordered to take over.  

It may even be beneficial to build an estimator of entropy, which would be sensitive to 

the entropy of the belief distribution for a given space. The useful extension has been 
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implemented in the system, but is not being used; I found it sufficient to monitor a 

success state, without concern over the shape of the overall belief distribution. 

4.2.4. ANNOTATED CONVERSATION EXCERPTS 

The following are examples of hierarchical and parallel engagement.  

The diagrams are presented as timelines. On the right is a verbatim copy of a 

conversation with the system; it includes each utterance of the player and the agent, 

one after another. Above the diagram, some of the spaces responsible for the behavior 

are illustrated, and in the center, vertical lines correspond to their engagement in the 

situation; thick lines mean active engagement, thin dotted lines mean the space is 

active but not advancing, and no line means the space is inactive. On the left side, I 

include my own commentary on what happens in the system. 

First, a simple illustration of interleaving. Figure 4-15 presents an example of the 

simultaneous overlapping activation of several different themes from the Breakup 

Conversation: pleading, self-pity, and guilt accusation. They are all active at the same 

time, and the player’s actions as well as successes and failures of the other handlers, 

result in their reactivation or deactivation. 
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Interleaving can also occur on a much longer time scale. In Figure 4-16, a quest 

acquisition protocol is started along with an item purchase conversation; however, the 

player does not pick up on it, so quest introduction remains activated but does not 

advance. However, the player’s utterance after the purchase is recognized in context of 

quest acquisition, and the space handles it.  

 

 

Figure 4-15. Several interleaving protocols. 
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Interleaving can also implement robust error handling. As seen in Figure 4-17, one can 

arrange several categories of handlers, of different levels of specialization, to be all 

coactive but dormant most of the time. When a question or another utterance arrives 

which requires handling, all of the matching handlers activate—but only the most 

specific one actually results in output generation. 

 

 

Figure 4-16. Interleaving on a longer time scale. 
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Next example, Figure 4-18, shows how the situation can affect evidence processing. 

Statements such as “thanks” or a “what is” question are usually handled by general 

question-answering or request-response machines. However, certain situations imbue 

these standard utterances with new meaning—for example, “what’s up” is most 

 

 

Figure 4-17. Fallback to general handlers. 
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definitely not a question about what’s on the ceiling, but a greeting routine—and 

specific handlers must be able to override them.  

 

These specialized handlers are enabled and disabled by the parent space, but run in 

parallel with other handlers and override their outputs. 

Figure 4-19 presents an example of a straightforward hierarchical engagement. As the 

guilt situation progresses, the main controller enables increasingly specialized spaces 

 

 

Figure 4-18. Situation-specific handling. 
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to deal with the changing situation—they behave as if they were properly nested, and 

once the final space is finished, all of them exit.  

 

 

 

 

Figure 4-19. Hierarchical engagement. 
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C'est le temps que tu as perdu pour ta rose qui fait ta rose si importante. 

It’s the time you wasted on your rose that makes your rose so important. 

— Antoine de Saint-Exupéry, Le Petit Prince. 
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Both Xenos the Innkeeper and the Breakup Conversation, the systems described in the 

previous chapters, were implemented using the same engine. In this chapter, I describe 

how to implement such an engine as a set of simple computation stages. The 

description below combines information on how to build such an engine from scratch, 

interleaved with background description of my particular implementation choices, and 

followed by an entire section on optimizations made possible by the system’s 

architecture. I hope the detail will be sufficient to enable a complete and efficient re-

implementation.  

5.1. Engine Overview 

The overall engine is a pipeline of several simple stages, invoked one after the other, 

each making use of the previous states’ outputs. The following is a quick overview of 

the stages—we will examine them in great detail momentarily. 

1. Shallow parsing and preprocessing. Inputs to the system arrive as a tuple of 

speaker’s name, emote, and utterance; for example: ‹ player, says, “it’s a good 

idea” ›.  The utterance goes through very simple parsing, word tagging, and 

semantic markup. The result is a flat word list, tagged with information about 

each word.  

2. Evidence estimation. Based on the flat word list, a number of estimators are run, 

to determine the value of evidence estimation e (γ) for the different values of γ. 
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For example, “it’s a good idea” could be used to express confirmation, but it’s 

not likely to express a greeting or an insult; so the value of e (confirmation) 

should be pretty high, while the value of e (insult) and e (greeting) should be low 

or zero. The product of this stage is a distribution of probabilities over the set of 

possible communicative acts and other types of evidence. 

