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Abstract

Most models of qualitative reasoning depend upon
gualitative representations of quantity that make the
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to writing qualitative model fragments. The problem of how

to automatically find the necessary and relevant distinctions
remains largely unsolved [but see Sachenbacher and Struss,
2001 and Paritosh, 2003].

necessary and relevant distinctions for the reason-
ing task at hand. Automatically generating such ab-
stractions from numerical models has been pointed
out to be a practically significant and potentially
difficult problem [Struss, 2003]. Previous work,
by Sachenbacher and Struss [2001], used finite re-
lational models as a starting point to generate ab-
stractions. In this paper, we work with a black box
model that relates an output variable with known
landmarks to a set of input variables for which the
landmarks need to be determined. For most prob-
lems of practical significance, the input space is
too large to be exhaustively examined. We present
a simple randomized scheme for discovering land-
marks which performs surprisingly well in time that
is only polylogarithmic in the input size.

Struss [2003] has pointed out the practical importance and
difficulties in generating such abstractions automatically from
numerical simulation models. In a real-life industrial sce-
nario, one might have access to complex and opague numeri-
cal models — MATLAB/Simulink models with nonlinear ana-
Iytic functions, tables with empirical data and even black-box
model fragments with C code. Transforming such a model
into a qualitative diagnosis model provides finite compact
representations that can be used for on-board diagnosis.

In this paper, we present the Landmark Discovery (LD)
problem, and randomized algorithms which solve it with
provable performance guarantees. The time complexity of
our algorithms is only polylogarithmic in the input size with
polynomially small error probability.

We motivate the problem with an example in Section 2.
Section 3 is devoted to definitions and terminology. Section
4 presents the problem formulation, algorithm and analyses.

1 Introduction Section 5 discusses related work. We conclude with future
work in section 6.

A key insight of qualitative reasoning is that powerful rea-
soning can be performed with an appropriate quantization oé Black Box Landmark Discovery
the continuous space. In thlgiantity spaceepresentation
[Forbus 1984], continuous values are represented via sets bet's ook at a simple example. Consider the case of fluid
ordinal relationships to interesting comparison points. Therdlow throw a pipe. At low velocities, the flow is smooth, or
are two kinds of such comparison pointémit pointsare de-  laminar. Depending on the ratio of inertial and viscous forces,
rived from general properties of a domain as applicable to &vhich is captured by Reynold’s number, the flow can be lam-
specific situation. The precise numerical values of these limitnar, transitional, or turbulent.
points can change over time, e.g., the boiling point of a fluid Suppose for a certain flow, we are given a black-box model,
is the function of its pressure.andmark valueslenote con- M, that relates the Reynold’s numbét, in a certain flow to
stant points of comparison on the space of numerical valuesthe velocity of flow,V, the characteristic distance describing
By letting the modeler choose these comparison points, ththe flow, D, viscosity of fluid,x, and the densityp. This is
quantity space representation allows for variable resolutionysed for the sake of illustration, as for certain flows one might
to make just the necessary and relevant distinctions for thBave a closed-form expression for Reynold’s number.
reasoning task at hand. For example, the temperature of a
fluid might be represented in terms of its relationship to the
freezing and boiling points of the fluid. The particular com-
parison points are usually chosen by the modeler as a first ste (VD) ——1 M

1 [0,2000] = Laminar
———R<{ [0 (2000,4000] = Transient
[0 (4000,00) = Turbulent
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In this model,R is the output variable, and we can query combination of input values of the other variables. We repre-
the model with values for all the input variables, namely,sent the landmarks for the input variable as the landmark

