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ABSTRACT
The AM program, an early attempt to mechanize learning by discovery . has recently been expande d
and extended to several other task domains. ,amt's ultimate failure apparently was due to its inability t o
discover new, powerful. domain-specific heuristics for the various new fields it uncovered . At tha t
time, it seemed straight-forward to simply add 'Heuristics' as one more field in which to let AM

explore, observe, define, and develop . That task—learning new heuristics by discovery—turned out to
be much more difficult than was realized initially, and we have just now achieved some successes a t
it. Along the way, it became clearer why Am had succeeded in the first place . and why it was so
difficult to use the same paradigm to discover new heuristics . In essence. AM was an automatic
programming system . whose primitive actions were modifications to pieces of LISP code, code whic h
represented the characteristic functions of various math concepts . It was only because of the deep
relationship between LISP and Mathematics that these operations (loop unwinding, recursion elimina-
tion, composition, argument elimination, function substitution, etc .) which were basic LISP mutators
also turned out to yield a high 'hit rate' of viable, useful new math concepts when applied to
previously-known, useful math concepts . But no such deep relationship existed between LISP and
Heuristics, and when the basic automatic programming operators were applied to viable, usefu l
heuristics, they almost always produced useless (often worse than useless) new rules . Our work on th e
nature of heuristics has enabled the construction of a new language in which the statement of heuristic s
is more natural and compact . Briefly, the vocabulary includes many types of conditions, actions, an d
descriptive properties that a heuristic might possess ; instead of writing a large lump of LISP code to
represent the heuristic, one spreads the same information out across dozens of 'slots' . By employing
this new language. the old property that AM satisfied fortuitously is once again satisfied : the primitiv e
syntactic operators usually now produce meaningful semantic variants of what they operate on . Th e
ties to the foundations of Heuretics have been engineered into the syntax and vocabulary of the ne w
language, partly by design and partly by evolution, much as John McCarthy engineered ties to th e
foundations of Mathematics into LISP . The EURISKO program embodies this language, and it is
described in this paper. along with its results in eight task domains : design of naval fleets, elementary
set theory and number theory . LISP programming, biological evolution, games in general, the design of
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three-dimensional VLSI devices, the discovery of heuristics which help the system discover heuristics ,
and the discovery of appropriate new types of 'slots' in each domain . Along the way, some very
powerful new concepts, designs, and heuristics were indeed discovered mechanically . Characteristics
that make a domain ripe for AM-like exploration for new concepts and conjectures are explicated, plu s
features that make a domain especially suitable for EURISKO-level exploration for new heuristics .

1 . Design Decisions in Constructing the EERISKO Progra m

Our earlier papers in this `Nature of Heuristics' series [9 . 12] have motivated
the task of the EURISKO program : learning by discovery, in particular learnin g
new heuristics as well as new domain-specific definitions of concepts . They
have given little attention to the architecture of that program, to its results . o r
to what—in hindsight—they reflect on our earlier experiences with AM [3] . The
EuRISKO project was first conceived in 1976 . During the past six years, there has
been an accumulation of `design ideas' which have been tested . Some of thes e
have been built into the representation language underlying EURISKO (i .e ., RLL
[8]) . Other ideas have found their way into the EURISKO knowledge base itself ,
as explicitly represented (and malleable) concepts . This section presents these
ideas and design decisions, and in Sections 2 and 3 we discuss the performanc e
of the EURISKO program. The design ideas fall naturally into three categories :
those dealing with representation, with control, and with the user interface .

1 .1 . Ideas about representing concepts

(1) Rules need not distinguish 'slots' from 'functions' . As in AM . EURISKO' S

basic representation employs frames (units) with slots . Each slot can be viewe d
as a unary function which is handed a unit-name and returns a value . E .g . ,
Worth and IsA are slotnames : they are the names of properties a unit might
possess . But they can also be considered unary functions : Worth(SetUnion) =
650; IsA(SetUnion) = {SetOp . BinaryOp, Dom = RanOp}. Other unary func-
tions exist, of course, and can be defined in terms of these more primitive slots .
For instance, suppose we define AlllsAs as a function which returns the Is A
value for a concept . plus all their Generalizations, plus all their Generaliza-
tions, etc . So AllIsAs(SetUnion) first accesses the IsA slot of SetUnion, an d
finds {SetOp . BinaryOp . Dom = RanOp} . It next looks on the Generalization s
slot of those three units, and finds (coincidentally) that they all say {Operation} .
so it adds that value to the growing list . Continuing, it finds that the General-
izations slot of Operation contains {Active}, and finally the Generalizations o f
Active is {Anything}. The final value returned is therefore the set {SetOp ,
BinaryOp. Dom = RanOp, Operation . Active. Anything}. The point here i s
that the system's heuristic rules can refer to Isa(SetUnion) . and they can refe r
to AllIsAs(SetUnion), and they need never know nor care whether one or bot h
of them are primitive slots, or in fact whether they are both computed via som e
more complex algorithm . The decision about which functions are implemented
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as primitives (slots), and which are computed dynamically from others, i s
invisible to the rules, and may change from time to time (e .g., after a grea t
amount of experience is accumulated in some domain, it may be apparent tha t
AllIsAs is requested so often that it should be stored primitively) . The rules
represent guidance knowledge which is, after all, independent of the specifi c
representation being employed; this 'slots = functions' scheme adequatel y
decouples the two . From the point of view of the rules, all a 'concept' is is a lega l
argument for a list of functions (mostly unary ones) .

(2) 'GET' knows why it's being called, 'PUT' knows how the value is
justified. As in most frame-based systems, the most fundamental access func-
tions are GET and PUT, rather than, e .g ., ASSERT and MATCH . The above
paragraph shows that instead of writing (GET Cf), which would mean "get the
value stored in slot f of concept C"), we shall write simply f(C) . It becam e
painfully obvious during the building of AM that GET was being called fo r
several different reasons in different places . Sometimes, all that was wante d
was to know if any values at all were known yet for f(C) : sometimes an A M
rule wanted to know the length of the set of values ; sometimes it wanted t o
know some values, but it didn't matter how up-to-date the answer was : often
the major constraint was a limitation on the amount of resources to expend
(time or space or number of queries to the human user) : and occasionally 'th e
complete answer' was required, regardless of how difficult it was to obtain . In
EURISKO we have begun to accomodate these different reasons and constraint s
on each call on GET, by providing extra arguments which specify which reaso n
is behind this call (Existence, Length, Some, Up-to-date) and how muc h
resources can be spent (Time, Cells . Queries) . Calls on PUT are more stan-
dard ; they may trigger some flurry of re-writing, but the only extra argumen t
one wishes to supply is an indication of the justification of the value bein g
changed . For example, was this value computed by using values obtained b y
GET? The answer is almost always affirmative, so one then asks just ho w
precise those values were ; e .g ., if they were all obtained under severe tim e
limits, the value we're about to PUT will be of dubious accuracy .

(3) 'The size of ships' can mean different things, and there should be a plac e
for each . Consider what it means to say that the Size(Ships) = Large . We can
find many separate interpretations : here are half a dozen :

(i) Each ship is large (this is guaranteed) .
(ii) The default answer, when asked how big a ship is, is 'Large' (but n o

guarantee) .
(iii) The EURISKO units representing ships take up a lot of memory .
(iv) There are many elements in the set of all ships .
(v) Looking over the unit representing the set of all ships, we see it is ver y

big .
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(vi) Viewing Ships as the name of a kind of slot (e .g ., a unit representing a
fleet might have a slot called Ships, which was filled with a list of ship-names) ,
we note a very large number of entries on such slots (for those units which ca n
have a Ships slot) .

Our aim here is not to argue for a preferred meaning, but rather to point ou t
that each meaning should be unambiguously representable . Having ambiguity
in English adds flair to the language, and makes conversation exciting ; but i t
makes computation much more costly . We opt to eliminate ambiguity at th e
time knowledge is entered into the system, so that, e .g., the way that
Size(Ships) = Large gets entered is guaranteed to disambiguate among the si x
meanings listed above . In brief, we (a) replace a unit for X with separate unit s
for AllXs, TypicalX, and XquaSlot, and (b) have meta-knowledge recorded i n
slots that are prefaced `My' . Eliminating redundancy internally reduces process-
ing time required, at a small increase in space required . Preserving meta-
knowledge uses quite a bit of extra space, but enables heuristics to late r
perform inductions that would otherwise be impossible (e .g ., noticing regulari-
ties in all units entered by a certain person, or all attempts to synthesiz e
examples by a certain new heuristic) .

(4) Each kind of slot has a unit describing it. In building a knowledge base ,
the need arises to be able to say things about each kind of slot . We give three
examples .

(a) What does it mean when a value is stored in slot s of unit U? Is tha t
value guaranteed to be a legal entry, or is it just probable that it belongs there ?
Is it going to always be valid, or is it merely currently a valid entry? These an d
other questions about the epistemological status of entries on a slot will chang e
from one task domain to another, from one program to another, from one slot t o
another. Each kind of slot should `know' what it means to have a value stored o n
itself .

(b) Another question whose answer will vary is : Should we redundantl y
cache (store) this value, or just assume we'll recompute it whenever we need it?
Some languages, such as the MOLGEN units package, force the answer to alway s
be 'redundantly store' ; most languages force the answer to be `redundantl y
compute' . But the optimal answer will depend on how the knowledge bas e
grows, changes, and is used (e .g ., how often are the values accessed, compared
to how often they're changed? How much space do they take up? )

(c) When an entry is added or removed from an IsA slot, we expect th e
'inverse link' to be likewise added or removed . This could be built in for each
type of slot, but that makes defining new slots hard for the user .

These examples illustrate the utility of representing each kind of slot as a
unit . Thus there are units called CompiledCode, Generalizations, IsA, etc . For
instance :
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NAME: IsA, isa, Is-a, ISA, IS-A
Informally : is, element-of, is-i n

DOMAIN/RANGE: (Units — SetOf Units)
IS-A : Sot
FilledWithA : Set
EachEntryMustBeA : Unit representing a set
Inverse : Example s
UsedBylnheritanceModes : I nheritAlong IsA s
MakesSenseFor : Anythin g
MylsA : Eurisko uni t
MySize : 500 word s
MyCreator : D . Lena t
MyTi meOfCreati on : 4/4/79 12 :0 1
Generalizations : AKindOf
Specializations : MemberOf, ExtremumOf
Worth : 600
Cache : Alway s
English : The slot which tells which classes a unit belongs to .
ALGORITHMS :

Nonrecursive Slow PossiblyLooping : A (u) {c E Concepts 1 c.Defn(u)}
DEFINITIONS :

Nonrecursive Fast PossiblyLooping : A (u,c) c.Defn(u )

Most of the slots present for IsA were also meaningful for, e .g ., SetUnion [3] ,
but a few are new and worth commenting upon . The Inverse slot is filled wit h
Examples ; whenever x is added to (removed from) the IsA slot of y, y will b e
added to (removed from) the Examples slot of x . The MakesSenseFor slot i s
filled with Anything . This slot describes the class of concepts that can legall y
have an IsA slot—in this case any concept at all .
MakesSenseFor(Domain/Range) = Active, since only active concepts (thos e
with algorithms) can have domains and ranges. Naturally
MakesSenseFor(MakesSenseFor) = Slot, since no other type of unit can legall y
have a MakesSenseFor slot . The Cache slot of IsA says Always ; it might hav e
said Never (which would save some space and squander much time) or some
more dynamic predicate instead .