3. Concept tracking. Some of the evidence estimators can then be used to adjust 

bindings of situational variables. For example, if the player had said, “what 

about the job”, that should be used to adjust the variable the-topic to point to a 

node describing a quest. The product of this stage is updated variable bindings, 

and updates to any estimators that use them as evidence.  

4. Belief computation. Each belief distribution is now updated. The expectation and 

evidence functions are combined to form the state evidence function q, and 

used along with state transitions p and previous belief bt-1 to compute the new 

belief.  

5. Action selection. Based on the new belief distribution, a number of actions are 

being proposed. These are arbitrated, and one action is finally produced by the 

system, resulting in a tuple ‹ agent, emote, utterance ›.  

Finally, after the performance of these stages, the system’s output is sent back to the 

game, and also fed back to the system, becoming an input of the next iteration. 
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As can be seen in Figure 5-1, the system can be easily located in a stand-alone library, 

which can then be used by client programs. The Breakup Conversation is a simple IM GUI 

that connects to the engine library. In Xenos, on the other hand, a custom interface 

library for the game Neverwinter Nights was written, which hooks up the library to a 

multiplayer game server.  

Authoring a character using such an engine requires the designer to specify four 

different types of information. Most generally, some set of state spaces need to be 

 

 

Figure 5-1. Engine interfaced to game clients. 
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designed, which correspond to the different sub-interactions in which the agent could 

engage. Second, we need a set of estimators, which will convert user’s utterances into 

evidence for where the conversation is going. Third, we need an action selection 

system, which will produce some output based on the state of the conversation. 

Additionally, we need a simple knowledge representation system, to keep track of 

topics of conversation across different sub-protocols.  

Let us now turn to the details of how each stage works, and what it produces. 

5.2. Engine Stages 

5.2.1. RELAYING INPUT FROM THE GAME TO THE ENGINE 

The engine receives events produced by the player, as well as those it produces itself. 

Each event is a tuple of three elements: speaker’s name, emote, and utterance. The 

name is self-explanatory; the utterance is a string containing what the player said (if 

anything); finally, the emote is a catch-all element for emotive actions or gestures 

(such as “Rob waves: hi there” or “Rob frowns: I said no.”). This simple treatment allows for 

limited representation of embodied action, without a commitment to a particular 

ontology of activity. 

When such a tuple is received, the name and action are stored verbatim, but the 

utterance is shallowly parsed as follows.  
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5.2.2. PARSING AND PREPROCESSING 

The preprocessing stage takes the utterance as a string, and converts it into a tagged 

list of words and stems. The tags should include: part of speech (POS) information, 

semantic roles, and a modicum of pragmatic information, such as the possible affective 

or social significance. Figure 5-2 presents an example of desirable preprocessing 

output. 

 

This is easy to do in two passes. First, the utterance is parsed using an off-the-shelf 

parser, to find POS tags and a parse tree. Then, second pass converts the parse tree into 

a flat list of stemmed words, marks semantic roles, and attaches appropriate additional 

tags based on dictionary lookup. 

 

 

Figure 5-2. Preprocessor output: word list with semantic roles and tags. 
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In my implementation I used the Link Parser, by Temperley, Sleator, and Lafferty 

(2005). It is a relational probabilistic parser, analyzing utterance structure by satisfying 

structural constraints imposed by each word. The parser is the only element of the 

system I didn’t build; my modifications of it extend to marshalling output into a specific 

word list format, as described below. Fortunately, the parser source code can be 

downloaded from http://www.link.cs.cmu.edu and the license allows for unrestricted 

use in all manner of contexts. 

Relational parsing works by applying constraints between types of words, and 

reconstructing the structure of the sentence based on a process roughly resembling 

constraint satisfaction. The result can be a linked graph of words, or a constituent tree. 

Along with structural reconstruction, this parser also returns POS tags for all of the 

words, performed heuristically based on word morphology and role in the link 

structure.  
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After parsing, each word is annotated with its likely semantic role. These denote each 

word’s role in the activity being considered: for example, which words describe the 

agent performing the action, the patient on which the action is performed, the method 

with which the action occurs, and so on. These sometimes overlap with grammatical 

categories such as subject, direct object, indirect object, and so on.  

My system only supported four roles: action, agent, patient, and method. These are naively 

derived from constituent tree positions using rules shown in Table 5-1. 