V, D, p and p. For each of the input variables, we set i — {¢/ ... ¢ }. Alandmark set is callethaximalif

are given the range of values that they can take, and thg contains all the landmarks for that input variable.
granularity. The interesting distinctions for the values of T jllustrate these points, lets look at an example with one
Reynold's number characterizing the flow are given to us agpyt and one output variable. Figure 2(a) shows the relation-
{(0,2000), (2000, 4000), (4000, oo) } with the three intervals  ship between the input:§, and the output variabley), the
corresponding to laminar, transitional and turbulent flow sceyranylarities in the input and output variabig,, T;, T» are
narios. Following Sachebacher and Struss [2001], we caffarget distinctions foy. Corresponding to these target dis-
corresponding distinctions for the input variable. The rang&ne |andmarks ¢;, (s, . . ., ls, as shown in Figure 2(b). All
and the granularity of input variables gives rise to a discretggints within an interval between two adjacent landmarks on
input space. This space can be very large. Not all distinctions map to the same target distinction gn

in the input space are needed if we are just interested in type Tnhe |andmark discoveryroblem is to find the maximal

of flow. Given a black box model and a set of target qual-andmark sets for each of the input variables. In the next sec-
itative distinctions for the output variable, we are interestedjon we formally define this problem.

in finding the coarsest representation of the input space, i.e.
the minimum distinctions that we need to make in order to4 Al ith d VSi
capture all the distinctions that’ makes. gorithms and analysis

One such representation is a setafdmarksfor each of  We first present the much simpler case of one input variable
the input variables. If there aréinput variables, the land- to illustrate the algorithm, after which we discuss the general
marks imply a grid whose cells ar¢-dimensional hyper- case ofd input variables.
rectangles such that for any point inside this hyper-rectangle,
the output variable is in the same target qualitative state. 4.1 Landmark Discovery with one input variable

o ) Problem 1 (Landmark Discovery: 1 Input).
3 Definitions and Terminology INPUT: A functionf : 7 — 7.

We consider a system with one output variabje,and d OuTPUT: Aget of po_lntsC - {.61’ -+t } such thatf (¢; —
input variables. The discussion here can be generalized th 7 /(£i)¥i and|L| is maximized.
the case of more than one output variables. We assume Letn be the number of points in the input space, ie=
that there is a model)/, which has a functional form, i.e., |Z|. LetL, = {{1,...,¢,,} be the true landmark set such that
y=M(xy,22,...,2q4). We say thai\/ is a black box model ¢, < ¢, < ---£,,. We now present a randomized algorithm
as we dont know/ directly, or make any assumptions about which outputs a landmark sét,; such thatZ,; contains all
M. M could be instantiated as Simulink/C code. We canthe landmarks irC, with high probability.
query M with values for the input variables to find the value
for the output variable. Algorithm 1 1-LD(c,)

We assume that input variable, can take real values from
a given closed interval. Even though input variables can take 1. Samplef ats = <92 points uniformly at random. Let
real values, because of measurement and/or observability lim-  the points be,7,...,7s such thaty < ry < ... <
itations, we have a maximum granularity on the input values. Ts-
A measurement granularity is the smallest difference thatcanp et 2, . = (.
be noticed. Thus the domain of input variables is observable ) . .
as a set of discrete points in the Siven interval. In Sachen- 3- Foralli € [1,5 —1], if f(r;) # f(ri +1), do a binary
bacher and Struss’ formalism, this corresponds to the set of ~S€@rch to find a landmarksuch thatf (¢) # f(£ —1).
observable distinctions for the variable. For ease of exposi- Let Loue = Lous U {¢}-
tion, we refer to the domain of an input variable, as the 4. OutputLoyt.
setZ = {1,2,...,n}. The output variable takes on real val-
ues. Furthermore, we are given a partition of the domain of

output variable, which correspond to qualitatively distinct re-Theorem 1. Algorithm 1-LD finds all landmarks which are at

gions called thearget distinctions , _ leastd-n apartin O(£ log® n) runtime with error probability
By querying the model), with values for the input vari- o(m/n®).

