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Abstract

Most models of qualitative reasoning depend upon
qualitative representations of quantity that make the
necessary and relevant distinctions for the reason-
ing task at hand. Automatically generating such ab-
stractions from numerical models has been pointed
out to be a practically significant and potentially
difficult problem [Struss, 2003]. Previous work,
by Sachenbacher and Struss [2001], used finite re-
lational models as a starting point to generate ab-
stractions. In this paper, we work with a black box
model that relates an output variable with known
landmarks to a set of input variables for which the
landmarks need to be determined. For most prob-
lems of practical significance, the input space is
too large to be exhaustively examined. We present
a simple randomized scheme for discovering land-
marks which performs surprisingly well in time that
is only polylogarithmic in the input size.

1 Introduction
A key insight of qualitative reasoning is that powerful rea-
soning can be performed with an appropriate quantization of
the continuous space. In thequantity spacerepresentation
[Forbus 1984], continuous values are represented via sets of
ordinal relationships to interesting comparison points. There
are two kinds of such comparison points.Limit pointsare de-
rived from general properties of a domain as applicable to a
specific situation. The precise numerical values of these limit
points can change over time, e.g., the boiling point of a fluid
is the function of its pressure.Landmark valuesdenote con-
stant points of comparison on the space of numerical values.

By letting the modeler choose these comparison points, the
quantity space representation allows for variable resolution,
to make just the necessary and relevant distinctions for the
reasoning task at hand. For example, the temperature of a
fluid might be represented in terms of its relationship to the
freezing and boiling points of the fluid. The particular com-
parison points are usually chosen by the modeler as a first step
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to writing qualitative model fragments. The problem of how
to automatically find the necessary and relevant distinctions
remains largely unsolved [but see Sachenbacher and Struss,
2001 and Paritosh, 2003].

Struss [2003] has pointed out the practical importance and
difficulties in generating such abstractions automatically from
numerical simulation models. In a real-life industrial sce-
nario, one might have access to complex and opaque numeri-
cal models – MATLAB/Simulink models with nonlinear ana-
lytic functions, tables with empirical data and even black-box
model fragments with C code. Transforming such a model
into a qualitative diagnosis model provides finite compact
representations that can be used for on-board diagnosis.

In this paper, we present the Landmark Discovery (LD)
problem, and randomized algorithms which solve it with
provable performance guarantees. The time complexity of
our algorithms is only polylogarithmic in the input size with
polynomially small error probability.

We motivate the problem with an example in Section 2.
Section 3 is devoted to definitions and terminology. Section
4 presents the problem formulation, algorithm and analyses.
Section 5 discusses related work. We conclude with future
work in section 6.

2 Black Box Landmark Discovery
Let’s look at a simple example. Consider the case of fluid
flow throw a pipe. At low velocities, the flow is smooth, or
laminar. Depending on the ratio of inertial and viscous forces,
which is captured by Reynold’s number, the flow can be lam-
inar, transitional, or turbulent.

Suppose for a certain flow, we are given a black-box model,
M , that relates the Reynold’s number,R, in a certain flow to
the velocity of flow,V , the characteristic distance describing
the flow,D, viscosity of fluid,µ, and the density,ρ. This is
used for the sake of illustration, as for certain flows one might
have a closed-form expression for Reynold’s number.

M(ρ,V,D,µ ) R
∈ [0,2000] ⇒ Laminar

∈ (2000,4000] ⇒ Transient
∈ (4000,∞) ⇒ Turbulent

Figure 1:Black box model for Reynold’s number



In this model,R is the output variable, and we can query
the model with values for all the input variables, namely,
V , D, µ and ρ. For each of the input variables, we
are given the range of values that they can take, and the
granularity. The interesting distinctions for the values of
Reynold’s number characterizing the flow are given to us as
{(0, 2000), (2000, 4000), (4000,∞)} with the three intervals
corresponding to laminar, transitional and turbulent flow sce-
narios. Following Sachebacher and Struss [2001], we call
these thetarget distinctions. We are interested in finding the
corresponding distinctions for the input variable. The range
and the granularity of input variables gives rise to a discrete
input space. This space can be very large. Not all distinctions
in the input space are needed if we are just interested in type
of flow. Given a black box model and a set of target qual-
itative distinctions for the output variable, we are interested
in finding the coarsest representation of the input space, i.e.
the minimum distinctions that we need to make in order to
capture all the distinctions thatM makes.