 

 

Figure 5-3. Parser output: part of speech tags and constituent tree. 
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Semantic Role Structural mapping Constituent Tree Trace 

+agent Subject of main and 

subordinate clause 

S  NP 

VP  S  NP 

SBAR  S  NP 

+patient Direct object of main and 

subordinate clause 

VP  NP 

SBAR  VP  NP 

+action Verb S  VP 

SBAR  S  VP 

+method Prepositional clause 

object (indirect) 

VP  PP 

VP  SBAR  VP  PP 

 

Table 5-1. Semantic role mapping 

Where S is a sentence, NP a noun phrase, VP a verb phrase, PP a prepositional 

phrase, and SBAR a subordinate clause (after Temperley, Sleator, and Lafferty 2005). 
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We may also want other types of word information and categories, such as additional 

grammatical categories or some sort of pragmatic information, which are not provided 

by the parser. This is done by letting the user define additional categories. 

For example, words may need to be categorized based on their possible emotional or 

social significance; “wonderful”, “lovely”, and “nice” would all be tagged as pleasant 

adjectives, “bad”, “horrible”, or “nasty” as unpleasant, and number of swear words as 

insulting.  

Categories can also be used to specify useful high-level syntactic constructs, which are 

not provided by the parser. For example, it is often useful to group together “who”, 

“where”, “why”, and “when” as examples of interrogative wh-words. Other types of 

useful categories include: indexicals, such as “it”, “this”, and “those”, and the set of 

copulae, such as “am”, “are”, and “is”. These need not be disjoint, of course—“isn’t” 

belongs both to copulae and negative sets, for example. 

The categories, in a sense, describe pragmatically important subsets over the set of all 

words. It is also useful to allow set operations on categories; for example, such that the 

tag negative could be described as a union of insulting, unpleasant, and others. 

In my own implementation, the set of categories and their members are enumerated at 

design-time by the system developer; this allows for some useful optimizations (to be 

described in section 5.3). At the same time, this limits the system’s categorization 
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abilities to straightforward lookup. A more comprehensive implementation should 

make use of more complex relations between words, such as semantic relations 

expressed in databases such as WordNet (Miller 2005), or analysis of affective effect. 

Finally, the preprocessor stems each word using the Porter stemmer (Porter 1980), and 

stores the stem alongside the word in the list. The stem will be used for matching by 

evidence estimators. 

The result of this stage is a flat list of stemmed words, tagged with part of speech 

information, semantic roles, and other category information. The constituent tree is 

discarded. 

5.2.3. EVIDENCE ESTIMATION 

Evidence estimation stage takes the tagged word list, and computes the probability of 

having observed the different types of evidence given the utterance. The types of 

evidence include speech acts (for example, insult, question, or denial), communicative 

acts that can be accomplished through speech or emotes (for example, greeting or 

negation), and conversational idioms observed in the task (for example, I-care-about-you 

expression, or an impatience-expression).  

The result of estimation is the e function distribution—a mapping from evidence types 

γ to probability values, given the word list, such as illustrated in Table 5-2. It is 
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normalized, either in this stage or during belief distribution update. The following is a 

description of how these evidence types can be defined and evaluated. 

 

Categorization of speech into communicative acts is a painfully complicated process, 

and the solution could be made highly complex. However, rather than attempt a strong 

and fail-proof solution, I found it quite sufficient to attempt a weak and fast solution: 

just a broad categorization based on the surface features of the utterance.  

In a few simple cases, word lookup can be enough. For example, “hello” is very likely 

used as a greeting, and the verb “beg” used to describe a request. The mapping does not 

need to be one-to-one, of course—a word such as “yeah” can indicate a number of 

actions, including an agreement, an acknowledgement, a conversational maintenance 

 

Utterance: “it’s a good idea” 

Evidence type: greeting compliment agreement insult . . . 

Probability: 0.0 0.9 0.1 0.0 . . . 

Table 5-2. Communicative act estimation example for an utterance. 
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expression, or even just a generic way of taking a turn. So sometimes, word-based 

lookup is enough. 

In most cases, however, one looks for sequences or combinations of several words or 

tags. Speech acts commonly have very distinct, idiomatic structure—for example, “can 

you verb-phrase” is generally used to denote a request. Similarly, the grammatical 

structure “do you verb” or “wh-word copula” are usually different types of questions. 

Finally, a number of colloquialisms and fixed expressions must be recognized as such—

for example, “what’s up”, which is an idiomatic greeting and not a question.  

As the system grew, I found it useful, from the authoring point of view, to also allow for 

the combination of individual simpler types of evidence into complex ones: for 

example, allowing the user to define greeted-or-complimented as a straightforward max 

of greeting and compliment estimators.  

