
Model Simplification Through Refinement

Dmitry Brodsky
Department of Computer Science
University of British Columbia

Benjamin Watson
Department of Computing Science

University of Alberta

Abstract
As modeling and visualization applications proliferate,

there arises a need to simplify large polygonal models at
interactive rates. Unfortunately existing polygon mesh
simplification algorithms are not well suited for this task
because they are either too slow (requiring the simplified
model to be pre-computed) or produce models that are too
poor in quality. These algorithms are also not able to han-
dle extremely large models.

We present an algorithm suitable for simplification at
interactive speeds and of extremely large models. The
algorithm is fast and can guarantee displayable results
within a given time limit. Results also have good quality.
Inspired by splitting algorithms from vector quantization
literature, we simplify models in reverse, from coarse to
fine. Approximations of surface curvature guide the sim-
plification process. Previously produced simplifications
can be further refined by using them as input to the algo-
rithm.

1 Introduction

Many of today’s applications require simplification of
polygonal models at interactive speeds. Modeling appli-
cations must simplify and display extremely large mod-
els at interactive rates. In visualization applications iso-
surfaces from high dimensional data sets must be com-
puted, simplified, and rendered in close to real-time. In
dynamically modifiable virtual environments, newly gen-
erated surfaces are typically over-tessellated and must be
simplified for display at interactive speeds. As the size
of polygonal models balloons simplification algorithms
have to scale to gracefully handle these extremely large
models.

An ideal simplification algorithm that is able to sim-
plify at interactive rates and handle extremely large mod-
els would possess several characteristics. Most impor-
tantly, the algorithm must guarantee displayable results
within a specified time limit. Second, the algorithm must
provide good control of output model size if results are to
be displayable. It is also very important that the output
model quality remains reasonable, despite stringent time
constraints. If time demands require the output of a crude
simplification, then the algorithm should allow for later

refinement of that output. Finally, for interactive display
it would be useful if the algorithm produced a continuous
level of detail hierarchy instead of several discrete levels
of detail.

Most existing simplification algorithms are far too slow
to be used in interactive applications. Some vertex clus-
tering algorithms [14, 18] are very fast, but control of out-
put quality and size is quite poor. Moreover this output is
difficult to refine and to organize into a continuous level
of detail hierarchy.

Our algorithm, R-Simp, was inspired by splitting algo-
rithms from the vector quantization literature [6]. The al-
gorithm simplifies in reverse from coarse to fine, allowing
us to guarantee a displayable result within a specified time
limit. At every iteration of the algorithm, the number of
vertices in the simplified model is known, enabling con-
trol of output model size. We use curvature to guide the
simplification process, permitting preservation of impor-
tant model features, and thus a reasonable level of output
model quality. Performing simplification in a reverse di-
rection makes it possible to refine intermediate output as
long as some state information is saved. Finally with its
divide and conquer approach, R-Simp can easily be ex-
tended to create continuous level of detail hierarchies. R-
Simp’s complexity is

���������
	��
�����
, where

���
is the size

of the input model and
���

is the size of the output model.
This enables R-Simp to scale linearly with respect to in-
put size for a given output size. With all these traits, R-
Simp is well suited for simplification in interactive envi-
ronments.

We also look to vector quantization to form a taxon-
omy of existing simplification algorithms. In sections 2,
3 and 4 we review vector quantization, related research,
and curvature. The details of the algorithm are discussed
in section 5. In section 6 we examine the performance of
the algorithm and compare it to QSlim [5] and a vertex
clustering algorithm [18]. Sections 7 and 8 present other
possible applications of R-Simp and conclusions.

2 Vector quantization

Vector quantization (VQ) is the process of mapping a vec-
tor in a large set ������� into a smaller set ������� . More
precisely, a quantizer is a function ����� �! � where

�#"%$'&(��) � �'*,+.-0/1-0243 . � is called the code-
book. The challenge is finding � such that it optimally
represents all vectors in 56�7� � . The codebook � par-
titions the set � , since each &(� represents multiple vectors
from � . A single partition of � is called a cell and &(� is the
centroid of the cell. The difference between a vector &(�
and an input vector &8 is called distortion. When the dis-
tortion for an input vector &8 is minimal for all &8) � then
the codebook is called optimal.