1 .2 . Ideas about control (agendae, reasons, and heuristic rules )

(1) The control structure of the system is represented as part of the knowledg e
base. While an AM-like agenda mechanism has been retained, the precise contro l
algorithm is represented within EURISKO as a set of concepts, so the system can
modify it itself . Basically, there is Select-Execute-PostMortem loop represente d
as a unit . Specializations of this unit form the three nested loops that charac-
terize the EURISKO program : select and work on a topic ; given a topic, select an d
work on a promising task ; given a task, select and obey a relevant individua l
heuristic rule . Each topic is a major category of investigation for the program
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(e .g ., Number Theory, Device Physics, Games, Evolution, Oil Spills) ; each task
is an order of magnitude more specific and minuscule (e .g., "Find some
examples of prime palindromes", "identify the functionality of a newly-desig-
ned VLSI device"), and the execution of individual heuristics are yet anothe r
order of magnitude smaller ("if trying to find extreme examples of C, the n
extract the base step from a recursive definition of C as one such example" :
and see the dozens of heuristics R1–R26 discussed in [12]) .

Representing the control structure explicitly has had three benefits so far .
First, it facilitates explanation ; EURISKO can more coherently explain what it i s
doing at any given moment, when asked by the user . Given that it's running in
a particular function, the user can ask what the purpose of the function is, ho w
long it usually takes to run, why it was called, etc . Second, it allows enforced
semantics [8] . Given that individual rules are supposed to take about a minut e
to run, that an IfPotentiallyRelevant test is supposed to be much faster than an
IfTrulyRelevant test for each rule, and other assumptions upon which th e
system has been built and optimized, it now has a way to enforce thos e
constraints . If, for instance, a rule is created whose IfPotentiallyRelevant i s
taking longer than its IfTrulyRelevant, explicit representation and record -
keeping of the control structure will let this be noticed and corrected . Thi s
situation has happened many times, for rules synthesized by other heuristics ; i t
might well happen in the future when new human users begin adding rules t o
the system with only a partial view of what the various slot names are suppose d
to mean. Third, and finally, since the average time and space for each functio n
(and the variances of time and space) are built up over a reliable sample o f
cases, it is possible for EURISKO to notice when it's in danger of being in an
infinite loop, even a subtle one in which there is no obvious infinite recursion o r
circular list structure involved . The original motivation for explicitly representin g
control was to enable the program to meaningfully modify its own control code ,
but this has always resulted in bugs (due to an inadequate mastery of program-
ming, of models of learning, and so on) .

(2) Multiple agendae. The human researcher sticks with a topic for an
extended period of time . Partly this is due to the difficulty of `swapping in' a
whole new set of concepts, heuristics, etc . Yet part of the reason for this
behavior is more rational, and worth duplicating in our mechanical researchers :
a developing field will often bog down and appear to stagnate, and this gradua l
winding down of interestingness is punctuated by occasional bursts of (ofte n
serendipitous) discovery, which lead to many promising things to do, which
gradually wind down, etc . If the human—or the machine—abandons a topic a s
soon as it begins to level out, he/she/it will forever be limited to making very
superficial discoveries in many fields . How, then, does EURISKO stay focused o n
a single topic for a nontrivial period of time ?

Some (initially eight) of EURISKO's concepts (e .g ., Games, DevicePhysics,
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NumberTheory) represent `topics' . Each topic has a slot called Agenda, whic h
contains its own agenda of tasks dealing with that topic (concept) and/or wit h
one or more of its specializations . There no longer is one central agenda ;
rather, there is a 'current topic', and its agenda is the one being used for a
while .

When a task is proposed which deals with a concept C, EURISKO ripples up
from C along the Generalizations links looking for topics, halting as soon as i t
finds one . Since a concept may have several immediate Generalizations, ther e
may be several upward ripplings going on at once ; each one terminates as soo n
as it finds a topic . For instance, suppose some rule proposes a new tas k
involving Palindromes. Their immediate generalizations are Numbers an d
SymmetricConstructs . These eventually lead to the topics of NumberTheory
and Aesthetics . A pointer to the task is put on the agenda of each topi c
encountered . There can be several pointers to the same task simultaneousl y
existing on different agendae .

Below we examine the mid-level loop (choosing tasks and working on them )
and low-level loop (choosing heuristics and obeying them) . Here we are
considering the top-level loop, which involves choosing a topic, working on i t
for a while (minutes to—rarely—days of CPU time), and then performing a
post-mortem (after which the loop repeats) . Once a topic is chosen, the next lowe r
level of loop is entered : choose a task, work on it, and analyze what happened .
Note that a user's interests (as defined by the concepts that model individuals an d
groups of individuals) may affect which topics EURISKO expects the user to be
interested in, which tasks he would most like to see worked on, etc .

(3) Dynamic creation and elimination of agendae (topics) . On rare occasions ,
a heuristic rule will advise that an agenda be split into pieces . E.g., here are
two rules which make such recommendations :

If agenda A contains more than four times as many tasks as the average agenda ,
then (try to) split A into about three pieces .

If the number of units called on per task, when working on tasks of agenda A, is more than ten
times the rate at which other agendae inspect units ,

then (try to) split A into two pieces .

Once the recommendation is made, other rules have some ability to mean-
ingfully effect such schisms . One easy way to do this is by creating a ne w
agenda for each specialization of the concept (=topic) of the original bi g
agenda A. If there are no known specializations of that concept, other rule s
may still apply . One rule looks for groups of concepts mentioned in som e
fraction (ideally :i) of the tasks on A . but on very few (ideally less than ) of
tasks on other agendae, and then uses these groupings to delineate the few new
topics. Each new topic is explicitly defined and marked as being a ne w
specialization of A. and the tasks from A are parcelled out onto the new ,
specialized, smaller agendae .
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When an agenda shrinks too small, rules cause it to be merged into al l
appropriate immediate generalizations' agendae . In such cases, the genera l
agendae should adopt (a little of) the small agenda's aesthetics, values, heuris-
tics, reasons, goals . open problems . proints of view . . . In practice, so far, the
only things inherited are the tasks themselves . This raises a possible researc h
question, but is not currently an area we are investigating .

In one run . EURISKO Split the Games agenda into two pieces : one dealing with
the Traveller fleet design game . and one dealing with all other games . As it ra n
out of things to try in the Traveller domain, that agenda grew shorter and finall y
(days later) was automatically reincorporated into the Games agenda .

(4) Selecting a task : the half-frame problem . Let's look in more detail at th e
three phases for the middle level : selecting a task, finding rules which help
satisfy it, and doing a post-mortem on the aftermath on the task's execution .
Selecting a task is done as follows . The top task's reasons are evaluated
carefully, and its rating is updated . Reasons often become stale, but rarel y
(during this phase) does a new reason suddenly spring to mind ; therefore, a
task's rating will almost never increase, but may decline quite a bit by the tim e
we get around to it . We term this the 'half-frame problem' because it remind s
us of McCarthy and Hayes' [13] frame problem, but in a world where change s
go only in one direction . That constraint lets us efficiently 'solve' the problem :
If, after reevaluation, the top task's rating falls below that of task number 2, we
merge it back into the agenda . and repeat this step . Finally . some task will sta y
at the top of the agenda (or we'll be down to re-re-evaluating some task whic h
was higher initially—hence we know it won't be lowered any further) . One wa y
or another, then, this phase terminates by selecting a task from the agenda . Not
all the lower-rated tasks have been reevaluated at this time, but that doesn' t
matter because reevaluating them would only have lowered their rating s
anyway, so they almost certainly aren't the top task to work on now .

(5) Executing a task : dynamically assembling a rule interpreter . The secon d
phase then begins . The first activity is to locate a set of potentially relevan t
heuristic rules, rules whose execution may (help to) satisfy the chosen task .
Space and time bounds are computed (and may be updated as the rules fire) .
Executing a rule is not so straightforward as it was in AM or most other
rule-based systems . There are several ways that the pieces of the relevant rule s
can be run as executable code—i .e., several possible rule interpreters . Variou s
parameters of the current situation determine which rule interpreter is used.
Here are nine examples .

If resources are quite limited, the conditions If-Enough-Time ,
If-Enough-Space, If-Enough-UserAccess, etc . will be checked
quite early on .
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If the current task is vitally important, those slots may never eve n
be considered .

If very few rules are potentially relevant, then there's little need
to spend time ordering them .

If very many rules are potentially relevant, it may be better t o
evaluate some If slot of all of them, and then place them in som e
order for further, detailed consideration of relevance .

In some particularly tricky situations, the rule interpreter mus t
know that it is only a provisional choice, and that it must look fo r
features of the environment (as it runs) that cause it to suspend ,
and initiate a quest for a better interpreter.

A more common, and less drastic, situation occurs when a rul e
interpreter knows it must occasionally check for some new rule s
which might have become relevant since the start of the rule -
executions .

All other consideration being equal, prefer a specific rule to an y
of its generalizations, prefer a rule with shorter running time ,
with (average) fewer number of user interactions initiated, wit h
higher Worth, with more ancient TimeOfCreation, etc .

If the user is impatient (according to the user model, which, e .g . ,
might have noticed a flurry of ' T's being typed), then execut e
the ThenPrint actions of the relevant rules before actually work-
ing on the other Then slots of any of them .

If the user likes conjectures, then execute all the ThenConjectur e
slots first .

These and other judgmental rules guide EURISKO in choosing and changing—
or on some occasions synthesizing a new—rule interpreter for the current task .
Once assembled, it is handed control and it runs the potentially relevant rules .
This is itself usually a select-execute-analyze loop, which proceeds until th e
resource bounds have been exceeded, or the rules have all quit .

(6) Post-mortem of a task : non-blind `suspend and resume' . After the secon d
phase ends, a careful analysis is performed upon that activity . What happened?
How many rules succeeded? How long did the task take? How much space? Is
the user (as represented by units modelling him and the groups he belongs to )
still interested in this topic, or is it time to (possibly) switch to a new one? Th e
task is re-examined in light of its reasons : is it now worth putting back on th e
agenda? With what reasons?
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If a task failed, it will usually be placed back on the agenda along with som e
new tasks which (if they succeed) might enable this one to run successfully .
This task's failure serves as one reason for those new tasks, and when they
succeed their post-mortem should boost the priority of this task . In trivial case s
(where no heuristics know why the task failed, what could have helped it), the
task is simply put back on the agenda, and this mechanism resembles th e
familiar blind suspension and resumption of processes . What Eurisko's contro l
structure allows here is a sort of best-first knowledge-guided generalization of that
mechanism .

(7) Each heuristic rule is itself a concept ; we do not distinguish metarules fro m
rules. Each heuristic rule examines some concepts . modifies them, create s
similarly typed ones, etc. It just may so happen that some of those concept s
examined and synthesized will be heuristic rules (will themselves be capable o f
operating upon other concepts) . For that matter, they might even be concept s
that are heuristics which work on heuristics ; this was illustrated toward the en d
of Section 4 .12 of [12] . There is no need to distinguish metarules from rules, as we
can now simply apply a body of heuristics to itself as well as to concepts fro m
some technical task domain . After all, categories should be drawn when an d
only when the distinctions lead to some advantage, some new ability or clarit y
or power.