One such representation is a set oflandmarksfor each of
the input variables. If there ared input variables, the land-
marks imply a grid whose cells ared-dimensional hyper-
rectangles such that for any point inside this hyper-rectangle,
the output variable is in the same target qualitative state.

3 Definitions and Terminology
We consider a system with one output variable,y, and d
input variables. The discussion here can be generalized to
the case of more than one output variables. We assume
that there is a model,M , which has a functional form, i.e.,
y = M(x1, x2, . . . , xd). We say thatM is a black box model
as we dont knowM directly, or make any assumptions about
M . M could be instantiated as Simulink/C code. We can
queryM with values for the input variables to find the value
for the output variable.

We assume that input variable,xi can take real values from
a given closed interval. Even though input variables can take
real values, because of measurement and/or observability lim-
itations, we have a maximum granularity on the input values.
A measurement granularity is the smallest difference that can
be noticed. Thus the domain of input variables is observable
as a set of discrete points in the given interval. In Sachen-
bacher and Struss’ formalism, this corresponds to the set of
observable distinctions for the variable. For ease of exposi-
tion, we refer to the domain of an input variable,xi, as the
setI = {1, 2, . . . , n}. The output variable takes on real val-
ues. Furthermore, we are given a partition of the domain of
output variable, which correspond to qualitatively distinct re-
gions called thetarget distinctions.

By querying the model,M , with values for the input vari-
ables we can obtain the value for the output variable, and thus
the corresponding target distinction. ThusM implies a map-
ping, f , from the discrete input space to the discrete output
space of target distinctions. Letτ be the set of giventarget
distinctionsfor the output variable. Note thatτ is countable
and finite.Landmarksare points in the domains of each input
variable. The output variable belongs to two different target
distinctions across a landmark of a given variable, for some

combination of input values of the other variables. We repre-
sent the landmarks for the input variablexj as the landmark
set,Lj = {`j

1, . . . , `
j
m}. A landmark set is calledmaximalif

it contains all the landmarks for that input variable.
To illustrate these points, lets look at an example with one

input and one output variable. Figure 2(a) shows the relation-
ship between the input (x), and the output variable (y), the
granularities in the input and output variable.T0, T1, T2 are
target distinctions fory. Corresponding to these target dis-
tinctions there are intervals on the domain ofx identified by
the landmarks, `1, `2, . . . , l6, as shown in Figure 2(b). All
points within an interval between two adjacent landmarks on
x map to the same target distinction ony.

The landmark discoveryproblem is to find the maximal
landmark sets for each of the input variables. In the next sec-
tion we formally define this problem.

4 Algorithms and analysis
We first present the much simpler case of one input variable
to illustrate the algorithm, after which we discuss the general
case ofd input variables.

4.1 Landmark Discovery with one input variable
Problem 1 (Landmark Discovery: 1 Input).
INPUT: A functionf : I → τ .
OUTPUT: A set of pointsL = {`1, . . . , `m} such thatf(`i −
1) 6= f(`i)∀i and|L| is maximized.

Let n be the number of points in the input space, i.e.,n =
|I|. LetL∗ = {`1, . . . , `m} be the true landmark set such that
`1 < `2 < · · · `m. We now present a randomized algorithm
which outputs a landmark setLout such thatLout contains all
the landmarks inL∗ with high probability.

Algorithm 1 1-LD(c,δ)

1. Samplef ats = c· log n
δ points uniformly at random. Let

the points ber1, r2, . . . , rs such thatr1 ≤ r2 ≤ . . . ≤
rs.

2. LetLout = ∅.
3. For all i ∈ [1, S − 1], if f(ri) 6= f(ri + 1), do a binary

search to find a landmark̀such thatf(`) 6= f(` − 1).
LetLout = Lout ∪ {`}.

4. OutputLout.

Theorem 1. Algorithm 1-LD finds all landmarks which are at
leastδ·n apart inO( c

δ log2 n) runtime with error probability
o(m/nc).