Testing for sequences of words or tags can be done using simple pattern-matching 

techniques. In my implementation, I developed a custom pattern language, similar to 

limited regular expressions, which could match based on word stems or combinations 

of tags. The language performed a match over the utterance word list, and returned a 

probability value. Such tests could also be combined into conjunctions and 

disjunctions, as necessary for the task at hand. 
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The result of a surface match is ambiguous and only roughly accurate, but it appears to 

be sufficient—the probabilistic belief computation stage helps with disambiguation, 

since it uses situational expectations to eliminate irrelevant or erroneous evidence.  

In addition to surface estimation, two other types of evidence are supported. First, 

evidence from variables, will be described in the next section. Second, evidence from 

the last known belief distribution, is our implementation of the inspection mechanism, 

as described in section 3.3. Recall that this refers to looking up belief over a particular 

state of some particular HMM, such as “the inactive state of self-pity-controller” or “the 

player-counters state of barter-for-thing”. It is implemented straightforwardly, as a value 

lookup of that state’s last belief distribution, bt-1 (s).  

The result of all the evidence estimation stage is a distribution of probability values 

over the set of all possible evidence types.  

5.2.4. SITUATIONAL VARIABLES AND TOPIC RETENTION 

Variable binding also results in evidence evaluation, but it uses a slightly different 

mechanism, which we should discuss first.  

As discussed in section 3.2.2 on topic retention, the system ought to retain a modicum 

of topic information across numerous particular sub-interactions. This can be 
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implemented as a handful of variables, available to be bound to the different topics of 

conversation.  

These variables are task-sensitive and agent-specific, and their binding can be re-

evaluated on a regular basis, based on the task at hand. Each variable is controlled by 

several binding routines called trackers, which try to keep it bound to relevant values. It 

is convenient to have a handful of different variables with different tracking 

mechanisms, operating on different time scales. In my latest implementation, the 

situational variables include: the-topic corresponding to the topic of conversation, the-

current-topic that represented a more transient version of the previous, the-action, the-

agent, the-patient, which tracked which nodes might have been referred to in the 

different parts of the last utterance. Additionally, Breakup Conversation included the-

reason which pointed to an event relevant to the breakup, and Xenos included the-quest 

variable for talking about some quest information, and the-item variable pointing out an 

item to be bartered.  

The variables can be bound over a set of values, or concepts, representing the topics 

that can be discussed—these range from simple atomic elements, such as player or 

sword, to more complex concepts such as letter-courier-quest. The collection of all 

concepts is a minimal knowledge representation of the game world.  
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My implementation allows for the addition of properties attached to concepts, which 

are used in action production (described later in this chapter), and relations, which 

bind together different concepts. The result is a simple semantic network describing an 

ontology of game entities, events that can be talked about, and relationships between 

them.  

Variable state can now be used as types of evidence. Some types of evidence my 

implementation supports include: whether a variable is bound, whether it is bound to a 

node of particular type (for example, if the-topic is bound to a quest node), and whether 

it is bound to a node with a particular relation (for example, if the-topic has an agent 

relation to the player node). These tests are performed, as specified by the designer, and 

used to fill in the appropriate evidence estimators.  

5.2.5. BELIEF UPDATE 

After evidence estimation, the belief for each HMM is updated. Recall that the belief 

distribution for any particular state can be calculated using formula (1b) from section 

3.1: 

bt (s) = ∑
∈Ssi

p (s | si) q (γ | s) bt-1 (si) η S,t  

In terms of implementation, each HMM can be thought of as a structure that includes 

the following information: 
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 The previous estimated belief distribution bt-1 (mutable), 

 The transition probability p over pairs of states (constant), and 

 The evidence expectation g over pairs of states and evidence types (constant). 

 

The belief update computation is quite straightforward. A naïve implementation could 

look as follows. For each target state s, we iterate over all possible source states si, 

summing up the products of each previous belief in the source state bt-1 (si) and the 

probability of having transitioned p (s | si).  At the same time, we sum up the products of 

the different evidence expectations g (γ | s) with the evidence estimations e (γ) over the 

set of evidence types. Multiplying the resulting two numbers together, we get the raw 

belief estimate for the state—conceptually, it is a product of the likelihood of the new 

state given where we thought we used to be, and given what we thought we observed. 

After computing this for all states, normalize the entire distribution such that is sums 

up to one, to control for loss of precision—the normalized distribution is the updated 

belief value. 

This naïve implementation gets the point across, but would be exceedingly inefficient. 

The optimization section includes more details on how belief over an entire state space 

can be accomplished in two matrix operations and a normalization. 

The result of this stage are new belief distributions for every HMM in the system. 
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5.2.6. ACTION PRODUCTION 

Finally, based on the belief distribution, an action production layer decides what 

utterance to produce or what action to perform in the world, and sends that output 

back to the game. 

