
Poisson Solvers

William McLean

April 21, 2004

Return to Math3301/Math5315 Common Material.

1 Introduction

Many problems in applied mathematics lead to a partial differential equation
of the form

−a∇2u+ b · ∇u+ cu = f in Ω. (1)

Here, Ω is an open subset of Rd for d = 1, 2 or 3, the coefficients a, b and
c together with the source term f are given functions on Ω and we want to
determine the unknown function u : Ω → R. The definition of the vector
differentiation operator ∇ means that, on the left hand side,

b · ∇u =
d∑
i=1

bi
∂u

∂xi

and ∇2u, the Laplacian of u, is given by

∇2u = ∇ · (∇u) = div gradu =
d∑
i=1

∂2u

∂x2
i

.

In addition to satisfying (1) the solution must obey some boundary conditions
on ∂Ω, the boundary of Ω. The simplest is a Dirichlet boundary condition:

u = g on ∂Ω, (2)

for a given function g. A Neumann boundary condition takes the form

∂u

∂n
= g on ∂Ω, (3)

where n is the outward unit normal to Ω.

1

common.shtml

We will assume that (1) is uniformly elliptic. This means that there exist
positive constants amin and amax such that the coefficient a satisfies

amin ≤ a(x) ≤ amax for all x ∈ Ω.

The simplest example is Poisson’s equation, which arises when a is a positive
constant, b = 0 and c = 0:

−a∇2u = f in Ω. (4)

An elliptic PDE like (1) together with suitable boundary conditions like
(2) or (3) constitutes an elliptic boundary value problem. The main types of
numerical methods for solving such problems are as follows.

Finite difference methods are the simplest to describe and the easiest to
implement provided the domain Ω has a reasonably simple shape;

Finite element methods are capable of handling very general domains;

Spectral methods can achieve very high accuracy but are practical only
for very simple domains.

We will discuss only the first of these methods.

2 Central Difference Approximations in 1D

In the 1-dimensional case (d = 1), the set Ω is just an open interval and the
PDE (1) reduces to an ODE:

−au′′ + bu′ + cu = f in Ω. (5)

We assume Ω = (0, L) and then divide this interval into N subintervals, each
of length h = L/N , by defining grid points

xi = ih for i = 0, 1, 2, . . . , N .

The next Lemma shows that the finite-difference approximations

u′(x) ≈ u(x+ h)− u(x− h)

2h
,

u′′(x) ≈ u(x− h)− 2u(x) + u(x+ h)

h2
,

(6)

are accurate to O(h2).

2

Lemma 1. If u is sufficiently differentiable in a neighbourhood of x then, as
h→ 0,

u(x+ h)− u(x− h)

2h
= u′(x) +

u′′′(x)

6
h2 +O(h4), (7)

u(x− h)− 2u(x) + u(x+ h)

h2
= u′′(x) +

u(4)(x)

12
h2 +O(h4). (8)

Proof. Make the Taylor expansion

u(x+h) = u(x)+u′(x)h+
u′′(x)

2
h2+

u′′′(x)

3!
h3+

u(4)(x)

4!
h4+

u(5)(x)

5!
h5+O(h6)

and then replace h with −h to obtain

u(x−h) = u(x)−u′(x)h+
u′′(x)

2
h2−u

′′′(x)

3!
h3+

u(4)(x)

4!
h4−u

(5)(x)

5!
h5+O(h6).

Subtracting these two expansions gives

u(x+ h)− u(x− h) = 2

[
u′(x)h+

u′′′(x)

3!
h3 +O(h5)

]
from which (7) follows, whereas by adding them we see that

u(x+ h) + u(x− h) = 2

[
u(x) +

u′′(x)

2
h2 +

u(4)(x)

4!
h4 +O(h6)

]
and so (8) holds.

Applying the approximations (6) to the ODE (5) we arrive at a finite
difference equation

ai
−ui−1 + 2ui − ui−1

h2
+ bi

ui+1 − ui−1

2h
+ ciui = fi for 1 ≤ i ≤ N − 1. (9)

Here,
ai = a(xi), bi = b(xi), ci = c(xi), fi = f(xi)

and, we hope,
ui ≈ u(xi).