ables we can obtain the value for the output variable, and thus . i ]

the corresponding target distinction. Thusimplies a map- PROOF  For any two consecutive sample points, Algorithm
ping, f, from the discrete input space to the discrete output-LD spends at mosb (log n) time for binary search. Since
space of target distinctions. Letbe the set of givetarget ~ there are atotal ab(§ logn) sample points, the total runtime
distinctionsfor the output variable. Note thatis countable of algorithm isO(§ log? n).

and finite.Landmarksare points in the domains of each input  For any/; € L, such that/; — ¢;_1,0;,1 —{; > §-n, let
variable. The output variable belongs to two different targetP,, be the probability of not including; in L,.;. Note that
distinctions across a landmark of a given variable, for soméf the set of sample points contain somg < [¢;_1,¢;] and
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Figure 2:Example of the landmark discovery problem for one input

xg € [{;,4;11], then we are guaranteed to inclugen Lo.s.
Therefore,

P, < Pr[pasampleirf(;_,,¢;] OR#A asample irl;, ;11]]
b — 04 liv1— 4,
< 1— 2 "I7lys I AT
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Since P;; < 2-n~¢forall £; € L., the probability that
Lout Misses any of the landmarks . which are at least-n
apart is at mose-m-n—¢ which iso(m/n°). R
Corollary 1.1. If all landmarks inL, are at leasty-n apart,
then Algorithm 1-LD finds them all in tim@( § log? n) with
error probability o(m/nc).

4.2 Landmark Discovery with d input variables

Problem 2 (Landmark Discovery: d Inputs).
INPUT: A functionf : 7¢ — A.

OuTPUT: Setsf!,..., L% wherel? = {#1,... ¢} such
that the following holds forall < j <d

1. For all # € Ej,_ Elx%,...,xjf_l,lelﬂ,...,x“f

such that f(z1,... ,le_l,éj — 1,x{+1, conady #

i
.,

f(xi...,x{_l,ﬁj,x{—‘_l,.
2. |£7] is maximized.
Letn = |Z]. The total size of the input spacené. Let
Ll = {¢,...,6 } be the true landmark set. We present

a randomized algorithm which outputs a landmark &g}

)

such that£? , contains all the landmarks g’ with high
probability.

For the d-dimensional case, the landmarks imply a grid
whose cells aré-dimensional hyper-rectangles such that for
any point inside this hyper-rectangle, the output variable is in
the same target qualitative state.

Letd = (a',...,a%) denote a pointin d-dimensional space
and @ be its j** components?. Each landmark? € L.
defines al—1 dimensional axis parallel hyperplafig; given

by the equation®/ = E{ Further let4,; and B; be two
adjacent grid cells such that their common face ligpand
the points in4,; belong to a different target qualitative state

than those inB,;, i.e. if@ € A, andb € By, thenf (@) #
£(b). We call any suchl,; andB,; to bet! —separated grid
cells ' '

Definition For any two pointst and i such thatf(¥) #
f(#), alandmark/’ is said toresolvez andy if and only if
F < <Pord < <.

To illustrate these definitions, consider the case of two in-
put variables. Figure 3(a) depicts regions which correspond
to different target qualitative distinctions, 1 and 2. The dot-
ted lines in Figure 3(b) indicate the grid implied by these re-
gions. The landmark, defines the 1 dimensional hyperplane
(line), represented by the thick lined and B repesents the
{-separated grid regions.

Theorem 2. Algorithm d-LD finds all landmarkg such
that /—separated grid cells are at leash-n? large in
O(m(4)? log® n) runtime with error probabilityo(m /n°?).
PROOFE For any pair of sample points, we spend at most

O(m) time searching for a resolving landmark. For every
landmark, we spend at moét(dlogn) time for the binary
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Figure 3:Example illustrating the concepts used in th@imensional landmark discovery problem. Shown is the input space for two inputs.