Unfortunately for my philosophy . EURISKO recently chose to define an d
separate out the set of rules that can operate sometimes on other rules—i .e . ,
the metarules . It did this mainly for aesthetic reasons (co-identification), an d
decided to keep the distinction around because it noticed a powerful regularit y
involving metarules: running one on rules usually takes much longer tha n
running it on domain-level concepts . In hindsight it's clear that testing a rul e
will take an order of magnitude more effort than testing an object-leve l
construct, because testing a rule might require synthesizing and testing a doze n
domain concepts along the way. Nevertheless, each metarule can and does stil l
run at both levels .

As part of what we get from representing each rule as a full-fledged unit, the
rules are automatically now organized into an enormous generalization/speci-
alization hierarchy . The so-called Weak Methods (generate and test . hil l
climbing, etc .) lie at the top (most general), and there are many hundreds o f
entries near the bottom (specific judgmental rules which mentioned particula r
terms like 'n-doped, 'nuclear dampers, and 'perfect numbers') . But what o f
the structure in between? In particular, what are the next hundred or so node s
below the five weak methods? What is the average depth of the tree, th e
average branching factor, and so on? One aim of this research is to get a bette r
grasp of what this 'space of heuristics' looks like, what its structure is . Our
results to date were recently presented in [9] . Even though the weak methods
are encoded as rules in EURISKO, and can be run. few of them have ever
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succeeded in producing a useful result, and as a result their Worths are fairl y
low. It is usually more efficient to devise for the program a specific heuristic fo r
some new situation, rather than spending the extra time following a very genera l
heuristic .

Once a task is chosen, say working on concept C, a rule interpreter is chosen
or synthesized. This is run on the set of potentially relevant rules, namely th e
rules pointed to by C or by one of its generalizations . The organization of rule s
into a tree enables this set to be small (on the order of the log of the tota l
number of rules in the system) . The interpreter will evaluate If parts of rule s
and execute Then parts in some fashion (perhaps dealing with rules one at a
time, perhaps running all their If's and then picking a rule at a time to carry ou t
its Then's, perhaps running all the Then-Conjecture slots of all truly relevan t
rules immediately, etc .) The post-mortem of an individual rule is necessarily
simple : bookkeeping information about time and space used, new units created ,
etc . are recorded .

1 .3 . Ideas about communicatio n

(1) As EURISKO matures, it interacts less as a pupil, more as a co-researcher .
As with all expert systems, much system-user interaction has been require d
initially, at system-startup time . These dialogues have been primarily tutorial ,
as we put in one concept after another by hand . Later interactions were les s
frequent, less tutorial in character, more frequently involving outside expert s
watching and interacting with the program as a performer . Besides models of
users and user-groups, EURISK0 should have models of dialogue-modes (tutor-
ing the system, solving problem, being taught by the system, etc .) We did, and
still do, believe this to be important, but little work has been done on it as yet .

(2) EURISKO must quickly notice when new concepts are related to existing ones .
EURISKO generates new concepts frequently . One result we've noted is the high
frequency with which these `new' concepts are in fact equivalent to an already-
existing one . So EURISKO should have a fast way of checking each new concept ,
to see if its genuinely new or not . We call this the recognition problem' . I t
arises both when the user defines some new concept, and when EURISKO itsel f
does .

EuRISKO currently employs the following strategy to deal with this
problem. Each unit knows which slots are criterial, i .e ., define it . Each such
criterial slot s knows the way in which it makes sense to do matching . The
existing concepts caught by this simple mechanism can then be examined in
detail at leisure . For instance, a concept may have Defn as a criterial slot, an d
the Defn may be a conjunction of tests . Consulting AND, the matcher find s
that it is supposed to be insensitive to the order of the conjuncts, and that i t
should recur on their structure to determine if they match . Another concep t
has a criterial slot which is Alg (a procedure for computing some function) . The



72

	

D .B . LENA T

Alg slot is filled with a Lis p PROGN, and the matcher consults PROGN an d
finds that EVAL-ing the program on test arguments to see if gives the sam e
answers is one way of testing a match . This does not provide a theoretical
solution to the general problem of finding potentially-related concepts, but it i s
working satisfactorily, empirically .

(3) EURISKO always has the initiative ; the user can request but never demand .
When the user types in some message indicating that he wishes to define or
modify a concept, that request is placed as a very (but not infinitely-) hig h
priority task on the agenda . Note that EURISKO does not relinquish control at
any time ; it keeps the initiative . When the user types in `interrupts', EURISK O

does minimize the amount of time until his/her interrupts are handled, but that
is only due to courtesy (as defined by rules), not built in to the system in an y
way .

When the user selects a topic, that topic is given much greater weight tha n
any others ; yet there may well still be some task on some agenda which has s o
high a rating that its done anyway . The model of the user (based on him/her a s
an individual and also based on groups the user belongs to) determines how to
treat his/her requests and interrupts . Some categories (such as AI researchers )
enjoy seeing a program retaining full control ; for other groups (such as
mathematicians), EURISKO knows it must (and does) simulate being a quite
subservient program .

(4) Modelling the user enables the creation of a good first impression . Creatin g
a good `first impression' is important . Psychologically, it will overshadow th e
user's attitude toward using the system for a long time to come . Pragmatically ,
EURISKO is dependent upon outside experts for testing, use, and knowledge bas e
building; it is important to keep them interested in interacting with the program .
Telling a user something he/she already knows about, or omitting an explanatio n
in an area he/she is unfamiliar with, are equally serious turn-offs .

EURISKO solves this problem by building up and using models of its users .
When a new user logs in, the program attempts to quickly guess as much a s
possible his profession, his interests, his notations . Many of these features are
co-occuring (e .g., if he writes `j' to indicate the square-root of -1, then he's
probably an engineer, and he'd feel at ease being shown huge equations and
formulae) . Thus, when a few things are observed . EURISKO can tentatively
assign (as defaults, as it were) all the other known co-occuring `symptoms' . This
kind of expectation-filtering inference forms the common source of power
for many current AI methodologies (frames, scripts, beings, stereotypes, units ,
schemata) .

To support expectation-filtering by user models, a massive data base mus t
exist, dealing with people in general, broken into groups, and even some dat a
about specific known individual users . As one might expect from the EURISK O

philosophy, each person, each group, and the set AllPeople, get their own
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separate full-fledged concept frames . A genl/spec hierarchy exists, with th e
most common knowledge at the top node (`AllPeople' in general), and th e
most specific knowledge at the bottom nodes ('Polya', `Feigenbaum') . At
present there is not much in this knowledge base, but the results it affects are
often the most noticeable ones by outsiders . For instance, when a new user
types '(' T as EURISKO is starting up, EURISKO concludes that he/she is familiar
with other computer systems, is impatient, is probably scientifically-oriented ,
etc . EURISKO does learn simple models of each new user, but there are a t
present very few psychological and societal heuristics for building up (an d
testing!) such models . Based on our model of theory formation (presented i n
[12]), we are not surprised that only minimal sorts of learning were achieve d
without a deep model of the domain (in this case, the domain of `th e
psychology of using computer programs') .

2. Results of EURISKO Applied to Naval Fleet Design

New concepts lie `near the surface' of all fields, though of course some field s
have been picked cleaner than others (e .g., contrast number theory to AI) .
Mathematics was a poor choice of domain for AM from this point of view, since
it has been so well explored throughout the millenia . It is rare that interesting
new results arise near the surface of old disciplines ; one exception is Conway's
numbers [7] . In fact, in our first graph theory protocol, such a concept wa s
discovered (the category of graphs now known as uniquely geodesic : if a pat h
exists between two vertices, then a unique shortest path exists) . In AM, there
was always the possibility that while each heuristic seemed intuitively obviou s
and general, its true nature was merely an encoding of some of know n
mathematics, and that that was in fact why it appealed to our intuition (that ou r
intuition has been shaped to reflect a rough image of mathematics that exist s
already) . We strongly believed this not to be the case, however . EURISKO has
been a good test of the hypothesis that a large but general set of judgmental rule s
for manipulating concepts (and for discovering new rules) can be found an d
operationalized .

To demonstrate the efficicacy of its methods to practitioners of the fields i t
works in (e.g ., mathematicians) and to practitioners of Al, any progra m
claiming to be a `discovery program' should aspire to two goals : (i) use the
same methods to discover concepts, conjectures, and heuristics in severa l
domains, and (ii) make at least a few genuinely new (to mankind) usefu l
discoveries . Ana did not meet these criteria well, but EURISKO does. Sections 2
and 3 of this paper discuss the various tasks EURISKO has worked on, and the result s
it has achieved. Other articles focus on applications to VLSI design [11] ,
elementary mathematics [3], and biological evolution [10] ; therefore we shal l
concentrate upon a different task, that of designing a futuristic fleet to compete i n
the Traveller Trillion Credit Squadron (TCS) wargame [14] .

EURISKO designed a fleet of ships suitable for entry in the 1981 and 1982
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national Origins tournaments for TCS. These tournaments are held on July 4
weekends, and run by Game Designers Workshop, which is based in Normal ,
Illinois . The 1981 tournament was held in San Mateo, CA, and the 1982
tournament was held on the campus of the University of Maryland, in Baltimore .
Each tournament was single elimination, six rounds . EURISKO'S fleet won the firs t
tournament, thereby becoming the ranking player in the United States (and als o
an honorary Admiral in the Traveller navy) . This win is made more significant b y
the fact that no one connected with the program had ever played this game befor e
the tournament, nor seen it played, and there were no practice rounds .
Subsequent to that event, changes were made in the tournament rules, changes
which nullified most of the unusual features of the submitted fleet . A differen t
collection of rule synergies were opened up by the new rules, however, an d
EURISKO'S new fleet won the 1982 tournament as well .

Each participant has a budget of a trillion `credits' (roughly equal to dollars )
to spend in designing and building a fleet of futuristic ships . There are over on e
hundred pages of rules which detail various costs, constraints, and tradeoffs ,
but basically there are two levels of variability in the design process :

(1) Design an individual ship : worry about tradeoffs between types o f
weapons carried, amount of armor on the hull, agility of the vessel, grouping s
of weapons into batteries, amount of fuel carried, which systems will have
backups, etc .

(2) After designing many distinct kinds of individual ships, group the m
together into a fleet . The fleet must meet several design constraints (e .g ., some
ships in the fleet, having a total fuel tonnage of at least 10% of the total flee t
fuel tonnage, must be capable of refueling and processing fuel), and in additio n
must function as a coherent unit .

To handle this task, 146 units were added, by hand, to EURISKO . We list thei r
names below, illustrate a couple in detail, and then discuss what EURISKO did .

