
Shape Representation
Basic problem

We make pictures of things
How do we describe those things?

Many of those things are shapes
Other things include motion, behavior…
Graphics is a form of simulation and modeling

Two general types of representations
Surface representations

Concerned only with the surface of the shape, not the interior
Generally more efficient at representing surface
Polygons are one example

Volume representations
Also concerned with interiors, surfaces can be extracted

Surface reps (Boundary reps or “B-reps”)
Parametric surfaces

Basic idea
Define curves and surfaces using parametric formula
Allow modelers to manipulate shape with "control points"

Structure
Use parametric representations
Q(t) = T M G, where

T = [t^3 t^2 t 1]
Segment runs from 0 to 1 in t

M = basis matrix (4x4)
G = geometry matrix (4x4)

Geometry matrix
Contains four geometry elements (pts, vectors)
These are the controls the user manipulates in modeling

curves interpolate or bend towards them
Every differently shaped curve will have a different geometry
matrix

Basis matrix
Describes relative weighting of geometry as t varies

Described by the blending function
Different curve types (see below) have different bases

Basis is constant for a given curve type
Curve issues

Locality
If I change a geometry element, how much of the curve changes?

Joining
For complex curves/shapes, must join two or more curves together
Would like join to be continuous (“smooth”)

G0, G1, C1, C2 continuity
Effect of transformations

Invariance:
Transform(Q(t)) = T M transform(G)?

Affine invariance
Under scales, translations, rotations

Perspective invariance
2D curves from projected 3D control points

Convex hull property
Curve lies inside convex hull of geometry

Convex hull: smallest convex polygon (hedron) that
contains control points

Useful for trivial rejects in clipping, intersection tests

Useful for added intuition in modeling
Types of curves

Bezier
Geometry

[P1 P2 P3 P4]
Four control points

Curve interpolates endpoints
Slope at ends equals slope of [P2-P1], [P4-P3]

Joining
G0: overlay endpoints
G1: give [P4-P3], [P5-P4] same slope
C1: same magnitude
C2: hard

Locality: none
Invariance: affine, not perspective
Convex hull property

B-Splines
Problem:

Joining with continuity is difficult
There is no C2 continuity

Solution:
Curves (sequences of segs) are defined by a sequence of n
control points
Each sequential set of 4 points defines a segment
Each new segment shares 3 points with previous segment
Knots are the boundaries between each curve segment in t

Examples
Given a B-spline with n control points

There will be n-3 curve segments
There will be n-2 knots

Given 4 control points
one segment
two knots (begin and end)

Given 10 segments
13 control points
11 knots

Uniform, nonrational B-splines
Uniform: knots are spaced at equal intervals of parameter
t
Nonrational: curve does not use ratios of two polynomial
equations
Joining: C2 continuity is guaranteed
Locality: only the 4 segments containing a ctrl pt are
affected
Invariance: affine, not perspective
Convex hull property for each segment
Other issues:

No control points are interpolated
Overlapping control points allow interpolation

But at the cost of continuity
Nonuniform, nonrational B-splines

Nonuniform: curve segs can be defined over non-equal
intervals of t
As before but:

Can overlap knots

Allows interp points with better control
of continuity

Can insert knots
Allows arbitrary control of locality

Nonuniform, rational B-splines (NURBS)
Rational: x(t) = X(t)/W(t), y(t) = Y(t)/W(t)….
Like before but:

Invariance: affine and perspective
Can define conics (circles, parabolas…)

Patches
A generalization from 1D to 2D
Most of previous discussion applies
General approach

Intuitively
Imagine sweeping a parametric curve Q(s) along a
dimension t
The geometry vector, and thus the shape of Q(s), changes
as a function of t
You defined an arbitrarily shaped patch!

In equations
P(s,t) = S M Q(t) = S M G M^t T^t

Critique
Advantages

Accuracy: polys/lines are always only approximations of curves
Succinctness: need lots of polys to describe one smooth surface
Modeling: controlling shape

twiddling vertices is annoying, need higher level control
Problems

Rendering speed
Complex models may have as many patches as polygonal
models
Rendering patches is slower

Portability
Patches are not the lowest common denominator

Subdivision surfaces
New research
Give much better control of locality
A patch can be subdivided into smaller patches
In this way, a hierarchy of locality is formed

Volume representations
Constructive Solid Geometry (CSG)

Domain: engineering and machining
Basic idea:

Shapes are described with set operations on primitive volumes
Union, difference, intersection

Such a description describes “how” to construct a shape
Structure

A binary tree
Leaves are primitives
Internal nodes perform set ops on children

Critique
Advantages

A continuous description
Describes the modeling process
Some powerful modeling functionality

Disadvantages

Joins are all discontinuous
Poor control of locality
Hard to render

Discrete volume reps (voxels)
Domain: largely medicine and science
Basic idea:

We surround the shape (or region) with a box
We sample the entire box with a regular grid
Each sample is called a “voxel” (volume pixel)
So there are many “shapes” in the volume

Structure
a 3D grid of points, with at least one value at each point
value represents “density” in most settings

Critique
Advantages

Captures interiors well
Disadvantages

Takes up a lot of space!
256^3 * 4 = 67 megs basic input

Fairly hard to render
Ray tracing
Surface extraction using Marching Cubes Alg
This is changing with Mitsubishi card

Implicit functions
Domain: amorphous, merging shapes; bounding volumes
Basic idea:

We have a function in 3D space
The surface is all points w/ same value in that func: isosurface

f(x,y,z) = k
Example: sphere

x^2 + y^2 + z^2 = 1
We add complexity with collections of these

Structure
A collection of generator shapes
For each of these generators g

A distance function d which returns distance from g
A potential function f assigns a value to each distance d

A blending function B merges potentials – often simple addition
Critique

Strengths
Good for collision detection
Can represent conics like spheres, cylinders
Used in blobby modeling for molecules, etc
Can merge shapes by moving the generators

Problems:
Constraints needed. Semicircle?
Joining is a problem

unwanted merges/seps
Also hard to render: voxelize, ray trace

New work addresses some control problems
Other and newer approaches

BSP trees
These can also be used as modeling reps
Advantage in hierarchical formation
Enables set ops and fast collision detection
Main problem:

avoiding polygonal explosion makes implementation very hard
Particle systems

Domain: for moving clouds of things, e.g. clouds, fireworks, flocks
Structure:

A set of points or particles
Each point has a largely random behavior and a lifespan
Particles are rendered as blurs onscreen or sprites

Fractal models
Domain: clouds, mountains, sea
Fractals are used to generate shape procedurally
Usually these are converted into another representation

L-systems
Domain: plant description
Grammars used procedurally to describe plant development
Eventually converted into another representation

Distance fields
Can be viewed as adaptively sampled implicit function
Because it is a sampled rep, can deviate from functional limitations

Point representations
Domain: very large (1 billion vertex) models
Like polygons, but no edges, just vertices

Vertices have associated color, orientation
Basic problem: how to fill the gaps?

“Splatting” from volume rendering
Colors are “blurred” across local screen region

Until recently, main problem was aliasing