At this stage we have N + 1 unknowns u0, u1, . . . , uN but only N − 1 equa-
tions (9). To arrive at a square linear system we need two more equations,
which will come from the boundary conditions at x = 0 and at x = 1. For
simplicity, suppose that we have a Dirichlet problem, i.e.,

u(0) = g(0) and u(L) = g(L).

3

We therefore set
u0 = g0 and uN = gN ,

leaving an (N − 1)× (N − 1) system

Ku = f + g

whose solution is the vector of unknowns

u =

u1

u2
...

uN−1

 .
The coefficient matrix has the form

K = AD(2) +BD(1) + C (10)

with diagonal matrices

A = diag(a1, a2, . . . , aN−1), B = diag(b1, b2, . . . , bN−1),

C = diag(c1, c2, . . . , cN−1),

and tri-diagonal matrices

D(1) =
1

2h

0 1
−1 0 1

−1 0 1
.

−1 0 1
−1 0

,

D(2) =
1

h2

2 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 2

.

The vectors on the right hand side are

f =

f1

f2

f3
...

fN−2

fN−1

and g =

1

2h

b1g0

0
0
...
0

−bN−1gN

.

4

3 The Five-Point Discrete Laplacian

In this section we will treat a simple, two-dimensional problem (d = 2).
Consider a rectangular domain in R2,

Ω = (0, L1)× (0, L2).

We choose positive integers N1 and N2, define step sizes in the horizontal
and vertical directions,

h1 =
L1

N1

and h2 =
L2

N2

,

and introduce the grid points

xij = (ih1, jh2) for 0 ≤ i ≤ N1 and 0 ≤ j ≤ N2.

Let us solve Poisson’s equation (4) subject to a Dirichlet boundary condi-
tion (2). We write

uij ≈ u(xij), fij = f(xij), gij = g(xij),

and note that, in view of the second approximation in (6),

∂2u

∂x2
1

≈ u(x1 − h1, x2)− 2u(x1, x2) + u(x1 + h1, x2)

h2
1

,

∂2u

∂x2
2

≈ u(x1, x2 − h2)− 2u(x1, x2) + u(x1, x2 + h2)

h2
2

,

so (∇2u)(xij) may be approximated by the discrete Laplacian

∇2
huij =

ui−1,j − 2uij + ui+1,j

h2
1

+
ui,j−1 − 2uij + ui,j+1

h2
2

,

where h = (h1, h2). The finite difference stencil for ∇2
h consists of five points

arranged in a star shaped like a + sign.
Denote the set of interior grid points by

Ωh = { (ih1, jh2) : 1 ≤ i ≤ N1 − 1, 1 ≤ j ≤ N2 − 1 }

and the set of boundary grid points by

∂Ωh = { (ih1, jh2) : i = 0, 0 ≤ j ≤ N2 }
∪ { (ih1, jh2) : i = N1, 0 ≤ j ≤ N2 }
∪ { (ih1, jh2) : 1 ≤ i ≤ N1 − 1, j = 0 }
∪ { (ih1, jh2) : 1 ≤ i ≤ N1 − 1, j = N2 }.

5

Our discrete approximation to (4) and (2) may then be written as

−a∇2
huij = fij for xij ∈ Ωh,

uij = gij for xij ∈ ∂Ωh.
(11)

This discrete problem is equivalent to an M ×M linear system, where

M = (N1 − 1)(N2 − 1).

In fact, if we put

uj =

u1j

u2j
...

uN1−1,j

 and f j =

f1j

f2j
...

fN1−1,j

 for 1 ≤ j ≤ N2 − 1,

then

aD
(2)
h1
u1 + a

2u1 − u2

h2
2

= f 1 + g1,

aD
(2)
h1
uj + a

−uj−1 + 2uj − uj+1

h2
2

= f j + gj, 2 ≤ j ≤ N2 − 2,

aD
(2)
h1
uN2−1 + a

−uN2−2 + 2uN2−1

h2
2

= fN2−1 + gN2−1,

where

gj =
a

h2
1

g0j

0
...
0

gN1,j

 for 2 ≤ j ≤ N2 − 2.

with

g1 =
a

h2
1

g01

0
...
0

gN1,1

+
a

h2
2

g10

g20
...

gN1−2,0

gN1−1,0

and

gN2−1 =
a

h2
1

g0,N2−1

0
...
0

gN1,N2−1

+
a

h2
2

g1,N2

g2,N2

...
gN1−2,N2

gN1−1,N2

 .