Accel AccelAttacklnfo AcceIUSP Agility Alg Armor Attacklnfo AttacklnfoO f
BeamDefense BeamLaser BeamLaserAttacklnfo BigAccel BigAccelDamage
BigAccelUSP Bridge DestroyedDamage Computer ComputerDestroyedDamag e
ComputerFib ComputerinternalDamage ComputerRadiationDamage Confi g
Configuration ConfigurationDefense CrewDamage CriticalHitDamag e
CriticalTypeOfDamage Damage Damagelnfo DamagelnfoOf DamageTableO f
DefendsAs DefendsUsing DefensiveWeaponType EnergyGu n
EnergyGunAttacklnfo EnergyGunUSP Fleet FleetBattle FrozenWatc h
FrozenWatch/TroopsDeadDamage FuelDamage Game GameConcept GameOb j
GamePlaying Games H61 H62 H63 HEMissile HandleComputerinternalDamag e
HandleComputerRadiationDamage HandleCrewDamag e
HandleCriticalHitDamage HandleDamage HandleFuelDamag e
HandleJumpDamage HandleManeuverDamage HandlePowerDamag e
HandleScreenDamage HandleWeaponDamage Hangar/BoatDestroyedDamag e
IfDecidingTermination IfSimulating Juggernaut JumpDamag e
JumpDestroyedDamage LaserUSP ManeuverDamag e
ManeuverDestroyedDamage Manu MesonGun MesonGunAttacklnfo
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MesonGunDamage MesonGunUSP MesonScreen MesonScreenDefens e
MesonScreenUSP Missile MissileAttackInfo MissileUSP Missler NAccel s
NBigAccels NEnergyGuns NLasers NMesonGuns NMesonScreens NMissile s
NNucMissiles NNuclearDampers NNumber NRepulsors NSandCaster s
NSmallAccels NucMissile NucMissileDamage NuclearDampe r
NuclearDamperDefense NuclearDamperUSP OffensiveWeaponTyp e
PhysGameObj PlayTravellerFleetBattle RangeDesired Repulsor RepulsorDefens e
RepulsorUSP SandCaster SandCasterUSP SandDefense Scooter Screen
ScreenDamage ScreenDestroyedDamage Ship ShipVaporizedDamage Ship s
SimulationHeurs SizeMod SizeUSP SmallAccel SmallAccelDamag e
SmallAccelUSP SmallWeaponDamage Spine/FireControlDestroyedDamage
TerminationHeurs ToHit ToHitLongRange ToHitShortRange ToPlay ToPlayO f
Tonnage TravellerFleet TravellerFleetBattle TwoPersonGame TypeOfDamag e
USPNucMissile UnFairGame UsedlnSimulating UsedlnTerminating UspPresen t
WarGame Weapon WeaponAttacklnfo WeaponDamage WeaponTyp e

Each concept is represented by a unit that takes about half a page of text t o
describe . Here are two of these units, shown the way they exist in EURISKO . The
first describes a type of weapon available to ships ; its offensive power i s
described in more detail by the second unit .

Name . EnergyGun see Note
Generalizations : (Anything Weapon )
AIIIsA : (GameConcept GameObj Anything Category WeaponType 1, 3

DefensiveWeaponType OffensiveWeaponType Ob i
AbstractObj PhysGameObj PhysObj )

IsA : (DefensiveWeaponType OffensiveWeaponType PhysGameObj) 1
MyWorth : 400 2
MylnitialWorth : 500 2
Worth : 100 2
InitialWorth : 500 2
Damagelnfo : (SmallWeaponDamage )
Attacklnfo : (EnergyGunAttacklnfo) 8
NumPresent : NEnergyGuns 3
UspPresent : EnergyGunUSP 4
DefendsAs : (BeamDefense) 4
Rarity : (0 .11 1 9) 5
FocusTask : (FocusOnEnergyGun) 6
MylsA : (EuriskoUnit)
MyCreator : DLenat 7
MyTimeOfCreation : "4-JUN-81 16 :19 :46" 7
MyModeOfCreation : (EDIT NucMissile) 7

Name : EnergyGunAttacklnf o
MyWorth : 400
Worth : 500
All IsA : (Anything GameConcept )
IsA : (GameConcept)
Generalizations : (Anything WeaponAttacklnfo)
AttacklnfoOf : (EnergyGun) 8
ToHitShortRange : (8 7 7 6 6 5 5 4 4)
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ToHitLong Range : Impossibl e
SandDefense : ((4 3 2 1 0 0 0 00 )

(543210000 )
(654321000 )
(765432100)
(876543210)

(987654321 )
(1098765432 )
(11109876543)
(121110987654) )

FocusTask : (FocusOnEnergyGunAttacklnfo )
MylsA : (EuriskoUnit ValueOfASlot )
MyCreator : DLenat
MyTimeOfCreation : "4-JUN-81 16 :33 :18"

MyModeOfCreation : (EDIT MissileAttacklnfo)

Note 1 . The ` IsA ' slot holds the immediate (most specific) sets to whic h
EnergyGun belongs; the slot `AIIIsA' holds those same entries, plus all thei r
Generalizations, plus all their Generalizations, etc . The `MyIsA' slot indicate s
what this data structure is, namely a unit in an AI program .

Note 2. The slot `MyInitialWorth' records the value of the MyWorth slot of th e
unit at the time it was created . If the value of MyWorth has never changed ,
then there is no MyInitialWorth slot needed—such units only have a MyWorth
Slot ; EnergyGunAttacklnfo is such a unit . These values reflect how useful th e
unit has been to EURISKO—i .e ., how compact it's been, how little CPU time it' s
wasted, how many interesting analogies were built using it, how many of th e
structural modifications done to it were fruitful, etc . This is to be contraste d
with the Worth slot of, e .g ., EnergyGun, which specifies how useful energy
guns are to have on ships . All values are in the 0—1000 range . What happene d
to lower the MyWorth of EnergyGun? At one time, it was selected as a
candidate for modification ; EURISKO spent some time trying to analogiz e
between it and other types of weapons, and nothing much came out of that . As
a result, its MyWorth was dropped from 500 to 400 . Why was the Worth o f
EnergyGun lowered? Through many tens of simulations, it became clear tha t
one could buy enough armor plating to make a ship invulnerable to attacks b y
these types of weapons, and from then on almost all ships were so armored .
Thus, any ships having energy weapons were at a serious disadvantage, an d
gradually—as they lost—the Worth of EnergyGun declined . Incidentally, thi s
mistakenly led to a correct heuristic : "If a weapon cannot hit at all at one rang e
(e .g ., Long Range in this case), then it's probably not worth having too many o f
them." That was not the major problem with energy guns, but the heuristic is a
good one anyway .

Note 3. Most of the slots are filled in with names of other units ; for example
the AllIsA slot of the EnergyGun unit points to the unit called WeaponType . If
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new facts should emerge about weapontypes (e .g ., a heuristic that the bigge r
the better, or a new regulation affecting the grouping of weapons into bat -
teries), the unit WeaponType would be edited and modified, but there woul d
be no need to try to figure out all the effects on other units in the system . The
changes would be inherited by EnergyGun and only noticed when they wer e
needed, when some use was about to be made of them . This is a major sourc e
of power in most frame-based systems . Some of these pointers are actuall y
indirect SeeUnit ; references [8] . For instance, the NumPresent slot of EnergyGu n
should be filled simply with a range limit ; instead, it contains the lis t
(*SeeUnit :* NEnergyGuns) . There is a unit called NEnergyGuns, with a Valu e
slot that does provide the desired range [anywhere from 0 to Tonnage/100], bu t
NEnergyGuns contains other information about the number of energy guns o n
a ship, such as power requirements, balancing, variance and mean values fo r
this quantity, extreme values, etc .

Note 4 . Some slots have a single entry as their value, and some have a list of entrie s
(even though there may only be one element in that list) . The unit representing
each kind of slot indicates the kind of structure to use to fill incarnations of tha t
kind of slot—set, bag, list, single item, etc . That unit also specifies the type an d
range of the entries that are permissible thereon .

Note 5 . The slot called `Rarity' reflects the fact that, during a recent run ,
EURISKO examined nine objects, known to be weapons, to see if they were
energy guns ; one of them was . This is the kind of bookkeeping record whic h
heuristic rules might want to access ; e .g ., rules which say "If C is a specializa-
tion of G, and (empirically) very few G's turn out to be C's, then . . ." .

Note 6. As EURISKO worked in this domain, over a hundred new workhors e
concepts were trivially synthesized by EURISKO : concepts of the form FocusOnX,
where X is one of the 146 concepts . Each such FocusOnX concept represents a
task, and is pointed to by one or more agendae, initially the Games agenda . I t
records the various times that it was the top task and energy was expende d
working on it, when that happened, what the results were, how long it took ,
what reasons recommended, it, etc . The FocusOnEnergyGun task thus serves
two purposes :

(i) it is a task on an agenda, and when selected it draws EURISKO'S attentio n
to the concept EnergyGun ; various generation rules might then cause EURISK O

to explore modifications to EnergyGun, analogies to it, patterns in its use, etc .
(ii) it is a record of all the times that that task has ever been worked on, an d

as such forms data which can be examined by rules, e .g ., this one : "If most
attempts to do X have been slow but fruitful, then . . ." . That is, it serves as dat a
to induct upon .

Note 7. The preface My means "treated as a EURISKO unit, a data structure in a



78

	

D .B . LENAT

computer program" . So MyCreator refers to the person who first typed in th e
unit called EnergyGun, or to the name of the heuristic rule which firs t
synthesized it (in which case MyTimeOfCreation would have to point to a task a s
well as to a date) . If the EnergyGun unit had a slot called just Creator, it would b e
filled with the name of the person who invented the energy gun . Similarly, if it had
a slot called TimeOfCreation, it would be the date on which the energy gun wa s
first discovered . Such information might be useful to the program, incidentally, i f
there were some pattern in the usage of weapons developed by inventor X, o r
developed during a certain period of time .

Note 8 . Many of EURIsK0's slots have inverses . Thus Attacklnfo and AttackIn-
foOf are inverse slots . IsA and Examples have the same relationship ; thus
EnergyGun says it IsA Defensive WeaponType. If we ask for Exam-
ples(DefensiveWeaponType) the value is the list (BeamLaser PulseLase r
SandCaster EnergyGun Repulsor), which includes EnergyGun . On the uni t
called IsA, its Inverse slot is filled with the entry Examples . The Inverse slot of
the Inverse unit is filled with Inverse—so if slot s is the inverse of r, then r i s
the inverse of s .

Of the 146 added concepts, two represented new types of activities : playing a
game, and running a simulation . Later, a couple other games were added t o
EURISKO (Tic-tac-toe and Go) to ensure that the general games concepts trul y
were general . Managing a simulation caused us to augment EURISKO with three
new heuristics (H61, H62, H63) : these (respectively) check for termination, tr y
to project the ultimate outcome of the simulation, and check for infinite loop s
during simulation . One method they employ, e .g., is to monitor the relativ e
strengths of the two opponents : if a pattern develops in the progression of
these (e .g . . the ratio is always in favor of side 2 and it is increasing i n
imbalance) . a winner can be projected . If the strengths remain basicall y
unchanged for several iterations, an infinite loop (i .e ., a draw) can be projected .

Two new If types of slot were introduced, IfSimulating and IfDecidingTer-
mination ; the three new heuristics had values for these new slots as well a s
other, more conventional If slots . Two new categories of heuristics wer e
defined: TerminationHeurs and SimulationHeurs . Their quaSlot forms were
useful `unary functions' which map a game—such as TCS—into a set o f
heuristics for simulating it, and into a set of heuristics for checking terminatio n
of the simulation . The inverse links to these two slots are called UsedlnTer-
minating and UsedlnSimulating . They point from a rule to the game(s) or
process(es) it simulates (or tries to terminate) . For instance, heuristic H61 has a
slot called UsedlnTerminating, whose value is the singleton list (Traveller -
FleetBattle) .

The new units collectively specify the rules of the game and the constraint s
on the design process . How did we get EURISKO to play the game? The uni t
Games is a topic, and as such can have an agenda . One of the new units,
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PlayTravellerFleetBattle, had no examples, so a general heuristic added a ne w
task to the Games agenda : "Find examples of PlayTravellerFleetBattle" . The
Games topic was selected as the current topic (by pointing to it with a cursor ,
though it could have been selected indirectly by supplying a user model tha t
claimed the user is very interested in games) . Once Games was the chose n
topic, there were only a few tasks with higher priority . The first one EURISK O
ran defined the difference between Games and TwoPersonGames, and made a
note that sometime EURISKO should look into defining some of those Non -
TwoPersonGames .