The set of actions to be produced includes: a natural language utterance, a description 

of an action (such as an emote: wave, smile, etc.), or a modification to a variable or a 

model belief distribution; the latter implements coupling via self-modification. 

To know what action to produce given the total state of the system, the system needs 

some action policy, which maps from the state of the system, to action performance in 

the world. As mentioned earlier, many such policies are possible, and finding an 

optimal one can be highly problematic. 

In my implementation, instead of an optimal policy, I make use of a satisficing 

approach instead—a policy that produces “good enough” actions given the state of the 

system, instead of spending the resources on finding the best one (Nourbakhsh and 

Genesereth 1996). 

To simplify implementation, this approach is architecturally decomposed into three 

parts: evaluating local policies, arbitrating among them, and actually generating the 

output for the game based on the chosen action. 
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Local policies are local to each space: they map from belief distribution to action. In my 

implementation, they are accomplished with lookup tables based on a winner-takes-all 

evaluation—each state can be annotated with at most one action, and the policy 

produces the action of whichever state had the largest belief confidence value. While 

non-optimal, such policies are satisfactory in producing good actions for all situations.  

Figure 5-4 shows the policies diagrammatically, marked with the letter π. In my 

implementation, they produce tuples ‹ a, b ›, which include actions, and the belief level 

of the state responsible for that action. 

 

 

 

Figure 5-4. Sample action arbitration network. 
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Just like state spaces, local policies are all evaluated at the same time, and will provide 

competing evaluations of what action should be produced. It will be necessary to 

arbitrate among them. 

Arbitration is performed by a collection of “accumulators”, which fold some binary 

choice operator over a set of inputs: each takes a number of action-belief tuples as 

inputs, and selects one of them as output. By hooking them up into a circuit-like 

directed acyclic graph with a single output—with multiple sources and one sink, to 

borrow circuit terminology—we can build a structure for producing a single action out 

of the many inputs.  

For the individual accumulators, the selection mechanisms I used in my 

implementation include: the first function, which selects the first in the input list with 

non-zero belief value, similarly to a fixed priority policy of subsumption (Brooks 1986); 

the max function, which selects the input with the maximal belief value, similar in 

spirit to voting approaches (Rosenblatt 1995); or the all function, which actually creates 

a new output whose action is a concatenation of the input actions, and whose belief 

value is their max.  

Using such functions, the designer can build an arbitrary arbitration network. As for its 

topology, I found it is useful for the network to recapitulate the shape of the space 

hierarchy, selecting more specialized outputs before the generalized ones. In 
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particular, all of the behaviors on the same level of specificity should be grouped 

together—for example, all of the turn-taking, simple reactions and ambient movement 

in one accumulator, general question-answering in another, then specific question-

answering in an accumulator different still. Those accumulators should then be 

arbitrated via the first function, which selects the most specific action (if available) 

before the less specific one; this helps improve internal redundancy and system 

robustness. However, this is certainly not enforced by this specification. 

Finally, one action is produced by the network, and an output generator inspects the 

suggested action, and attempts to produce it. In the case of self-modification, the action 

is performed right away. In the other cases, strings for the utterance and the emote are 

generated and returned to the game. 

Text for both the utterance and the emote is generated using simple template 

matching. The action can specify template chunks, on the level ranging from single 

words, through small structures, up to phrases and other arbitrarily large sequences, 

and means of combining them. Templates can also access nodes referenced by the 

situational variables, read their properties (such as name or description), and insert 

those into the output being produced. In addition, all template elements can be 

randomized, to allow for variation, and prevent the repetition of similar text blurbs. 
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The result of this stage is an output of a tuple of three elements: agent’s name, emote, 

and utterance, and an optional self-modification of the system’s internal state. 

5.3. Pre-compilation and Optimizations 

The simple pipelined nature of the system lends itself to numerous optimizations. This 

section describes some of the more interesting optimizations I used in my own 

implementation. 

5.3.1. PRE-COMPILATION 

In order to achieve many of the optimizations listed below, I built a separate pre-

compilation step for the system creation. The pre-compiler would take high-level 

descriptions of estimators, state spaces, action policies, and so on, perform 

optimization on them, convert them into simpler data structures, created custom code 

as necessary to populate and maintain them appropriately—and output all of this 

information as a set of C++ files which got compiled along with the static part of the 

engine.  