In [6], Gersho and Gray present four basic types of VQ
algorithms. Using these four types we will create a taxon-
omy of existing simplification algorithms.

Product code algorithms use scalar quantizers that are
independently applied to each input vector element.

In pruning algorithms, the codebook initially contains
all the vectors in the input set � . The codebook entry that
increases distortion least is removed; removals continue
until the desired codebook size is reached. Alternatively,
the codebook is initially empty, and each of the input vec-
tors is considered in succession. If representing any vec-
tor with the current codebook would result in distortion
over a given threshold, the vector is added to the code-
book.

Pairwise nearest neighbor algorithms also set the ini-
tial codebook to contain all the vectors in � . All possible
cell pairs are considered and the pair that introduces the
least distortion is merged. Merging continues until the de-
sired codebook size or distortion tolerance is reached.

In Splitting algorithms, the codebook initially contains
a single cell. The cell with the most distortion is located
and then split. Splitting continues until the required dis-
tortion or codebook size is reached.

3 Vector Quantization and Simplification

Simplification relates to quantization as follows: a cen-
troid equates to a primitive (vertex, line, or polygon) or a
set of primitives in the simplified model. For most vertex
merge algorithms, the centroid is a single vertex and asso-
ciated faces. A cell equates to a set, cluster, of faces in the
original model. There are a few ways in which model sim-
plification differs from vector quantization. For example
in model simplification, two disjoint faces do not make up
an ideal cluster, while in image quantization a cluster with
two separate pixels is perfectly acceptable.

Rossignac and Borrel [18] proposed an algorithm that
applies a product codes technique to the model vertices.
Cells are formed with a uniform voxelization; the cen-
troid is usually chosen as the mean of the vertices in each
cell (weighted averages or maxima are common alterna-
tives). Only a linear pass through the vertices is required
to simplify the surface. The result is an extremely fast al-
gorithm that produces poor simplifications. He et al [7]

proposed a similar and slower algorithm that makes use of
a low pass three dimensional filter. Low and Tan [14] de-
veloped a vertex clustering algorithm that non-uniformly
subdivided the model’s volume. Cells are centred on the
most important vertices in the model.

The simplification algorithms taking the pruning ap-
proach are generally not as fast as the product code algo-
rithms, but they produce better simplifications. Two such
algorithms [8, 12] work by growing coplanar patches.
When a face cannot be added to a patch without violating
a co-planarity threshold, it is re-triangulated with fewer
polygons and added to the codebook. Other algorithms
[19, 20] work by removing or pruning away single ver-
tices. The algorithm described in [19] simply removes
a vertex whose surrounding faces are relatively coplanar
and re-triangulates the created hole, while the algorithm
described in [20] adds a completely new set of vertices
and tries to prune away as many of the old vertices as pos-
sible.

There are many algorithms, commonly called vertex
merge or edge collapse algorithms, that use the pairwise
nearest neighbour approach [1, 3, 5, 9, 10, 13, 17]. These
algorithms tend to produce the best simplification results
but are often quite slow. The algorithms assign weights
to each vertex merge and use a priority queue to locate
the merge with minimum cost. They merge the vertices
(merge the cells), recompute the affected vertex pairs, and
iterate. The algorithms continue until the required model
size or error tolerance is reached. The algorithms differ in
how they assign weights to a vertex merge and how they
determine the location of merged vertices (calculate cen-
troids).

To our knowledge R-Simp is the only simplification al-
gorithm based on the splitting technique. In R-Simp we
treat simplification as quantization of face normals as op-
posed to colour (9;:=<>:=? instead of @A:=B�:=C). Our goal
when splitting is to create cells containing the most planar
surface possible (the variation in face normals is small).
Thus, cells that contain little curvature are split less than
cells that contain more curvature.