Finally, EURISKO got around to trying to find examples of PlayTraveller-
FleetBattle . Each example involved a call on a fleet-designing phase followe d
by a battle simulation phase . The new concepts and rules helped carry out thes e
processes . After each simulated battle, EURISKO paused to try to abstract from
the results some new design heuristics . The first step was to isolate th e
differences between the two fleets . Often they would be similar, and the
differences would exist mostly at the level of design of particular individua l
ships . Eurisko then framed many different general rules, any one of whic h
would suffice to prefer the winning design over the losing one . No new
techniques are used for this induction process; rather, the apparent power is
due to a good choice of representation for the rules, one naturally suited t o
rules, to design rules, and even more particularly to TCS ship design rules . We
shall have much more to say about this is Section 5 . A fast test of the candidate
rules was made, using any relevant recorded battles from the past . If more tha n
one proposed heuristic remained, new variant fleets were designed and simu-
lated, each one embodying one but violating the other heuristics . In cases of
circular victories (A beats B who beats C who beats A) all the candidates
involved were retained, but with somewhat lowered worth . Such situation s
were interpreted as analogues of local maxima, and EURISKO would try for a
very different fleet design for the next iteration .

So fleets fight (each battle taking between 2 and 30 minutes), and the battle i s
analyzed to determine which design policies are winning, and—occasionally-
what fortuitous circumstances can be abstracted into new design heuristics . An
example of the former (gradual parameter adjustment) was when the Agility of
ships gradually decreased, in favor of heavier and heavier Armor plating of th e
hulls . An example of the latter (fortuitous monsters) was when a purel y
defensive ship was included in an otherwise-awful fleet, and that fleet could
never be fully defeated because that defensive ship, being very small, un-
armored, and super agile, could not be hit by any of the weapons of the larger
nearly-victorious fleet.

EURISKO has by now spent 1300 CPU hours on a personal Lisp machine, th e
Xerox 1100, managing this heuristically-guided evolution process . The author
culled through the runs of EURISKO every 12 hours or so of machine time (i .e . ,
each morning, after letting it run all night on one or more 1100's), weeding ou t
heuristics he deemed invalid or undesirable, rewarding those he understood
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and liked, etc . Thus the final crediting of the win should be about 60/40 %
Lenat/EuRIsxo, though the significant point here is that neither party coul d
have won alone . The program came up with all the innovative designs an d
design rules (i .e ., the loopholes in the TCS formulation), and recognized th e
significance of most of these . It was a human observor, however, (the author )
who appreciated the rest, and who occasionally noticed errors or flaws in th e
synthesized design rules which would have wasted inordinate amounts of time
before being corrected by EURISKO .

Most of the battles are tactically trivial, the contest being decided b y
the designs of the two fleets ; that—and the 100-page thickness of the rule-
books—were the reason this appeared to be a valid domain for Euxrsxo . It is
also important—for Euxrsxo to have a good chance of finding new results—tha t
the size of the search space (legal fleet designs) be immense : with 50
parameters per ship . about 10 values for each parameter (sometimes fewer .
often an infinite number), and up to 100 distinct ships to design and include i n
each fleet, any systematic or monte carlo analysis of the problem is unlikely t o
succeed . In fact, the designers had done a detailed linear programming mode l
of the game, and their computer runs convinced them that a fleet of about 2 0
behemoths was the optimal design. This was close to the starting fleet design th e
author supplied to EURISKO, and it was also close to the designs that most of th e
tournament entrants came up with .

EURISKO was originally supplied with what appeared to be a good flee t
design (twenty large ships, each fairly fast and moderately armor-plated, eac h
with some small weapons and one huge spinal weapon) . EURISKO also had man y
`mutation' operators, such as changing the number of ships, their size, thei r
weaponry, etc . The many constraints—the TCS rules and formulae—were used
to constrain the generation of mutant fleets, and to prune away illegal one s
before simulating them . At first, mutations were random . Soon, patterns wer e
perceived : more ships were better ; more armor was better ; smaller ships were
better ; etc . Gradually, as each fleet beat the previous one (and a few rando m
ancestors), its "lessons" were abstracted into new, very specific heuristics .
These rules are specific not only to ship design, but to the particular set of TCS
rules in effect during 1981 . The design rules were then used to further constrai n
the mutation process .

One very general result that EURISKO abstracted from this evolutionary
design process was a `nearly extreme' heuristic .

In almost all Traveller TCS fleet design situations ,
the right decision is go for a nearly—but not quite—extreme solution .

Thus, the final ships had Agility 2 (slightly above the absolute minimum), on e
weapon of each type of small weapons (rather than 0 or many), the fleet ha d
almost as many ships as it could legally have but not quite (96 instead of 100) ,
etc . Big weapons (enormous spinal mounts capable of blasting another ship to
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pieces with a single shot) were gradually phased out, in favor of an enormou s
number of small missile weapons . The fleet had almost all (75) ships of this type
though there was one ship which was small and super agile and purel y
defensive (and literally unhittable by any reasonable enemy ship), and a coupl e
monstrous hulks which had no chance of defense against normal ships, bu t
which had weapons just barely accurate enough to hit any enemy ships tha t
were (of course!) small and agile and purely defensive .

Some of the strangest elements of the final fleet were discovered accidentall y
rather than as the result of a long, continuous evolution process . The usefulnes s
of a tiny defensive ship was apprehended after a `lifeboat' was the only survivo r
from one side's fleet, yet round after round it could not be hit at all . That
design was immortalized into a design strategy ("Include one such ship in you r
fleet!"), and a very general rule began looking for ships that could destroy it .
Finally, one was found ; it was quite strange, and would never have been
included except to counter the possibility that the enemy might have smal l
defensive ships too . Against any normally-armed ship, it would quickly b e
destroyed. Basically, this new ship had moderate size, no armor, the larges t
possible guidance computer, the slowest possible engines for its size an d
equipment, and one single, enormous accelerator weapon—a weapon usuall y
ignored because its broad beam glances harmlessly off large armor-plated ships ,
but which is very easy to aim . This combination is ineffective for most combat ,
but is just enough to fire at the little boats it might be sent against . We were a
little disappointed that none of the other entrants had small defensive "stale-
mate guarantors" of the sort we took .

Almost all the other entrants in the final tournament had fleets that consisted
of about 20 ships, each with a huge spinal mount weapon, low armor, fairl y
high agility, and a large number of secondary energy weapons (laser-typ e
weapons). This contrasted with EURISKO'S fleet in almost all ways . Most ships i n
our fleet did sprout one solitary laser among their 50 or so weapon batteries ,
but not because it was useful in combat—just to absorb damage from enem y
fire (thanks to the somewhat unrealistic scheme by which damage is inflicted on
ships which have been hit) . After an exchange of fire, most of the enem y
behemoths did indeed sink one of EURISKO'S ships, for a total loss of about 1 5
ships. In return, EURISKO'S 96 ships sank about 5 of the enemy . So just prior to
the second exchange of fire, the enemy was down to 15 ships, and EURISKO 81 .
After a second round of fire, the numbers were 11 and 70 . Two more
exchanges brought the totals to 1 and 46, and one more round of fire wiped ou t
the enemy. In this scenario—which was the most common one in all EURISKO ' S
battles during the tournament—there is no need at all to bring any of it s
specialty ships into the front lines at any time .

The tournament was run in such a way that, after one player wins a battle ,
his fleet is completely reconstituted and repaired to its original state, i n
preparation for the next rung of the ladder .
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pattern became clear . Its second opponent did some calculations and resigne d
without ever firing a shot . The subsequent oponents resigned during their first
or second round of combat with this fleet . EURISKO ' S few specialty ships
remained unused until the final round of the tournament, battling for 1st versu s
2nd place . That opponent also had ships with heavy armor, few large weapons ,
low agility, etc . He was lacking any fast ships or fast-ship-killers, though . The
author simply pointed out to him that if EURISKO were losing then (according to
the TCS rules) our side need put only our fast ship out the front line, withdraw
all the others and repair them, and—once they were finished repairing them-
selves—effectively start the battle all over again . This could go on ad infinitum,
until such time as EURISKO appeared to be winning, and in that case we would
let the battle continue to termination . The opponent did a few calculations and
surrendered without fighting . Thus, while most of the tournament battles too k
2–4 hours, most of those involving EURISKO took only a few minutes .

The tournament directors were chagrined that a bizarre fleet such as this on e
captured the day, and a similar fleet (though not so extreme) took secon d
place . The rules for future years' TCS tournaments were changed to eliminate
the design singularities which EURISKO found. For example, repairing o f
damaged ships was prohibited, so the utility of the unhittable ship becam e
negligible .

Details of EURISKO ' S victory at the tournament and a complete listing of th e
design of our winning fleet are given in [14] . Rules for the competition are
given in three parts, each of them necessary, each published in a separate
softbound book of about 200 total pages : One on small ship design, one o n
large ship design, and one on fleet design and combat rules . These are availabl e
from Game Designers' Workshop, Normal, Illinois, as well as from game an d
hobby shops nationwide in the U .S .A .

When rules for the 1982 tournament were announced, EURISKO was set to
work on finding a new fleet design. Although many of its best designs an d
design rules were now illegal or useless, most of the general heuristics i t
synthesized about the game were still valid . Using the `nearly-extreme' heuris-
tic, for instance, it quickly designed a ship with practically no defense, and tha t
ship filled a key role in the final fleet . Coincidentally, just as the defensive ship
made a difference in the 1981 final round, the offensive ships made a differenc e
in the 1982 final round. In each case, their presence caused the opponent t o
resign without firing a shot . The bulwark of our 1981 fleet was a ship that wa s
slow and heavily armored ; the majority of ships in our 1982 fleet were very fas t
and completely unarmored . Just as most `experienced' players jeered at the
1981 fleet because it had practically no large weapons, they jeered at the 1982
fleet because it was unarmored and it still had no large weapons, even thoug h
the rules changes had made them much cheaper .

What EURJSKO found were not fundamental rules for fleet and ship design ;
rather, it uncovered anomalies, fortuitous interactions among rules, unrealistic
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loopholes that hadn't been forseen by the designers of the TCS simulation
system. There may be little of what EURI5KO found that has application to rea l
naval design ; most of its findings pertained to the fine structure of the TC S
rules, not to the real world . For example, a crew hit reduces the number o f
crewmen on a ship from n down to the largest power of 10 smaller than n (e .g . ,
from 370 to 100, from 82 to 10) ; EURISKO therefore designed ships requiring 9 9
crewmen, and crewed them with 101 people ; the first crew hit therefore had n o
effect on the ship's battleworthiness .

The fact that EURISKO's discoveries were synergistic loopholes rather than
genuine naval insights is not in itself bad, as our goal was to win th e
tournament, not break new ground in real warfare . In fact, the very unrealit y
of the TCS rules—as any 100-page model of the real world is bound to b e
incomplete and have rough edges—promised to aid us in our task . Here was a
search space that had not been explored much by human beings yet ; mos t
designers were applying analogues of rules that hold in real life, and tha t
yielded them reasonable designs—fleets of the kind the TCS people anti-
cipated . EURISKO was able to walk around in the space defined by the set o f
rules, somewhat awkwardly, but (thanks to its absence of common sens e
knowledge) with few preconceptions about what an optimal design might be .
Perhaps we will know that the program has `arrived' when it first fails
to win the TCS tournament . This notion of a large, unexplored search space ,
not necessarily well-matched to our everyday comnon-sense intuitions, wil l
come up again and again in the following pages . It appears to characteriz e
those domains for which automated discovery (of both concepts and heuristics )
is currently most viable .