PROOF: For any two consecutive sample points, Algorithm
1-LD spends at mostO(log n) time for binary search. Since
there are a total ofO( c

δ log n) sample points, the total runtime
of algorithm isO( c

δ log2 n).
For any`j ∈ L∗ such that̀ j − `j−1, `j+1 − `j > δ·n, let

P`j be the probability of not including̀j in Lout. Note that
if the set of sample points contain somexα ∈ [`j−1, `j ] and
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Figure 2:Example of the landmark discovery problem for one input

xβ ∈ [`j , `j+1], then we are guaranteed to include`j in Lout.
Therefore,

P`j ≤ Pr[@ a sample in[`j−1, `j ] OR@ a sample in[lj , lj+1]]

≤ (1− `j − `j−1

n
)s + (1− `j+1 − `j

n
)s

≤ 2·(1− δn

n
)s

= 2·(1− δ)
c· log n

δ

= 2·n c log(1−δ)
δ

< 2·n−c.

SinceP`j < 2·n−c for all `j ∈ L∗, the probability that
Lout misses any of the landmarks inL∗ which are at leastδ·n
apart is at most2·m·n−c which iso(m/nc).

Corollary 1.1. If all landmarks inL∗ are at leastδ·n apart,
then Algorithm 1-LD finds them all in timeO( c

δ log2 n) with
error probabilityo(m/nc).

4.2 Landmark Discovery with d input variables
Problem 2 (Landmark Discovery: d Inputs).
INPUT: A functionf : Id → A.
OUTPUT: SetsL1, . . . ,Ld whereLj = {`j

1, . . . , `
j
m} such

that the following holds for all1 ≤ j ≤ d

1. For all `j ∈ Lj , ∃x1
1, . . . , x

j−1
1 , xj+1

1 , . . . , xd
1

such that f(x1
1, . . . , x

j−1
1 , `j − 1, xj+1

1 , . . . , xd
1) 6=

f(x1
1, . . . , x

j−1
1 , `j , xj+1

1 , . . . , xd
1)

2. |Lj | is maximized.

Let n = |I|. The total size of the input space isnd. Let
Lj
∗ = {`j

1, . . . , `
j
m} be the true landmark set. We present

a randomized algorithm which outputs a landmark setLj
out

such thatLj
out contains all the landmarks inLj

∗ with high
probability.

For thed-dimensional case, the landmarks imply a grid
whose cells ared-dimensional hyper-rectangles such that for
any point inside this hyper-rectangle, the output variable is in
the same target qualitative state.

Let~a = (a1, . . . , ad) denote a point in d-dimensional space
and~aj be its jth componentaj . Each landmark̀ j

i ∈ Lj
∗

defines ad−1 dimensional axis parallel hyperplaneH`j
i

given

by the equation~xj = `j
i . Further letA`j

i
andB`j

i
be two

adjacent grid cells such that their common face lie onH`j
i

and
the points inA`j

i
belong to a different target qualitative state

than those inB`j
i
, i.e. if ~a ∈ A`j

i
and~b ∈ B`j

i
, thenf(~a) 6=

f(~b). We call any suchA`j
i

andB`j
i

to be`j
i−separated grid

cells.

Definition For any two points~x and~y such thatf(~x) 6=
f(~y), a landmark̀ j is said toresolve~x and~y if and only if
~xj ≤ `j < ~yj or ~xj < `j ≤ ~yj .

To illustrate these definitions, consider the case of two in-
put variables. Figure 3(a) depicts regions which correspond
to different target qualitative distinctions, 1 and 2. The dot-
ted lines in Figure 3(b) indicate the grid implied by these re-
gions. The landmark,̀ defines the 1 dimensional hyperplane
(line), represented by the thick line.A andB repesents the
`-separated grid regions.

Theorem 2. Algorithm d-LD finds all landmarks̀ such
that `−separated grid cells are at least∆·nd large in
O(m( cd

∆ )2 log2 n) runtime with error probabilityo(m/ncd).

PROOF: For any pair of sample points, we spend at most
O(m) time searching for a resolving landmark. For every
landmark, we spend at mostO(d log n) time for the binary
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Figure 3:Example illustrating the concepts used in thed dimensional landmark discovery problem. Shown is the input space for two inputs.