6

Thus, if we define the M -dimensional vectors

u =

u1

u2
...

uN2−1

 , f =

f 1

f 2
...

fN2−1

 , g =

g1

g2
...

gN2−1

 ,
then

Ku = f + g, (12)

where, with I1 denoting the (N1 − 1)× (N1 − 1) identity matrix,

K = a

D

(2)
h1

D
(2)
h1

. . .

D
(2)
h1

D
(2)
h1

+
a

h2
2

2I1 −I1

−I1 2I1 −I1

.

−I1 2I1 −I1

−I1 2I1

The M × M matrix K can be expressed succinctly using the Kronecker
product ⊗. For any matrices A = [aij] ∈ Rm×n and B ∈ Rp×q we define

A⊗B =

a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 ∈ R(mp)×(nq).

Thus, if I2 denotes the (N2 − 1)× (N2 − 1) identity matrix, then

K = aI2 ⊗D(2)
h1

+ aD
(1)
h2
⊗ I2. (13)

4 Matrices with Special Structure

When solving linear systems it is important to take advantage of any special
structure present in the coefficient matrix. Lapack provides many routines
that exploit such structure.

4.1 Bandwidth

We say that the matrix A = [aij] ∈ Rn×n has upper bandwidth q if

aij = 0 whenever j > i+ q.

7

Likewise, A has lower bandwidth p if

aij = 0 whenever i > j + p,

When p = q we refer to their common value simply as a bandwidth of A.
For instance, the matrix (10) arising from the 1D elliptic equation (5) has
bandwidth 1, whereas for the 2D Poisson equation (4) we obtain a matrix (13)
with bandwidth N1 − 1.

Theorem 2. Suppose that A ∈ Rn×n has LU-factorization A = LU .

1. If A has upper bandwidth q then so does U .

2. If A has lower bandwidth p then so does L.

Proof. We use induction on n. The case n = 1 is trivial, so let n > 1 and
assume the theorem holds for any matrix in R(n−1)×(n−1). Write

v =

a21
...
an1

 , w =

a12
...
a1n

 , B =

a22 · · · a2n
...

. . .
...

an2 · · · ann

so that

A =

[
a11 wT

v B

]
then

A =

[
1 0T

v/a11 I

] [
1 0T

0 B − vwT/a11

] [
a11 wT

0 I

]
.

If A has upper bandwidth q and lower bandwidth p, then so does the matrix
B − vwT/a11 ∈ R(n−1)×(n−1). But

L =

[
1 0T

v/a11 L1

]
and U =

[
a11 wT

0 U1

]
with B− vwT/a11 = L1U1. Hence, the induction hypothesis implies that L1

had lower bandwidth p and U1 has upper bandwidth q. It follows that the
same is true for L and U , so the induction goes through.

8

For A as in Theorem 2 we see that

(LU)ij =
n∑
k=1

`ikukj

=

j∑
k=max(1,i−p,j−q)

`ikukj if 1 ≤ j < i ≤ n and i ≤ j + p,

uij +
i−1∑

k=max(1,i−p,j−q)

`ikukj if 1 ≤ i ≤ j ≤ n and j ≤ i+ q,

0 otherwise,

so

`ij =
1

ujj

(
aij −

j−1∑
k=max(1,i−p,j−q)

`ikukj

)
for 1 ≤ j < i ≤ n and i ≤ j + p,

uij = aij −
i−1∑

k=max(1,i−p,j−q)

`ikukj for 1 ≤ i ≤ j ≤ n and j ≤ i+ q.

(14)
Suppose for simplicity that p = q. The number of flops to compute L is then

n−1∑
j=1

min(n,j+p)∑
i=j+1

[j −max(1, i− p)] ≤
n∑
j=1

j+p∑
i=j+1

(j − i+ p) ≈ 1

2
np2,

and similarly we need about 1
2
np2 flops to compute U , so the LU-factorization

costs O(np2) flops. In particular, if p � n then this cost is much less that
the O(n3/3) cost of factoring a full (i.e., non-banded) n× n matrix.