The rules will indeed change for July, 1983, including the elimination o f
drop-tanks (fuel tanks that can be jettisoned ; this improves the speed of a ship
but may strand it after the battle) and other changes that will force a complet e
redesign . We look forward to the new challenge .

3 . Results of EURISKO Applied to Other Tasks

3 .1 . EURISKO applied to elementary mathematics

The first domain we added concepts about was mathematics, specifically th e
same starting collection of finite set theory concepts AM began with . Fifty
heuristics were added, which subsumed most of AM's old set of 243. This
condensation was the result of joint effort on the part of the author, W .W .
Bledsoe, and H .A. Simon, begun in 1978 at Carnegie-Mellon University . Not
surprisingly, EURISKO then duplicated many of the results of AM : finding
elementary set theory theorems, extreme properties of set operations, an d
defining useful new objects and operations about 50% of the time . The other
50% of its time was spent about half in generating awful concepts (still a bit
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better than AM'S hit-rate, though), and half in attempting to produce new
heuristics and types of slots . Even though these latter activities were quite rare ,
they were quite timeconsuming when they did occur . The various set-theor y
examples presented in [12] were drawn from runs of EURISKO .

The knowledge base now contains number theory (divisibility theory )
concepts as well . Most number theory concepts were discovered by EURISKO

and later hand-smoothed by the author : e .g ., a valid but inefficient factorin g
algorithm was replaced by an efficient one . It is hoped that EURISKO may find
some new results on fringes of that area .

About 200 math concepts were present in the system, to work in set theor y
and number theory . After about 500 hours of running, another thousan d
concepts had been considered, and 200 of them had proven interestin g
(empirically, in the program's judgment, and later confirmed by human in-
spection) . Of these new concepts, 11 were valuable, specific new heuristics, an d
7 were useful new types of slots . Of the 7 new slot types, four were slots tha t
only heuristics could possess .

It is worth explaining those four new If and Then types of slots which wer e
synthesized : If-Constant, If-Identity, If-Unchanged, and Then-Conjecture . The
three If slots were needed because of the high frequency with which ne w
functions turned out to be closely related to (i) a constant function, (ii) th e
identity function, (iii) the same function they were synthesized from . After
synthesizing the new Then slot, EURISKO defined the two new bookkeeping slots
listed above : ThenConjectureRecord and ThenConjectureFailedRecord . Each
(unit representing a) heuristic rule, call it H, can have either or both of thes e
bookkeeping slots, as well as having a ThenConjecture slot . The bookkepin g
slots keep track of how often (for this heuristic H) the ThenConjectureSlot has
been evaluated, and what fraction of the time it signalled an error (an Abor t
message) and forced H's execution to terminate .

Several useful heuristics were discovered by EURISKO . Here is one example :

"If an inverse function is going to be used even once ,
then it's usually worthwhile to search for a fast algorithm
for computing it . "

This was abstracted from a couple experiences where—in number theory—a n
operation was very easy to compute, but its inverse took a long time . In particular ,
Times was quick, but Times-Inv (finding all possible factorizations of a number )
was lengthy . The amount of time taken up was large even by comparison to th e
time required to look for algorithms, so EURJSKO produced this heuristic . As wit h
most heuristics, EURISKO would have run better if it had had this heuristic from th e
beginning .

Sadly, no powerful new heuristics, specific to set theory or number theory ,
were devised . This may reflect the `well-trodden' character of elementary
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mathematics ; i .e ., so many great minds have wandered in that territory so lon g
that there is little left to find from shallow experiential induction and analogy .
The failure also might be due to the rigid, traditional way in which EURISKO' S

math knowledge was organized and represented .

3 .2 . EURISKO applied to Else programmin g

Two hundred of the most common INTERLISP functions have been represen-
ted as units within EURISKO . This may sound impressive, but falls far short of
our original goal, which was to have a separate unit representing each one o f
EURISKO'S functions and any LISP functions they call, giving descriptive in -
formation about it . This was to hold for (i) Else primitives, such as EQ an d
MAPCAR, (ii) hand coded LISP functions used by the EURISKO system, such a s
MapUnits and FindRandomSubset, and (iii) implicit unary functions—i .e ., al l
the types of slots a unit might possess, such as MyCreator and IfPoten-
tiallyRelevant . We have only begun to scratch the surface on representing LISP
primitives ; about one half of EURISKO'S own functions have units representin g
them, and all of the slots have such a unit .

These units about Else, programming, and EURISKO itself enable the EURISK O
program to monitor and modify its own behavior, as well as synthesize an d
modify new LISP functions . EURISKO gathers data about use. just as it did abou t
elementary mathematics or naval fleets .

For example, EURISKO was originally given units for EQ and EQUAL, wit h
no explicit connection recorded between them . Eventually, it got around to
recording examples (and nonexamples) for each, and conjectured that EQ wa s
a restriction (a more specialized predicate) of EQUAL, which is true . A heuristi c
suggested disjoining an EQ test onto the front of EQUAL, as this migh t
speed EQUAL up . Surprisingly (to the author, though not to EURISKO), it did !
This turned out to be a small bug in INTERLISP-D, which was then immediately
fixed . The bug made EQUAL much slower than EQ in the case of identica l
arguments passed to EQUAL .

Once it had the conjecture about EQ being a special kind of EQUAL ,
EURISKO was able to look through its code and specialize bits of it by replacin g
EQUAL by EQ, or to generalize them by substituting in the reverse order . As
the author had been somewhat careful in coding the program, it is no t
surprising that most of these generalizations were useless, and most of th e
specializations were downright bugs, but occasional improvements in its ow n
code were made by this policy .

A very general heuristic EURISKO possessed said : "If f can often be used in plac e
of g, and f uses less resources, then replace g by f wherever possible" This wa s
specialized by EURISKO into a new Else programming heuristic which we recogniz e
as a valid one :

"If you can use EQ instead of EQUAL, do it to save time"



86

	

D .B . LENAT

Next, EURISKO analyzed the differences between EQ and EQUAL .
Specifically, it defined the set of structures which can be EQUAL but not EQ ,
and then defined the complement of that set . This turned out to be the concept
we refer to as Lis p atoms. In analogy to humankind, once EURISKO discovered
atoms it was able to destroy its environment (by clobbering CDR of atoms) ,
and once that capability existed it was hard to prevent it from happening .

Its two `discoveries' were EQ (instead of EQUAL) and NCONC (instead o f
APPEND) ; both of these were fast but sometimes wrong (or even hazardous t o
apply) . This led EURISKO to define a class of use functions that were fast bu t
dangerous, indeed a useful concept for INTERLISP programmers to form .

Later, EURISKO began to generalize some useful use predicates, in some case s
predicates we had defined using AND as their central connective . One
generalization technique was to remove a conjunct or two, and this often led to
errors in evaluation . As a result, one additional interesting use heuristic wa s
found :

"Sometimes `AND' means `do in sequence', and sometimes i t
means `doable simultaneously', and only the latter case is likely t o
yield good results if you're considering generalizing a piece of code
by removing conjuncts . "

EURISKO ' S progress in this domain was entertaining, and a fundamenta l
feature of this domain became clear : large programs are carefully engineered
artifacts, complex constructs with thousands of pieces in a kind of unstabl e
equilibrium . Any sort of random perturbation is likely to produce an error
rather than a novel mutant . The analogy to biological evolution is strong . The
high `hit rate' Are enjoyed, mutating Lisp functions to find new math concepts ,
was due to the intimate ties between Lis p and mathematics . EURISKO had
successes in automatic programming only when it modified functions which ha d
been coded as units . Why was this ?

In a unit, each chunk of real Lis p code—an entry on a slot of the unit—was
quite small and fell into the sterotypical category for that type of slot . For
instance, consider the slot called ThenDefineNewConcepts . If a unit
(representing a Lis p function) had some entries on that slot, one knew exactl y
what their format would be like (a series of calls on unit-defining and initializ-
ing routines), what their purpose was (to bring new units into existence), what
kinds of things they were likely to be doing (copying from another unit wit h
some modifications), how long these things should take (about 10 seconds pe r
unit defined), etc. This foreknowledge allowed meaningful changes to be mad e
almost all the time, rather than almost never (in the case of modifying a large ,
opaque lump of LISP code about which nothing is known) .

3 .3. EURISKO applied to other task s
There have been six additional domains in which large-scale applications o f
EURISKO were done. Below we briefly describe five of these tasks and the
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outcomes of applying EURISKO . The sixth domain, OilSpills, relies more on RLL
than on EURISKO per se, and is covered in detail in [6] .

(1) Evolution . One task domain was biological evolution : the simulation of
organisms competing, followed by the most fit ones reproducing mutate d
offspring for the next simulated generation . Heuristics for guiding the mutatio n
process (to increase the viability of the offspring) were easily induced . Some of
these were as trivial as noting that whenever an improved animal was produce d
with a change in parameter X, that animal also happened to have a certai n
change in parameter Y ; this got compiled into the heuristic that in the futur e
any mutations of X ought to have a higher chance to modify Y as well . An
example of this from the simulation was "decreased ability to defend i n
combat" and "increased sensitivity to nearness of predators" . An exampl e
from homo sapiens might be "increased skull size" and "increased cephalopel-
vic diameter", though it appears our DNA lacks this heuristic .

The net effect of having these heuristics for guiding plausible mutations wa s
that, in a single generation, an offspring would emerge with a whole con-
stellation of related mutations that worked together . For example, one had
thicker fur, a thicker fat layer, whiter fur, smaller ears, etc . It is not known
whether there is any biological validity to this radical hypothesis, but there i s
no doubt that the simulated evolution progressed almost not at all whe n
mutation was random, and quite rapidly when mutation was under control of a
body of heuristic rules . See [10] .

(2) Games . A second EURISKO task domain we have not discussed in broad
terms yet is that of Games. It was mentioned above, in Second 2, that EURISKO

was applied to other games besides Traveller TCS . Indeed, several genera l
Games concepts were added to the knowledge base : material, position, tactic ,
two-person game. fairness, player, opponent, etc . Also, a few heuristics wer e
inserted, as very general strategies : simultaneous action, feint, pin, trap . These
were little used in TCS, since the battles themselves were strategically trivial .
or in tic-tac-toe, since the entire search space is too small to warrant that leve l
of consideration . In Go, however, these did get used . The level of play wa s

never very high, but the system demonstrated the application of the genera l
games strategies, and found specializations of them to Go . This is significant
because they were derived using Chess and Bridge as model games, by a
system builder who did not even know the rules for Go .

One area of current research is getting EURISKO to discover interesting ne w
games ; that is, make up a set of rules . simulate the game. and evaluate i t
according to various criteria (surprise ending, size of search spacing, etc .) The
game-independent strategies should be specialized into specific, powerfu l
heuristics by EURISKO . Occasionally, several heuristics which were abstracte d
from experiences in various games should be generalized into a new high-leve l
strategy. The task was suggested by discussions with Herbert Simon in 1977 :
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the first parts of the programme were done by Ramano Rao, using EURISKO
during the summer of 1981 .