The pre-compilation step afforded additional optimization steps, and resulted in 

extremely efficient code. On the down side, however, the additional compilation 

effectively precluded the possibility of dynamic data binding and runtime 

modifications to the engine.  
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5.3.2. PARSING AND PREPROCESSING 

In the preprocessor, a number of components can be optimized. First, observe that the 

set of tags is known at design time. Therefore we can implement tagging—and tag 

matching—as bitmask operations. If we map each tag into a bitmask position, we can 

perform tag tests as bitwise mask operations. Testing if a word matches a disjunction of 

tags is a matter of bitwise AND with an appropriate mask, and testing for a non-zero 

result; matching a conjunction is a matter of bitwise AND followed by testing for 

equality with the mask.  

5.3.3. EVIDENCE ESTIMATION 

Two elements of evidence estimation can be easily optimized: its evaluation and 

lookup.  

As mentioned before, I used a limited pattern-matching language to evaluate evidence 

probabilities. The language itself was optimized to make use of bitmask operations, and 

to remove the need for backtracking. As a more limited language, it did not have the 

power of more robust pattern matchers, but most of the operations translated into a 

single pass of bitmask tests over the word list. And more complex types of evidence 

could be assembled out of such smaller pieces. 
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During evaluation, it was also beneficial to support a kind of common sub-expression 

elimination—since complex evidence usually was made of similar simpler elements, 

only differently arranged (for example, both request and question can refer to the same 

“could you verb” pattern). It helps to pull those out, such that they be evaluated once, 

and the value memoized for later reuse. The dependencies are known at design time, so 

the optimization can happen before the system runs.  

The other easy optimization is speeding up evidence lookup. In a naïve 

implementation, evidence could be implemented as a hash table or some other 

generalized map. Since the set of all evidence types is known at design time, however, 

we can represent the e function as a simple array, and convert all name-based lookups 

into array references whose index is known at compile time. This turns evidence 

lookup into a constant-time operation.  

5.3.4. CONCEPT REPRESENTATION 

I found it convenient to assume that concepts for the situational variables will be 

immutable at runtime—that is, their property and relation signatures can be assumed 

not to change.  

This made them easy to translate directly into object-oriented C++ class definitions. 

Properties translated directly into member variables, and relations into pointers to 
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other nodes. Once again, this simplified storage, but at the cost of making the system 

more rigid, since C++ does not support dynamic class redefinitions. 

5.3.5. BELIEF UPDATE 

Belief computation can be performed as a sequence of straightforward matrix 

multiplications. We first optimize the computation of state evidence q, and then the 

entire belief update. 

Suppose we have |S| states and |A| evidence types. As mentioned before, both sets are 

completely specified at design time, including the names of all of their members, such 

that the results of the estimation function e can be stored in a simple array. The 

evidence expectation function g is immutable, and can be stored as a matrix of size |A| 

× |S|. Their multiplication computes the evidence function q. 

In my implementation, however, I noticed that the g matrix was sparse, because each 

state expected at most one evidence type. Therefore it was possible to do partial 

evaluation of the sparse matrix multiplication: represent g as a simple vector of size |S|, 

along with a piece of precompiled C++ code that, during update, looked up the 

appropriate cells of e and g arrays, and stored their product in the q array. Instead of 

the special compilation code, one could also use one of the popularly available linear 

algebra libraries, which often include optimized sparse matrix multiplication routines. 
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Once we have q, we can compute new belief values using a sequence of simple 

operations. Both bt-1 and q can be stored in one-dimensional arrays of size |S|, and p in a 

matrix of size |S| × |S|. The update over the entire space then becomes a matter of a 

matrix multiplication, an element-wise vector multiplication, and a normalization. 

(Notice that in our case, normalization is just a piecewise division by the sum of the 

components—not by a sum of the squares of the components. We’re decidedly not in a 

Euclidean space.) 

As a sequence of operations, this translates to: 

 bt*   =  ( bt-1 × p )  ·  q 

 η   =  1 / ∑
∈Ss

bt* (s) 

 bt =  η  ·  bt* 

The resulting bt can then be stored for reuse in the next iteration. 

5.3.6. ACTION PRODUCTION 

Finally, action production is optimized in a straightforward manner, by delaying the 

actual production until when it is absolutely necessary. Each space policy suggests an 

action-belief pair, but only the belief element is necessary for arbitration—therefore 

the ‘action’ component can remain unevaluated until all arbitration has finished, and 

only one, final action remains. The action is evaluated at the very end—because 
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evaluation can be expensive, including numerous string operations, lookups, and so 

on—finally producing an output that is sent back to the game.  
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Chapter 6. Conclusions and Future Work. 

 

 

 

 

 

 

Och, nie mam wątpliwości, że to premiera. 