4 Curvature

One common measure of surface curvature is called nor-
mal curvature [15]. Normal curvature is the rate of
change of the normal vector field D on a surface 5 in di-
rection &8 , where &8 is a unit vector tangent to the surface 5
at point E . There are two important normal curvature ex-
trema called principle curvatures, these are the maximum
(FHG) and minimum (FJI) values of normal curvature. The
directions corresponding to these principle curvatures are
called principle directions.

Since these curvature measures are defined for in-

finitely small patches, they provide a good description of
the local surface around a point. However, they do not
work well for larger surface patches with multiple scales
of curvature. (e.g. asphalt looks flat from a distance but
can feel quite rough close up). R-Simp requires measures
of orientation change, curvature, for large patches. We
will use the term normal variation to refer to orientation
change in large patches.

5 The R-Simp algorithm

Unlike other algorithms, R-Simp starts with a coarse ap-
proximation of the model and refines it until the desired
model complexity is reached. The algorithm begins with
the triangulated model in a single cluster (a cluster is a
collection of faces from the original model). The initial
cluster is then subdivided into eight sub-clusters. These
eight sub-clusters are then iteratively subdivided until the
required number of clusters (vertices) is reached. Clusters
are chosen for subdivision based on the amount of normal
variation on the surface in the cluster.

The R-Simp algorithm can be broken down into three
stages.

K Initialization: In this stage we create global face
(LJMON) and vertex (LJP>N) lists, as well as vertex-vertex
and vertex-face adjacency lists. We also create the
eight initial clusters.

K Simplification: In this stage the model is simplified.
The simplification consists of four steps:

1. Choose the cluster that has the most face nor-
mal variation.

2. Partition (split) the cluster based on the amount
and direction of the face normal variation.

3. Compute the amount of face normal variation
in each of the sub-clusters.

4. Iterate until the required number of clusters
(vertices) is reached.

K Post Processing: For each cluster that is left,
compute a representative vertex (centroid). Re-
triangulate the model.

5.1 Data structures
The principle data structure in this algorithm is theQ NSR'T�U>VSW . It stores all the information necessary to deter-
mine face normal variation and to compute the represen-
tative vertex. It contains two arrays of indices, for vertices
(PON) and faces (M>N), that index into two global lists of the
vertices and faces from the original model (LJM>N and LJP>N).
The

Q NSR�T�U>V�W also contains the mean normal (&X �) that is

the area-weighted mean of all the face normals in the clus-
ter and is computed by Equation 1.

&X � "
YZ � &� �\[S� (1)

where 2 is the number of faces in the cluster, &� � is
the normal of face / , and

[S�
is the area of face / . TheQ NSR�T�U>V�W also holds the mean vertex (X]() for the cluster,

the amount of normal variation (
� (), and the total area of

the faces in the cluster.
Two other important data structures are the ^O_H`�V and

the a>V�WJU>VSb data structures which make up LcM>N and LcP>N
respectively. The ^>_>`�V contains a list of vertices that
make up the face, its normal, the face area, and its mid-
point. The a>VSWJU>V�b contains adjacency information for all
the vertices and faces adjacent to it.

The vertices in the ^>_H`�V data structure are indices intoLcP>N . The adjacency lists for the faces and the vertices in
the aOVSWJU>VSb data structure are also indices into LJM>N andLcP>N .
5.2 Initialization
During the initialization stage LJM>N and LJP>N are con-
structed and the initial eight clusters are created. The ini-
tial clusters are created by partitioning the model using
three axis aligned planes that are positioned in the mid-
dle of the model’s bounding box. We then compute the
amount of face normal variation in each of these clusters
(see Section 5.3). These eight clusters are then inserted
into a priority queue sorted by the amount of face normal
variation.

5.3 Choosing the cluster to partition
In the simplification stage of our algorithm the first step
is to choose a cluster in which the face normals vary the
most (the cluster at the head of the queue). We com-
pute the amount of face normal variation using the area-
weighted mean (&X �) of the face normals.