(3) VLSI design . The most recent task EURISKO has been applied to is that o f
three-dimensional VLSI circuit design, and the related problem of discoverin g
new physical devices for that technology . This work has been quite successful ,
and is discussed in [11], so we shall limit our remarks to a couple brief
paragraphs here . Technical information about building so-called highrise VLS I
chips can be found in [5] .

The paradigm for EURISK0's exploration is a loop in which it generates a
device, finds its I/O behavior, tries to `parse' this into functionality it alread y
knows about and can use, and then evaluates the results . At first, we had thi s
loop take place at the level of charge carriers moving through semiconductin g
material, various types of dopants, electric fields being applied to regions of th e
plane, materials of different types being abutted, etc . Many of the well-know n
primitive devices were synthesized quickly, such as the MOSFET transistor an d
the silicon diode . This is because they were short sentences in the language we
had defined (a language with verbs like Abut, ApplyEField, and with noun s
like nDopedRegion, IntrinsicChannelRegion) .

Our expert, Professor James Gibbons of Stanford University's Center fo r
Integrated Systems, quickly decided that we were working at too low a level ,
and we switched to the level of conduction paths . The philosophy was that i f
we could produce an interesting design at that level, he could find a way t o
realize it in hardware . Our first efforts were systematic searches, and this gave
us an appreciation for the size of the search space . A very compact three -
dimensional design for a flip-flop was also serendipitously synthesized . We soo n
switched back into the AM and EURISKO paradigm of using heuristics to guide the
synthesis of new devices . Almost immediately, symmetry heuristics produced a
very powerful yet simple device, one which simultaneously computes NAND an d
OR, using only two small metal regions, two n-doped regions, two p-dope d
regions, and one intrinsic channel region . These devices now form the primitiv e
building blocks of our high-rise chip designs. When stacked into arrays, eac h
device uses only one region of each type (n, p, metal, channel) . We illustrate the
device in Fig . 1, but refer to [111 for a detailed explanation of EURISK0's forays int o
this domain .

Criteria for interestingness of new devices include nonlinearity, state, com-
puting previously-known function using less space, fewer componenets, les s
power, faster, easier to produce, etc. A device which is superior along any o f
these dimensions, even if it is slightly inferior along others, might be useful an d
is worth naming and saving .

Besides many useful devices and circuits, we now have a few useful heuristic s
for the task of designing three-dimensional VLSI circuits ; in every secon d
metal layer, wires should run N–S (and in the other metal layers, E–W) ; any
3-D folding of a 2-D design should replace (most of) the pairs of gates sharing a
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FIG . 1 . EURISKO ' S JMOS cross, the first XMOS device. Side view . When either metal tile is High, a
channel connects the two negatively-(n-)doped regions . When either metal tile is Low, conductio n
occurs between the positively-(p-)doped regions . Note that, if one metal tile is High and one Low, a
channel of electrons and a channel of holes both exist and flow (at right angles) inside the central ,
intrinsic Channel region (nearly obscured in the diagram) . The devices tesselate three-space.

common control by single pieces of metal serving simultaneously as gates fo r
regions above and below them ; etc .

(4) Heuretics. A fourth task domain for EURISKO was that of Heuretics (the
study of heuristics) itself . In [9] we discussed the nature of heuristics, why w e
consider Heuretics to be a scientific field in which one can do experiments and
form conjectures, and what we have learned from this work . In operational
terms, EURISKO spent time forming and testing heuristics about learning ne w
heuristics . How does it do this? Here is one sequence of behaviors EURISK O

carried out :
A heuristic H12 had been used many times, and—since heuristics are jus t

special kinds of operators—another heuristic fired, one which said "If a n
operator has been used many times successfully, it's worth trying to generaliz e
it" . So a task was formulated and added to an agenda, and eventually it wa s
worked on . That task said to try to form generalizations of H12 . Many
heuristics applied (were potentially relevant to satisfying this new task), an d
created such new units . One heuristic noticed that the main connective in th e
If-Potentially-Relevant slot of H12 was AND, and decided to generalize H1 2
by replacing that connective with OR . Indeed, that new heuristic H12' did
claim it was potentially relevant much more often, but it never was truly
relevant any more often, nor did it take noticably less time to evaluate H12' s
If-Potentially-Relevant slot . All in all, this kind of generalization had turne d
out to be a mistake . When EuRISKO detected this, it eliminated H12', and i t
synthesized a few new heuristics each of which—if they had only existe d
earlier—would have prevented H12' from ever being allowed to survive . One
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of these said to never replace AND by OR in an If slot of a heuristic ; one said
never to generalize the If Potentially-Relevant slot of a heuristic ; one said
never change the main connective in a slot . Since EURISKO knew that most o f
these heuristics would be wrong, or at least extreme, it gave each one only
some chance of being followed, and detailed records were kept of thei r
performances . Ultimately, the first new heuristic (and a variant of the secon d
one) remained as permanent entries in EURISKO ' S knowledge base .

It is important to note the level at which EURISKO is working : it finds new
concepts and conjectures in, say, naval fleet design . It finds new heuristics in
that domain as well, as it also finds some new heuristics about how to find ne w
heuristics . Strange `bugs' can arise at those two highest levels ; we give a n
example of each that EURISKO encountered :

One of the first heuristics that EURISKO synthesized (H59) quickly attaine d
nearly the highest Worth possible (999) . Quite excitedly, we examined it an d
could not understand at first what it was doing that was so terrific . We
monitored it carefully, and finally realized how it worked : whenever a new
conjecture was made with high worth, this rule put its own name down as on e
of the discoverers! It turned out to be particularly difficult to prevent thi s
generic type of finessing of EURISK0'S evaluation mechanism . Since the rules
had full access to EURISKO'S code, they would have access to any safeguards we
might try to implement . We finally opted for having a small `meta-level' o f
protected code that the rest of the system could not modify .

The second `bug' is even stranger . A heuristic arose which (as part of a
daring but ill-advised experiment EURISKO was conducting) said that al l
machine-synthesized heuristics were terrible and should be eliminated . Luckily ,
EURISKO chose this very heuristic as one of the first to eliminate, and th e
problem solved itself .

(5) Representation . The fifth task domain not discussed earlier is that of
representation of knowledge. This is a very difficult area, one in which peopl e
have not made dramatic inroads in the last few millenia . EURISKO'S task is quite
constrained, actually: look for useful new slots which are specific to the variou s
domains you are working in . Some heuristics guide EURISKO in deciding when
it's time to define a new type of slot . For instance :

If the average number of entries on s slots (for those units that have any entries on an s slot) i s
quite high—i .e ., three times the average over all types of slots

then try to find specializations s ; that will enable the partitioning of entries on all the s slots in th e
system .

When the VLSI domain was explored, one slot that became overtaxed wa s
Parts . Previously, it had had very few entries, but now devices were comin g
along with dozens and sometimes hundreds of parts . The rule above fired, and
a task was formed, to try to specialize Parts . When this task was ultimately
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chosen and worked on, other heuristics guided n.URISK0 into meaningful split-
tings to make:

If you must decide how to specialize slot s ,
then try to find a set of predicates that cover the entries ;

some suggestions are : defined the same way, same syntactic type, used same way ,
related to same Topic, structurally similar .

In the case of the Parts slot, this heuristic succeeded in causing a split base d
on syntactic type : gates, doped regions, channel regions, wires, etc . had
separate recognizable formats . Henceforth, each VLSI device had no explici t
Parts slot ; rather, it had slots called Gates, DopedRegions, etc . Later, when the
Terminals slot was being strained to its limit, EURISKO suggested splitting it into
InputTerminals and XorOutputTerminals (sets of terminals having the property
that precisely one element in each set can be an output terminal) .

Once a new slot is defined, existing heuristics can readily be specialized to
deal with it (i .e ., those that already deal with generalizations of that slot) . Each
slot has a definition, remember, and existing units can have this slot (accordin g
to its MakesSenseFor slot) will have some of their existing slots shortened or
replaced, by adding this new slot and some of the entries that used to exis t
elsewhere on the unit . Incrementally, the slot is integrated into the network o f
slots that defines the representation of knowledge in the system .

This type of activity—formulating new domain-specific slots—happene d
rarely, but we believe it to be one of the most important long-range activitie s
EURISKO can do . When a vocabulary is well chosen, thoughts become easy t o
express ; the set of slots is essentially such a vocabulary, and must be aug-
mented as new domains are explored .

4. Conclusions about Mechanizing the Process of Discover y

From the work on AM and EURISKO, we have acquired some insights into
automated discovery . Some domains are better suited to this process tha n
others, and the discovery program must contain certain elements in any case .
We summarize these conclusions here, and then use them to explain th e
following phenomena : why AM worked so well, why AM ultimately failed, why i t
took so long to do EURISKO, and why EURISKO now works . Finally, we use the
conclusions to explain our plans for future research in this area .

(1) The domain should be as little explored as possible. Fields which are
already very well understood are not promising candidates in which to searc h
for new discoveries, either at the domain- or at the heuristic-level . Until a
machine can match human breadth of vision, insight, sources for metaphor an d
analogy, etc., its main advantage must lie in breaking new ground rather than
scouring old ground for neglected gems . Set theory is not likely to yield many
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new results easily ; young fields such as graph theory are more promising :
neonatal fields such as VLSI design are even more attractive . Another danger
in choosing a very well-established field is that by now much of even th e
research activities in that field have become algorithmic and scripted .

But what if one's goal is to explore the phenomenon of discovery, no t
particulary to produce useful new ones? We still advise steering clear o f
well-developed fields . In them . not only has knowledge accreted . but an
adequate representation has also formed in which to hold that knowledge . Iff
your program starts with this adequate representation . which it is likely to do .
then the discovery of facts and heuristics will be greatly facilitated—which wil l
give you misleading information about the process of discovery . For example .
even though AM later discovered arithmetic, little significance can be attached
to that, as it already possessed the notion of bag (multiset) . which is the natural
way to represent arguments to arithmetic functions .

(2) There must be a way to simulate--or directly carry out—experiments . The
field of exobiology satisfies the former criterion of being almost completel y
unexplored, but fails miserably on this one . Building a program to sugges t
experiments in molecular genetics sounds like a promising task—until one ask s
how the proposed experiments will be evaluated, how the program is suppose d
to evaluate partially worked out hypotheses along the way, etc . In some case s
the outside world can be replaced by a teletype hookup to a human expert, bu t
this is never quite as good as working in a field which is represented internall y
in the machine . Two approaches to this are a formalization (such as the axiom s
and definitions for some field of mathematics) and a simulation (such as a set o f
routines that compute answers to Mechanics situations they are asked about) .
One disadvantage of simulators is that the discovery program cannot g o
'beyond' a reformulation of the same knowledge that went into the simulator .
Given a Newtonian simulator, the program may come up with Newton's laws .
or Lagrange's, but not Einstein's .

(3) The 'search space' should be too immense for other methods to work. No
human should be able to manually . exhaustively search the same space as th e
program is walking around in. One big advantage the machine has over th e
person is that of tirelessness . It is not an accident that EURISKO's searches in th e
space of fleet designs consumed over a thousand CPU hours, nor that its VLS I
explorations took ten times that much .

Usually this criterion means "too big for systematic exploration", but all w e
are requiring is that it mean "too big for manual exhaustive search" . DENDRAL ' S

problem space is a good example : chemists claimed (in refereed article s
published in the best chemical journals) to have found all structural isomers o f
various formulae ; DENDRAL was able to systematically search the space, an d
often found omissions from these lists . This is a case of problem solving rathe r
than discovery, but the constraint we are trying to articulate is a general one of
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what it means for a problem to have the right `size' for attack by AI methods .
Note that this criterion has a converse : the search space should not be to o

immense for heuristic methods to work . Looking for useful VLSI devices is a n
example of this bracketing ; interesting devices arise about once in 500 plausibl e
candidates examined . If they were once in a billion, the task would not be
suitable for automation in the 1980s ; if they were once in five, one wouldn' t
need an AI program to find them .