Algorithm 2 d-LD(c,A) in size is at mosg-m-n~°? which iso(m/n°¢). B

1. Samplef ats = < logn? points uniformly at random.

2. Letll =0 Vj. _ o
i i I . Although the idea of necessary and relevant distinctions is
3. For all pairs of sample points, ands, if 3] € £/ for 3 comerstone of qualitative reasoning, Struss and Sachen-
any j such that?/ resolvess, ands;,, then do a binary bacher were the first to highlight and formalize the problem

-/

search betwees, ands, to find a landmark’, which ~ as theQualitative Abstraction ProblerfStruss and Sachen-
i {éj,} ! bacher, 1999]. They gave a solution to the case of finite re-
— ~out i S

4 lational models, and an implementation of their algorithm,
4, Outputl? . Vj. AQUA. . _

The problem presented here is a special case of the qual-
itative abstraction problem for the case of ordered domains.

i .
search in which it is discovered. Hence the total running timeThe domain* of the functionf maps to the concept ab-

. 9 S cd\21. 2 servable distinctionsThe domain abstractionare captured
is O(ms® + mdlogn) whichisO(m(%')" log™ n). by the setsf. Thetarget distinctionsare captured by the set
For any?! € L%, let A and B be two ¢! —separated grid .
cells. Note that a point inl and one inB can be resolved  Thetarget distinctionsre present only on the single output
only by the landmark]. Hence, we are guaranteed to include variable (in our formulation). The method presented in this
¢ in £}, if the set of sample points contain somg € A  work can handle the case when there are target distinctions on
andx; € B. Therefore, if A| > A-n?and|B| > A-n?, then ~ more than one output variable. We find tih@main abstrac-
tions L for each variable (with target distinctions) separately

5 Related Work

resolves them. Lef?’

out

Py < Pr[# asample inA OR7 a sample in] and then merge (find intersections) of the results. This state-
s s ment has actually been proved in [Struss and Sachenbacher,
< ( |A|> + ( - |B|) 1999]
— d d !
n n The problem formulation in this work prescribes a func-
< 9 (1 A~nd)s tional relationship that connects each variable with target
= S\ T distinctions with the other variables. The requirements that
o o md the resultant solution beistinguishingand maximalis cap-
= 2(1-A)y"2— tured by the conditions 1 and 2 in our problem formulation
cdlog(1-A) in Section 4. While the solution methodology described in
= 2n 2 [Sachenbacher and Struss, 2001] applies to general case of
< 2n unordered domains, the work here presents an efficient way

of the solving the problem with ordered domains. Our ap-

4 proach could be used in conjunction with their model-based
probability thatZ,,,, misses any of the landmarksc £ for  approach which exploits knowledge of relationships between
any j such that the’ —separated grid cells are at le@stn? variables. Or, one could use our methods to create a finite

SinceP,; < 2-n~<forall ¢/ € £ for all dimensiong, the



abstraction of the input space that could be then used as a
starting point by a system like AQUA. In our problem we as-
sume that at least one of the output variables is also the target
variable.

Another very different approach is taken by Paritosh
[2003]. The goal of his work is to find cognitively plausi-
ble qualitative representations of quantity. The key insight
there is that important qualitative distinctions arise because
of discontinuities in the relational structure of the domain.
The theory has been implemented in a system, CARVE, that
takes a set of examples represented in predicate calculus as
input and determines tHamit pointson various quantitative
dimensions.

6 Conclusions and Future Work

Clearly, no algorithm can guarantee to find all the landmarks
without looking at the entire input space. However the in-
put space could be prohibitively large to be exhaustively ex-
amined. For such cases we are able to find landmarks that
are not too close to each other with polynomially small error
probability in polylogarithmic runtime.

In this paper we have only analyzed the case when the qual-
itative states correspond to axis-parallel hyper-rectangles in
the input space. However, the techniques could be easily ex-
tended to general d-dimensional polyhederals at the cost of
running time becoming exponential th We also believe
there is scope for tightening the analysis and improving the
run-time of the algorithm by more carefully choosing a sub-
set of the pair of sample points to be resolved.
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