In general, the band LU-factorization must incorporate partial pivoting
to avoid numerical instability, so that we have PA = LU . In this case, it
can be shown that if A has lower bandwidth p and upper bandwidth q, then
U has upper bandwidth p + q but L might have lower bandwidth as large
as n− 1.

4.2 Symmetry and Positivity

Recall that a matrix A = [aij] ∈ Rn×n is symmetric if AT = A, i.e., if

aji = aij for all i, j.

In this case, A is said to be positive-definite if

xTAx > 0 for all non-zero x ∈ Rm.

9

Theorem 3. A matrix A ∈ Rn×n is symmetric and positive-definite iff there
exists a non-singular, lower-triangular matrix L such that A = LLT .

Proof. Omitted.

We call A = LLT the Cholesky factorization of A. Given the Cholesky
factorization, we can solve a linear system Ax = b by forward elimination
and back substitution just as we would using an LU-factorization since LT

is upper triangular.
The Cholesky factor L is unique:

(LLT)ij =
n∑
k=1

`ik`jk =

min(i,j)∑
k=1

`ik`jk

so A = LLT iff

`ii =

√√√√aii −
i−1∑
k=1

`2
ik for 1 ≤ i ≤ n,

`ij =
1

`jj

(
aij −

j−1∑
k=1

`ik`jk

)
for 1 ≤ j < i ≤ n.

These formulae may be used to compute L; of course, if the matrix A is not
positive-definite then the algorithm will fail because one of the `ii is the square
root of a negative number. It is easy to verify that the Cholesky factorization
costs about n3/6 flops, i.e., about half the cost of the LU-factorization.

If A is positive-definite then

`2
ij ≤

i∑
k=1

`2
ik = aii

so
|`ij| ≤

√
aii for 1 ≤ j ≤ i ≤ n.

Thus, we cannot encounter the sort of numerical instability that may happen
in an LU-factorization without pivoting. It can also be shown that if Ax = b
is solved numerically via the Cholesky factorization of A then the computed
solution x̂ is the exact solution of a perturbed linear system

(A+ E)x̂ = b

with
‖E‖2 ≤ Cnε‖A‖2.

10

Furthermore, no square roots of negative numbers will arise provided

cond2(A) ≤ Cn
ε
.

In both cases, the constant Cn is of moderate size.
If A is not only symmetric and positive-definite but also has bandwidth p,

then the Cholesky factor L has bandwidth p and can be computed in about
np2/2 flops.

4.3 Diagonal Dominance

The matrix A = [aij] ∈ Rn×n is row-diagnally dominant if

|aii| >
n∑
j=1
j 6=i

|aij| for 1 ≤ i ≤ n.

The following result shows that in this case, pivoting is not required.

Theorem 4. If A ∈ Rn×n is row-diagonally dominant then it has an LU-
factorization A = LU with |`ij| ≤ 1 for all i > j.

Proof. Omitted.

5 Direct Solution of a Poisson Problem

We return to the problem discussed in Section 3. The Fortran module
poisson solvers.f95 contains several subroutines that set up and solve the
linear system (12).

The subroutine direct_solve constructs a full M ×M matrix together
with the vector of right hand sides and then calls the Lapack routine sposv

to compute the solution. This approach is very inefficient, both in mem-
ory usage and CPU time, because the bandwidth N1 − 1 of the coefficient
matrix K is much smaller than M = (N1 − 1)(N2 − 1).

A better approach is used by band_solve which constructs K in band
storage mode: the ij-entry is stored in position (i−j+1, j) of anN1×M array.
Thus, the main diagonal ofK is stored in the first row of the array, the leading
subdiagonal in the second row, and so on until the (N1 − 1)-th diagonal is
stored in the row N1.

The program test poisson.f95 solves the problem in three ways: using
direct_solve, band_solve and a routine fast_solve. The third routine

11

Topics/Progs/poisson_solvers.f95
Topics/Progs/test_poisson.f95

will be explained later. The data f and g are chosen so that the exact
solution is known, and the program prints the maximum error in the finite
difference solution together with the CPU time taken by each routine. The
two routines produce nearly identical results but, as expected, the second is
much faster. Also, using direct_solve you will soon run out of memory
if you try to increase the grid resolution. Use the makefile poisson.mk to
compile and link test_poison.