(4) There should be many objects, operators, kinds of objects, and kinds of
operators . They should be related hierarchically and in other ways . This makes a
frame-based (class-oriented) representation useful : Each "way in which two
entities can be related" is a different type of slot . A hierarchical organizatio n
makes the usual modes of inheritance important . The large number of object s
and operators raises the need for an intelligent program, one which can kee p
track of complex interactions among many entities .

(5) The task domain must be rich in heuristic structure . Complexity of th e
domain raises the utility of plausible, inexact reasoning, as more precis e
inference becomes unmanageable or impossible . There should be many goo d
heuristics which can apply, and no good algorithms . Theorem proving i n
propositional calculus is a poor domain for automated discovery, as it admit s
only a few heuristics ; it is an even worse domain for discovery of ne w
heuristics, because what few heuristics do apply in propositional calculus are
already well known. Let us be a little more specific about the need fo r
heuristics vis-a-vis algorithms :

(6) There must be ways to generate, to prune, and to evaluate . Many heuristics
of each of three types should be available : heuristics which generate (sugges t
plausible moves), heuristics which evaluate (judge the worth and specifi c
problems with the discoveries), and heuristics which prune (eliminate im-
plausible paths before they are explored too deeply) . It is acceptable for a n
algorithm to exist for one or even two of these processes, but not for all three .

(7) The `language' one uses to represent the concepts must be a natural one ,
given the set of objects and operators . This is one of the most crucial conclusions ,
and one we did not arrive at until recently . At a very abstract level, one ca n
view the domain task as being one in which domain operators (e .g ., lab
procedures, mathematical functions) are applied to domain objects (e .g ., cul-
tures, sets) . In addition, EURISKO has a collection of higher level operator s
which combine domain entities (both objects and operators) into new one s
(e .g ., AddPlasmid, Compose, Conjoin) and which perform surgery on in-
dividual domain entities to produce modified ones (e .g ., Mutate, Generalize ,
Coalesce) . The task of an AM-like discoverer is to apply these higher-level
operators in a fruitful, efficient manner, having a high `hit rate' . That is, a hig h
percentage of the time the result should be a new, useful domain entity . The
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task of a EuRisxo-like discoverer is to find heuristics which guide the applicatio n
of the higher-level operators, so that the results will often be fruitful . If the
high-level operators are well matched to the way the domain entities ar e
represented, then not too much guidance will be required ; most of th e
applications will yield meaningful new concepts . If there is a serious mismatch ,
then the problem may not be remedied even by a good set of guidin g
heuristics . See [1] .

An example of a mismatch is one of differing granularity : the high-level
operators are good at working on 2-line chunks of `code', but your represen-
tation only includes three types of slots, so each unit has three enormou s
chunks of code that `represent' it . When a mismatch is present, either th e
high-level operators or the details of the representation scheme must b e
adjusted until a match is (re)established .

But the high-level operators are nearly domain-independent : compose .
coalesce, repeat, disjoin, weaken . etc. So almost all the necessary ac-
comodation must be done not by them but by the representation scheme i n
which the domain knowledge is encoded . For instance, if a frame-base d
representation is employed, then the set of slots must be adjusted until th e
right 'granularity' is achieved (e .g ., each slot having about two lines worth o f
entries) .

In other words, even though the discovery of new heuristics is important . the
presence (and maintenance) of an appropriate representation for knowledge i s
even more necessary . Once you do have such a match, as in AM's case, the mai n
problem then appears to be the discovery of new heuristics .

(8) Criteria which make a domain suitable for AM-like exploration (discover y
of new concepts and conjectures) are—taken to extremes—the same criteri a
which make a domain suitable for EuRisxo-like exploration (discovery of ne w
heuristics) . This is an interesting corollary to the need for heuristic structure .
To be well-suited to AM-like exploration, a domain must be open-ended .
uncharted, internally formalizable, and possess a rich structure of heuristics. In
extreme cases . the domain is so unexplored that not even the heuristics ar e
available ; i .e . . there are no human experts in the field . In that situation .
EURISxo's approach may be fruitfully applied, since any useful heuristics i t
produces will be welcome new discoveries .

5. Interpreting AM and EURisxo in Light of These Conclusion s

Of the domains in which EURISKO has so far been applied . the two which mos t
closely satisfy all the above criteria are the Traveller TCS game and th e
three-dimensional VLSI design task . These are in fact the two areas in which
EuRISxo has discovered valuable domain-level concepts and useful new heuristic s
as well .

In this subsection we consider the behavior of AM and EURISKO, applying the
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previous criteria to explain successes, failures, and difficulties encountered .
This is an admittedly circular argument, since those criteria were abstracte d
from just such experiences . Only future research with EURISKO, in new task
domains and more deeply in its present ones, will be able to test those claims .

First, we address the issue of why AM worked. The denseness of useful
mathematical concepts appears crucial ; namely, that a large fraction of the
time, when we modified some old concepts, the things we got were useful ne w
concepts . As the next to last criterion above indicated, denseness is dependen t
on the set of operators one has for getting new concepts, and the represen-
tation one uses. In AM, the representation was frame-based at a superficia l
level, but each concept's definition was a single chunk of Lis p code. That is ,
each concept was supplied with a LISP program which computed its charac-
teristic function. To see if X is a SetOfSets, e .g ., one goes to the concept calle d
SetOfSets, look for its Defn property, and finds an expression like

(A (s) (AND (Apply* (Defn Set) s )
(EVERY s (Defn Set))) )

This predicate checks that s is a set and that so is every element of s . What
AM did, typically, was to modify such characteristic functions, combine them ,
etc ., and then—once it had a new piece of LISP code—see what concept it was
the characteristic function of . For instance, if asked to generalize SetOfSets, A M

could substitute List for Set, and get a new piece of Lis p that said

(A (s) (AND (Apply* (Defn List) s )
(EVERY s (Defn List))) )

AM would then simply assume that this was the characteristic function fo r
some concept similar to, but more general than, SetOfSets . It would set up a
new unit, giving it this predicate as a Defn, and eventually might get around t o
trying to find examples of such things, look for conjectures about them, and s o
on. Often, as in this case, the result was indeed meaningful .

Thus AM was actually not walking around in the space of mathematica l
concepts, it was walking around in the space of `small Lis p predicates' . It s
primitives were functions that modified Lisp predicates, combined them, etc . ,
and the reason AM achieved good results is because these high level operations .
applied to short Lisp code for characteristic functions, often yields short Lis p

code for characteristic functions of different but useful concepts . When cast i n
this form, it appears much more like a fluke that AM worked. It is thanks to the
natural relationship between Lisp and mathematics (therefore thanks to Joh n
McCarthy, Alonzo Church, and others) that common math functions can be
stated so succinctly in Lis p . Brevity is a key attribute in any kind of asemanti c
exploration . If useful concepts are short expressions in your language, then yo u
have some chance of coming across them often, even if you don't know muc h
about the terrain .
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As AM worked on, it built up larger and larger definitions for its derived
concepts ; instead of being a couple lines long, they became half a page i n
length. The old high-level combiners and mutators no longer were able t o
maintain a high `hit rate' . AM needed at least one of the following :

(i) new high-level operators (never likely to happen too often!) ,
(ii) new heuristics to guide the process so that syntactic serendipity would no t

have to be relied upon (this is what EURISKO was aimed at) ,
(iii) a new and different set of slots (or, equivalently, a different set of

programming primitives than Lisp ), so that the concepts' definitions would onc e
again be short expressions which the high-level operators could work on
fruitfully, or, finally ,

(iv) a good interface to a human expert, so as to work in the mode known a s
man–machine interaction [2] .

The final two alternatives are the most powerful and plausible . The fourt h
one, man–machine interaction, is not so useful in the fields EURISKO explores, as
there are as yet no human experts in Traveller TCS, 3D VLSI design, etc . The
third alternative was not considered until 1979 . In 1976 we began trying t o
simply get a program, like AM, to get new heuristics . The obvious approach was
to let the heuristics (which served AM so well for so long) apply to each other .
Time after time, the results were terrible . We now see the reason : each
heuristic, though represented superficially as a unit, had two executable slot s
that basically defined it : IF and THEN . Each of those slots had a large chun k
of Lisp code in it, and the heuristics tried valiantly to guide high-level operator s
as they combined and modified these huge chunks of Lis p code. The situation
here was one of an even worse mismatch than existed in AM when we gave up o n
that ; many of the heuristics had IF or THEN slots that were over a page long .
This problem, and its solution, had been remarkably well predicted by Amare l
[1] many years earlier .

Gradually, over the past six years, our attempts have met with more and

more success . What had we been doing? As time went on, we found ourselve s
defining more and more kinds of slots that a heuristic might have, and
occasionally new types of slots for 'object-level' concepts as well . This new
language allowed the size of the pieces of Lisp code on each slot of eac h
heuristic to shrink . As the average size declined, from 60 lines to 3, the old
high-level operators (combiners and mutators) began to produce a high per-
centage of `winners' once again. Valid, valuable heuristics were being syn-
thesized. To prevent EURISKO from eventually thrashing, this set of slots must b e
dynamically expandable, and indeed that has been a major recent focus of ou r
work . For every seven heuristics EURISKO finds, on the average, a new kind o f
slot is defined .

Once one tackles the problem, it is not difficult to find a useful set of slots t o
replace IF and THEN . The method we (and EURISKO) use is to look over th e
current IF and THEN slots' values, looking for commonality in the code
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therein . For instance, many rules called PRINT near the very end of thei r
execution ; that caused us to add ThenFinallyPrint as a slot that heuristics coul d
have, give it the proper definitions, eliminate the print commands from th e
THEN slot of all the heuristics, and add them (in shorter form, since we coul d
leave off the common details) to the ThenFinallyPrint slots . This happened ove r
and over again, for various categories of tests and actions, until now we no
longer have an IF or THEN slot per se . Each type of test or action falls into the
purview of some specialized kind of slot . If a proper kind cannot be found, tha t
is a signal (to us, and now to EURISKO) that a new kind of slot should be defined .

The criteria in Section 4 are guiding our present research directions o n
EURISKO . We are focussing on domains which are large, unexplored, complex, an d
rich with heuristic structure, and being very conscious to employ a
representation which is well matched with our set of high-level concept -
synthesis operators . The task which satisfies these criteria most closely is th e
design of three dimensional VLSI devices, and that is the task we are choosin g
to concentrate upon . More theoretically, we are investigating ways to discove r
appropriate new slots, judgmental rules for monitoring the goodness of match
between representation and high level operators, and new entries for the set o f
high-level operators that generate, prune, and evaluate new concepts .

Our original 1976 assumption was that heuristics could be treated just lik e
math concepts . and we could apply the same methods (heuristic search) to
discover new ones . But we were fortunate in choosing elementary mathematic s
as the test domain for AM ; heuristics are like most other domains, it' s
mathematics that's special and (thanks to LISP) particularly easy . As demon-
strated by the recent successful performances of our EURISKO program, we ar e
developing an understanding of what it takes to find new concepts in othe r
fields, including the discovery of new heuristics .
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