I cokolwiek uczynię, 

zamieni się na zawsze w to, co uczyniłam. 

Oh, I have no doubt that this is the opening night. 

And whatever I do, 

will be forever changed into what I have done. 

— Wisława Szymborska, Życie na poczekaniu 
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6.1. Looking Back 

In this report, I outlined an approach to participation in social interaction for the 

purpose of implementing engaging interactive entertainment characters. We can now 

recapitulate some of its most salient aspects.  

6.1.1. REPORT SUMMARY 

The problem of social interaction is that of interacting with an unpredictable player in 

a desirably entertaining manner. Techniques used for this approach, however, must fit 

within an intersection of constraints peculiar to the production of entertainment 

artifacts. First, the behavior of interactive characters must be easy to author and tweak; 

it must be easy for the designer to not only create a representation that exhibits 

desirable runtime behavior, but also to predict the runtime behavior given the 

representation at hand. Second, the behavior must be believable; characters must 

behave like reasonable living creatures, acting attentively and intelligently given the 

fiction of the virtual world, in concert with—and in spite of—what the unreliable and 

unpredictable player is doing. Third, the behavior must be computationally 

inexpensive; agents must be responsive to the activity around them, but the developer 

must accomplish this within a fraction of the processing power available on commodity 

gaming platforms. 
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A number of finite-state techniques are currently being used to accomplish some social 

interaction within the above constraints. Unfortunately, while optimized for efficiency 

and ease of authoring, the approaches tend to be limited in their support for believable 

behavior. In particular, they tend to provide little or no support for robust 

decomposition of complex activity, one that allows for both hierarchical causal 

dependence and parallel temporal independence between the components. This I 

introduced as the hierarchical-parallel problem of interaction. 

To resolve this problem, I extended existing finite-state techniques to support both 

hierarchy and parallelism requirements of interaction. I pursue this by adopting the 

hidden Markov models to represent the process of social interaction, and introduce 

coupling extensions to HMMs, which allow for easy and efficient representation of 

hierarchy within a collection of parallel state spaces.  

The resulting system improves on the existing finite-state techniques, popular in game 

production, by enhancing believability: it presents techniques for robust situation 

tracking, recovery from error, and gentle performance degradation. At the same time, 

it fits the constraints of allowing for tight authorial control over the form and shape of 

the interaction, as well as an efficient implementation. 
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6.1.2. SYSTEM BENEFITS 

Two systems were built using this approach, and they demonstrate the benefits of the 

technique in distinct ways. First, Xenos the Innkeeper, is a fairly typical barkeeper 

character for a fantasy role-playing game, which introduces player quests and sells 

items. The second demo, The Breakup Conversation, is a “sim game” that parodies the 

breakup of a relationship, and is played entirely over instant messenger.  

The systems demonstrate believable and effective performance, and I analyze some of 

the particular effects in greater detail, to show the benefits of the hierarchical coupling 

of parallel models. The decomposition results in a very efficient implementation. Not 

only are the components asymptotically faster than their composite, but they enable a 

very simple and efficient implementation. Details of how to accomplish this were 

presented, and the computational benefits demonstrated. 

The two implementations share a large number of general models, in spite of being 

used for very different agents in different games. This demonstrates the authorial 

benefits of the approach, as the component hierarchies can be general, and reused 

across implementations. The general models can then be supplemented with 

specialized handlers for the specific characters, increasing system robustness. 
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Thanks to the component hierarchies, and redundant models on multiple levels of 

generality, the systems behave very robustly in the face of the player’s noisy and 

complex natural language input.  

6.1.3. SYSTEM LIMITATIONS 

I would also like to say a few words about the failure modes of these systems. In both 

cases, the two most important problems are topic retention, and keeping the 

conversation within the system’s area of competence.  

Topic retention difficulty stems from my approach to topic tracking, using global 

variables that are bound based on simple input triggers and system state. 

Unfortunately, the binding was not sufficiently robust, and the system would 

sometimes get distracted by accidental topic mentions that did not actually merit a 

switch. In a future implementation, a more robust approach to topic tracking should be 

used instead.  

The second problem was keeping the conversation within the system’s area of 

competence. With Xenos, this was not too much of a problem—the fantasy barkeeper 

scenario circumscribed the communicative possibilities. 

The Breakup Conversation, on the other hand, was much more problematic, because given 

the context of a breakup, the possible space of “things to talk about that made sense 
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within the situation” was huge. The system got easily confused when the player started 

inventing past relationship memories or new reasons for the breakup. My solution was 

to build the character so that it controlled the conversation, and routinely forced it 

back to familiar territory. Unfortunately, this also gave the interactions a neurotic and 

domineering feel, because the system did not seem to pay attention to the player’s 

contributions to the background story. 