Algorithm 2 d-LD(c,∆)

1. Samplef ats = c
∆ log nd points uniformly at random.

2. LetLj
out = ∅ ∀ j.

3. For all pairs of sample pointssa andsb, if @`j
i ∈ Lj for

any j such that̀ j
i resolvessa andsb, then do a binary

search betweensa andsb to find a landmark̀ j′

i′ which

resolves them. LetLj′
out = Lj′

out ∪ {`j′

i′ }.
4. OutputLj

out ∀ j.

search in which it is discovered. Hence the total running time
is O(ms2 + md log n) which isO(m( cd

∆ )2 log2 n).
For any`j

i ∈ Lj
∗, let A andB be two`j

i−separated grid
cells. Note that a point inA and one inB can be resolved
only by the landmark̀j

i . Hence, we are guaranteed to include
`j
i in Lj

out if the set of sample points contain somexα ∈ A
andxβ ∈ B. Therefore, if|A| ≥ ∆·nd and|B| ≥ ∆·nd, then

P`j
i

≤ Pr[@ a sample inA OR@ a sample inB]

≤
(

1− |A|
nd

)s

+
(

1− |B|
nd

)s

≤ 2·
(

1− ∆·nd

nd

)s

= 2·(1−∆)
c· log nd

∆

= 2·n cd log(1−∆)
∆

< 2·n−cd.

SinceP`j
i

< 2·n−c for all `j
i ∈ Lj

∗ for all dimensionsj, the

probability thatLout misses any of the landmarks`j ∈ Lj
∗ for

anyj such that thèj−separated grid cells are at least∆·nd

in size is at most2·m·n−cd which iso(m/ncd).

5 Related Work
Although the idea of necessary and relevant distinctions is
a cornerstone of qualitative reasoning, Struss and Sachen-
bacher were the first to highlight and formalize the problem
as theQualitative Abstraction Problem[Struss and Sachen-
bacher, 1999]. They gave a solution to the case of finite re-
lational models, and an implementation of their algorithm,
AQUA.

The problem presented here is a special case of the qual-
itative abstraction problem for the case of ordered domains.
The domainId of the functionf maps to the concept ofob-
servable distinctions. Thedomain abstractionsare captured
by the sets,L. Thetarget distinctionsare captured by the set
τ .

Thetarget distinctionsare present only on the single output
variable (in our formulation). The method presented in this
work can handle the case when there are target distinctions on
more than one output variable. We find thedomain abstrac-
tions, L for each variable (with target distinctions) separately
and then merge (find intersections) of the results. This state-
ment has actually been proved in [Struss and Sachenbacher,
1999].

The problem formulation in this work prescribes a func-
tional relationship that connects each variable with target
distinctions with the other variables. The requirements that
the resultant solution bedistinguishingandmaximalis cap-
tured by the conditions 1 and 2 in our problem formulation
in Section 4. While the solution methodology described in
[Sachenbacher and Struss, 2001] applies to general case of
unordered domains, the work here presents an efficient way
of the solving the problem with ordered domains. Our ap-
proach could be used in conjunction with their model-based
approach which exploits knowledge of relationships between
variables. Or, one could use our methods to create a finite



abstraction of the input space that could be then used as a
starting point by a system like AQUA. In our problem we as-
sume that at least one of the output variables is also the target
variable.

Another very different approach is taken by Paritosh
[2003]. The goal of his work is to find cognitively plausi-
ble qualitative representations of quantity. The key insight
there is that important qualitative distinctions arise because
of discontinuities in the relational structure of the domain.
The theory has been implemented in a system, CARVE, that
takes a set of examples represented in predicate calculus as
input and determines thelimit pointson various quantitative
dimensions.

6 Conclusions and Future Work
Clearly, no algorithm can guarantee to find all the landmarks
without looking at the entire input space. However the in-
put space could be prohibitively large to be exhaustively ex-
amined. For such cases we are able to find landmarks that
are not too close to each other with polynomially small error
probability in polylogarithmic runtime.

In this paper we have only analyzed the case when the qual-
itative states correspond to axis-parallel hyper-rectangles in
the input space. However, the techniques could be easily ex-
tended to general d-dimensional polyhederals at the cost of
running time becoming exponential ind. We also believe
there is scope for tightening the analysis and improving the
run-time of the algorithm by more carefully choosing a sub-
set of the pair of sample points to be resolved.
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