If, for simplicity, we assume that L1 = L2 = L and N1 = N2 = N then
the cost of solving the full M × M system is O(M3/3). The band solver
reduces this to O(MN2

1) = O(M2). It can be shown that

u(ih, jh) = uij +O(h2), h = h1 = h2 = L/N,

and since h = O(N−1
1) = O(M−1/2) we see that the error is O(M−1). Thus,

every time we double the value of N we expect the error to be reduced to
about 1

4
of its previous value but the number of unknowns M grows by a

factor of 4 so that the solution cost grows by a factor of 43 = 48 if we do not
exploit the band structure. Even if we use a band solver the cost grows by a
factor of 42 = 16.

6 A Fast Poisson Solver

There exist a number of algorithms that reduce the cost of solving Poisson’s
equation from O(M2) for a band Cholesky solver to O(M) or something that
is only a bit worse than O(M). In this section, we will see how the fast
Fourier transform or FFT may be exploited to obtain a reasonably simple
Poisson solver with O(M logM) complexity. For simplicity, we will assume
that the Dirichlet data is identically zero, so that

−a∇2u = f in Ω,

u = 0 on ∂Ω.
(15)

6.1 The Fast Fourier Transform

The discrete Fourier transform of a sequence of n complex numbers a0, a1,
. . . , aN−1 is the sequence b0, b1, . . . , bN−1 defined by

bp =
N−1∑
j=0

ajW
−pj for 0 ≤ p ≤ N − 1, where W = e−i2π/n.

Notice that W is an nth root of unity, i.e., W n = 1.

12

Topics/Makes/poisson.mk

Lemma 5. The original sequence aj can be reconstructed from its discrete
Fourier transform using the inversion formula

aj =
1

N

N−1∑
p=0

bpW
pj for 0 ≤ j ≤ N − 1.

To compute a discrete Fourier transform in the obvious way by evalu-
ating N sums, each with N terms, requires O(N2) flops but this cost can
be reduced to O(N log2 N) by using an algorithm called the fast Fourier
transform or FFT. We will use an open-source library called FFTW (Fastest
Fourier Transform in the West) that provides efficient implementations of a
variety of transforms. The library is coded in C but also has a Fortran 77
interface. The FFTW home page is

www.fftw.org

and on the lab PCs you will find libfftw3.a in /usr/local/numeric/lib

The programs test fourier.c and test fourier.f95 use both methods
to reconstruct a random sequence, printing out the CPU time and the max-
imum error in the reconstructed sequence for each case. A rule is provided
in poisson.mk to compile and link the each program.

The FFT may be used to evaluate various other types of sums. In the
next section, we will need to compute a discrete sine transform

bp = 2
N−1∑
j=1

aj sin

(
πpj

N

)
for p = 1, 2, . . . , N − 1.

Since

sin

(
πpj

N

)
=
eπpj/N − e−πpj/N

2i
=
W pj/2 −W−pj/2

2i

where
W = ei2π/N

′
and N ′ = 2N,

we see that

−ibp =
N−1∑
j=1

ajW
−pj −

N−1∑
j=1

ajW
pj

The substitution k = N ′ − j gives W pj = W pN ′−pk = W−pk so

N−1∑
j=1

ajW
pj =

N ′−1∑
k=N+1

aN ′−kW
−pk

13

Topics/Progs/test_fourier.c
Topics/Progs/test_fourier.f95
Topics/Makes/poisson.mk

and

bp =
N ′−1∑
j=0

cjW
−pj

where

cj =

0 if j = 0 or j = N ,

iaj if 1 ≤ j ≤ N − 1,

−iaN ′−j if N + 1 ≤ j ≤ N ′ − 1,

The FFTW library implements a fast sine transform in this way.

