
Shape Representation 
Basic problem 

We make pictures of things 
How do we describe those things? 

Many of those things are shapes 
Other things include motion, behavior… 
Graphics is a form of simulation and modeling 

Two general types of representations 
Surface representations 

Concerned only with the surface of the shape, not the interior 
Generally more efficient at representing surface 
Polygons are one example 

Volume representations 
Also concerned with interiors, surfaces can be extracted 

Surface reps (Boundary reps or “B-reps” ) 
Parametric surfaces 

Basic idea 
Define curves and surfaces using parametric formula 
Allow modelers to manipulate shape with "control points" 

Structure 
Use parametric representations 
Q(t) = T M G, where 

T = [t^3 t^2 t 1] 
Segment runs from 0 to 1 in t 

M = basis matrix (4x4) 
G = geometry matrix (4x4) 

Geometry matrix 
Contains four geometry elements (pts, vectors) 
These are the controls the user manipulates in modeling 

curves interpolate or bend towards them 
Every differently shaped curve will have a different geometry 
matrix 

Basis matrix 
Describes relative weighting of geometry as t varies 

Described by the blending function 
Different curve types (see below) have different bases 

Basis is constant for a given curve type 
Curve issues 

Locality 
If I change a geometry element, how much of the curve changes? 

Joining 
For complex curves/shapes, must join two or more curves together 
Would like join to be continuous (“smooth” ) 

G0, G1, C1, C2 continuity 
Effect of transformations 

Invariance:  
Transform(Q(t)) = T M transform(G)? 

Affine invariance 
Under scales, translations, rotations 

Perspective invariance 
2D curves from projected 3D control points 

Convex hull property 
Curve lies inside convex hull of geometry 

Convex hull: smallest convex polygon (hedron) that 
contains control points 

Useful for trivial rejects in clipping, intersection tests 



Useful for added intuition in modeling 
Types of curves 

Bezier 
Geometry 

[P1 P2 P3 P4] 
Four control points 

Curve interpolates endpoints 
Slope at ends equals slope of [P2-P1], [P4-P3] 

Joining 
G0: overlay endpoints 
G1: give [P4-P3], [P5-P4] same slope 
C1: same magnitude 
C2: hard 

Locality: none 
Invariance: affine, not perspective 
Convex hull property 

B-Splines 
Problem: 

Joining with continuity is difficult 
There is no C2 continuity 

Solution: 
Curves (sequences of segs) are defined by a sequence of n 
control points 
Each sequential set of 4 points defines a segment 
Each new segment shares 3 points with previous segment 
Knots are the boundaries between each curve segment in t 

Examples 
Given a B-spline with n control points 

There will be n-3 curve segments 
There will be n-2 knots 

Given 4 control points 
one segment 
two knots (begin and end) 

Given 10 segments 
13 control points 
11 knots 

Uniform, nonrational B-splines 
Uniform: knots are spaced at equal intervals of parameter 
t 
Nonrational: curve does not use ratios of two polynomial 
equations 
Joining: C2 continuity is guaranteed 
Locality: only the 4 segments containing a ctrl pt are 
affected 
Invariance: affine, not perspective 
Convex hull property for each segment 
Other issues: 

No control points are interpolated 
Overlapping control points allow interpolation 

But at the cost of continuity 
Nonuniform, nonrational B-splines 

Nonuniform: curve segs can be defined over non-equal 
intervals of t 
As before but: 

Can overlap knots 



Allows interp points with better control 
of continuity 

Can insert knots 
Allows arbitrary control of locality 

Nonuniform, rational B-splines (NURBS) 
Rational: x(t) = X(t)/W(t), y(t) = Y(t)/W(t)…. 
Like before but: 

Invariance: affine and perspective 
Can define conics (circles, parabolas…) 

Patches 
A generalization from 1D to 2D 
Most of previous discussion applies 
General approach 

Intuitively 
Imagine sweeping a parametric curve Q(s) along a 
dimension t 
The geometry vector, and thus the shape of Q(s), changes 
as a function of t 
You defined an arbitrarily shaped patch! 