The Breakup situation is an example of the “worst-case” scenario for this kind of a 

technology, because the player felt obliged to contribute to the fiction of the breakup, 

but the system was not capable of dealing with that. Player’s inventiveness is a 

common failure mode for free-form language systems—for example, both Façade 

(Mateas and Stern 2004) and the numerous ALICE bots (Wallace 2000) experience 

similar difficulties.  

One could attempt to control player’s inventiveness by limiting the reasons for 

invention (for example, by specifying a detailed back-story between the characters, so 

that that the player and the system knew everything about the situation). Given a 

strong enough reasoning system, one could also attempt to deal with the inventions, by 

adding a more complex episodic memory that could handle the new information.  
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In the end, systems such as this one work best when the context is familiar, 

stereotyped, or otherwise explicated, and where innovations are not expected, or can 

be reasonably handled. 

6.2. Looking Forward 

Many new solutions raise more questions than they answer. It seems this work is no 

exception. In particular, I would like to concentrate on some directions that seem 

important to develop further. 

6.2.1. LEARNING AND MODEL ACQUISITION 

As the scope of the world increases, content creation becomes a dominant problem—

manual design for all of the content, such as agent behavior, becomes quite expensive. 

Instead, it would be highly beneficial to have a method by which their parameters—or 

indeed, complete model descriptions—could be acquired automatically. The 

development of some learning approach, by which a description of desirable behavior 

could be constructed automatically, perhaps through observation of human activity, 

will be of utmost importance.  

Unfortunately, the approach presented here introduces two unusual difficulties.  

First is the ever-present authoring problem. Model descriptions have to be available for 

deliberate modification and debugging, such that they produce desirable runtime 
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behavior. This means that the developer must have clear understanding of the 

semantics of the model description, and the particular learning technique will have to 

make that available. It is not enough to simply acquire model parameters from training 

data; their meaning has to be accessible as well. 

Second, the characteristics of the system, in particular coupling and the use of 

situational variables, makes learning difficult. It is not clear how automatic model 

acquisition should work for a collection of coupled HMMs such as this one, especially 

given the particular coupling technique presented here; and as I mentioned before, 

learning in presence of variables is already known to be quite difficult. Thus, the first 

step would be to ignore such difficulties, and concentrate on learning each individual 

model separately; only then can the issues of coupling and tracking be properly 

addressed. 

6.2.2. ONTOLOGY OF BASIC-LEVEL REPRESENTATIONS 

The modular decomposition into smaller interaction sub-protocols encourages 

representation reuse. It seems quite possible to develop a set of standard, general sub-

interaction models, which could be shared across a class of individual agents. After all, 

unspecific activities such as answering questions, dealing with requests, or getting in 

and out of conversation, should generalize across different individuals. Such general 
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descriptions could then be augmented with character-specific interactions, used to 

make particular agents interesting and unique. 

It would be quite useful to develop an ontology of basic-level interaction models—

basic-level in the sense that they are not tied to particular individual’s details, but at 

the same time not so abstract as to be useless. In this work, I attempted such an 

ontology, but the results were not sufficiently complete to warrant detailed 

explanation. However, it seems that it should be a very beneficial next step. 

6.2.3. STOCHASTIC MODELING OF GENERAL ACTIVITY 

This work concentrated on the treatment of social interaction as a stochastic process, 

and its subsequent modeling using HMMs. However, communication and social 

interaction are not the only phenomena that can be usefully recast as stochastic 

processes. 

Interactive entertainment is, almost by definition, focused on the player’s interaction 

with the game world, and on the design of desirable runtime behaviors to support this 

interaction. This invites the decomposition of all player activity as a stochastic process, 

possibly decomposable into a collection of several related sub-processes.  

Many genres explicitly support this. In first person shooters, the mechanics are quite 

simple, which allows designers to model player behavior as a mixture of a few behavior 
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modes—level exploration, combat, searching for ammo, etc. And even in more 

complicated genres, such as real-time strategy games, the player can be seen as 

engaging in a number of different activities, from exploring the map, gathering 

resources, building up military or production infrastructure, to creating defensive and 

offensive units, securing beneficial terrain, attacking enemy resources, and so on.  

These kinds of engagement can be modeled as processes, and used to track the player’s 

progression through the game, and possibly predict what they might do next. Recasting 

this behavior as a stochastic process should prove straightforward and inexpensive.  
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