6.2 Fourier Expansion in the Space Variable

We expand the solution u into a Fourier sine series in x:

u(x, y) =
∞∑
p=1

û(p, y) sin

(
πp

L1

x

)
for 0 < x < L1, (16)

where the Fourier coefficients are given by

û(p, y) =
2

L1

∫ L1

0

u(x, y) sin

(
πp

L1

x

)
dx for p = 1, 2, 3,

We also expand the source term in the same way:

f(x, y) =
∞∑
p=1

f̂(p, y) sin

(
πp

L1

x

)
, (17)

f̂(p, y) =
2

L1

∫ L1

0

f(x, y) sin

(
πp

L1

x

)
dx. (18)

Since

− ∂2

∂x2
sin

(
πp

L1

x

)
=

(
πp

L1

)2

sin

(
πp

L1

x

)
we see that (15) is equivalent to the sequence of ordinary differential equa-
tions

a

(
πp

L1

)2

û(p, y)− a ∂
2û

∂y2
= f̂(p, y) for 0 < y < L2, (19)

with boundary conditions

û(p, 0) = 0 and û(p, L2) = 0,

for p = 1, 2, 3,

14

We apply the trapezoidal rule with step-size h1 to the integral (18) with
y = kh2 and obtain the approximation

f̂(p, kh2) ≈ f̂pk =
2

N1

N1−1∑
j=1

f(jh1, kh2) sin

(
πp

L1

jh1

)
Next, we generate approximations

ûpk ≈ û(p, kh2)

by applying a central difference approximation in (19):

a

(
πp

L1

)2

ûpk + a
−ûp,k−1 + 2ûpk − ûp,k−1

h2
2

= f̂pk for k = 1, 2, . . . , N2 − 1,

with boundary conditions ûp0 = 0 = ûpN2 . Thus, we can compute ûpk by
solving an (N2−1)×(N2−1) symmetric, positive-definite, tri-diagonal linear
system for each p.

Having obtained ûpk we truncate the Fourier series in (16) to obtain an
approximation to the solution of (15),

u(jh1, kh2) ≈ ujk =

N1−1∑
p=1

ûpk sin

(
πp

L1

jh1

)
.

The cost of computing ujk in this way is

1. O(N2N1 log2 N1) flops using FFTs to compute f̂(p, kh2) for 0 ≤ p ≤
N1 − 1 and 1 ≤ k ≤ N2 − 1;

2. O(N2N1) flops using a band Cholesky solver to find ûpk for 1 ≤ p ≤
N1 − 1 and 0 ≤ k ≤ N2 − 1;

3. O(N2N1 log2 N1) flops using FFTs to compute ujk for 0 ≤ j ≤ N1 − 1
and 1 ≤ k ≤ N2 − 1.

Assuming that N1 = O(N2) so that log2 N1 = O(log2

√
M) = O(log2 M) it

follows that the total cost is O(M log2 M). Here, we have not counted the
work to evaluate f at each interior grid point, but this will be O(M) provided
it costs O(1) flops to evaluate f at each individual point.

The routine fast_solve from poisson solvers.f95 implements the al-
gorithm described above.

15

Topics/Progs/poisson_solvers.f95

7 Tutorial Exercises

7.1 Comparison of Computational Costs

Modify the module Dirichlet_problem in test poisson.f95 so that the
exact solution is

u(x, y) = x(L1 − x) sin

(
πy

L2

)
.

Obviously, you must also modify f and g accordingly.

1. Verify that the maximum error is O(h2
1 +h2

2) for fast_solve and O(h2
2)

for band_solve and direct_solve.

2. Modify the program test_poisson so that you can estimate the con-
stants in the asymptotic complexity bounds O(M log2 M), O(M2) and
O(M3) for fast_solve, band_solve and direct_solve, respectively.
For example, in the case of fast_solve the constant should be approx-
imately equal to the CPU time divided by M log2 M .

3. Determine the minimum error achievable in under 60 seconds using
fast_solve. Estimate how long it would take to achieve the same
accuracy using band_solve and direct_solve. How many Megabytes
of RAM would you need in each case?

16

Topics/Progs/test_poisson.f95

	Introduction
	Central Difference Approximations in 1D
	The Five-Point Discrete Laplacian
	Matrices with Special Structure
	Bandwidth
	Symmetry and Positivity
	Diagonal Dominance

	Direct Solution of a Poisson Problem
	A Fast Poisson Solver
	The Fast Fourier Transform
	Fourier Expansion in the Space Variable

	Tutorial Exercises
	Comparison of Computational Costs