In equations 
P(s,t) = S M Q(t) = S M G M^t T^t 

Critique 
Advantages 

Accuracy: polys/lines are always only approximations of curves 
Succinctness: need lots of polys to describe one smooth surface 
Modeling: controlling shape 

twiddling vertices is annoying, need higher level control 
Problems 

Rendering speed 
Complex models may have as many patches as polygonal 
models 
Rendering patches is slower 

Portability 
Patches are not the lowest common denominator 

Subdivision surfaces 
New research 
Give much better control of locality 
A patch can be subdivided into smaller patches 
In this way, a hierarchy of locality is formed 

Volume representations 
Constructive Solid Geometry (CSG) 

Domain: engineering and machining 
Basic idea: 

Shapes are described with set operations on primitive volumes 
Union, difference, intersection 

Such a description describes “how”  to construct a shape 
Structure 

A binary tree 
Leaves are primitives 
Internal nodes perform set ops on children 

Critique 
Advantages 

A continuous description 
Describes the modeling process 
Some powerful modeling functionality 

Disadvantages 



Joins are all discontinuous 
Poor control of locality 
Hard to render 

Discrete volume reps (voxels) 
Domain: largely medicine and science 
Basic idea:  

We surround the shape (or region) with a box 
We sample the entire box with a regular grid 
Each sample is called a “voxel”  (volume pixel) 
So there are many “shapes”  in the volume 

Structure 
a 3D grid of points, with at least one value at each point 
value represents “density”  in most settings 

Critique 
Advantages 

Captures interiors well 
Disadvantages 

Takes up a lot of space! 
256^3 *  4 = 67 megs basic input 

Fairly hard to render 
Ray tracing 
Surface extraction using Marching Cubes Alg 
This is changing with Mitsubishi card 

Implicit functions 
Domain: amorphous, merging shapes; bounding volumes 
Basic idea: 

We have a function in 3D space 
The surface is all points w/ same value in that func: isosurface 

f(x,y,z) = k 
Example: sphere 

x^2 + y^2 + z^2 = 1 
We add complexity with collections of these  

Structure 
A collection of generator shapes 
For each of these generators g 

A distance function d which returns distance from g 
A potential function f assigns a value to each distance d 

A blending function B merges potentials – often simple addition 
Critique 

Strengths 
Good for collision detection 
Can represent conics like spheres, cylinders 
Used in blobby modeling for molecules, etc 
Can merge shapes by moving the generators 

Problems: 
Constraints needed.  Semicircle? 
Joining is a problem 

unwanted merges/seps 
Also hard to render: voxelize, ray trace 

New work addresses some control problems 
Other and newer approaches 

BSP trees 
These can also be used as modeling reps 
Advantage in hierarchical formation 
Enables set ops and fast collision detection 
Main problem: 



avoiding polygonal explosion makes implementation very hard 
Particle systems 

Domain: for moving clouds of things, e.g. clouds, fireworks, flocks 
Structure: 

A set of points or particles 
Each point has a largely random behavior and a lifespan 
Particles are rendered as blurs onscreen or sprites 

Fractal models 
Domain: clouds, mountains, sea 
Fractals are used to generate shape procedurally 
Usually these are converted into another representation 

L-systems 
Domain: plant description 
Grammars used procedurally to describe plant development 
Eventually converted into another representation 

Distance fields 
Can be viewed as adaptively sampled implicit function 
Because it is a sampled rep, can deviate from functional limitations 

Point representations 
Domain: very large (1 billion vertex) models 
Like polygons, but no edges, just vertices 

Vertices have associated color, orientation 
Basic problem: how to fill the gaps? 

“Splatting”  from volume rendering 
Colors are “blurred” across local screen region 

Until recently, main problem was aliasing 