The flatter the surface, the larger the magnitude of &X � .
If all the faces are coplanar, the magnitude of &X � will
equal the area of the surface in the cluster. We define this
component deE of our face normal variation measure as fol-
lows:

deEf"hg &X � gi Y� [S� (2)

Even if the surface in a cluster is extremely small it can
contain a large amount of curvature. In order to prevent
small, highly curved details (e.g. a small spring in an en-
gine) from dominating the simplification we must make
our normal variation measure (j>k) sensitive to size. To
do this, we scale d\E by the ratio of the surface area in the

cluster to the model surface area:

j>kl" i Y� [�i.m� [� � +
n d\E � (3)

where o is the number of faces in the model. We com-
plement deE so that

� (increases as face normal variation
increases. In the remainder of this paper the term “normal
variation” refers to variation of face normals.

5.4 Describing the pattern of normal variation
The next step is to describe normal variation in the chosen
cluster. We follow Gersho and Gray [6] who suggest prin-
ciple component analysis (PCA) [11] as a way of deter-
mining how to split cells when using a splitting algorithm.
In PCA a covariance matrix is formed from the data set of
interest. The eigenvectors of this matrix are aligned ac-
cording to the pattern of variation in the data set. Garland
[4] showed that if the covariance matrix is formed with
normal vectors, the eigenvectors are generally related to
the principal directions of normal curvature. Specifically,
the largest eigenvalue and corresponding eigenvector rep-
resent the mean normal of the surface. Usually the second
and third largest eigenvalues and corresponding eigenvec-
tors represent the directions of maximum and minimum
curvature.

The covariance matrix p around the mean qsrH:trH:trvu is
defined by:

pw"
YZ � &��� &�Hx� (4)

We compute the eigenvalues and eigenvectors using the
Jacobi method [16].

5.5 Partitioning the cluster
Partitioning the cluster consists of four steps. First, we
must determine how many planes to use to partition the
cluster. Second, we must orient the planes. Finally, we
must position the planes and create new sub-clusters.

A cluster is partitioned into two, four, or eight sub-
clusters depending on the amount of curvature. Let d=y � ,d m and dzy equal the eigenvalues in descending order (the
second and third largest eigenvalues relate to F G and F I ,
the magnitudes of principle curvature). Let &d m and &dzy
represent the corresponding eigenvectors (these are re-
lated to the directions of maximum and minimum curva-
ture).

If all eigenvalues are of similar magnitude the pattern
of normal variation is unclear. We test for this by com-
paring the eigenvalues as follows: both d mh{}| d y andd y � {~| d m must be true. In this case we partition the
cluster into eight sub-clusters. One partitioning plane is
perpendicular to &d m , the second plane is perpendicular to&d=y , and the third plane is perpendicular to &X � .

Otherwise, if ����=� { "�� then the surface is most likely
hemispherical since there is significant curvature in both
the minimum and maximum directions of curvature. In
this case we partition the cluster into four sub-clusters.
One partitioning plane is perpendicular to &d m and the
other plane is perpendicular to &d y .

In all remaining cases ���� �7� � and the surface is most
likely cylindrical since most of the curvature is in one di-
rection. In this case we partition the cluster into two sub-
clusters. The partitioning plane is perpendicular to &d m .

We must now position the partitioning planes in the
cluster. Ideally the surface should be partitioned along
any ridges or through any elliptical bumps. However, lo-
cating such features is difficult, instead we do the follow-
ing: first we compute the vector &d m�� , which is the pro-
jection of &d m onto � y � , the plane defined by &X � and the
cluster’s mean vertex (X�(). We then project the midpoint
of all the faces in the cluster onto ��y � and find the mean
of all projected midpoints that fall within 2.5 degrees of&d m�� . The resulting point is the position for the partition-
ing plane(s).

Sub-clusters are created by partitioning the vertices in
a cluster. The membership of a vertex depends on which
side of the partitioning plane(s) it falls on. The faces fol-
low the vertices to the sub-clusters. A face may belong
to two or three clusters if the vertices of the face fall into
different sub-clusters.

Even if the entire model is topologically connected, a
given cluster may contain two or more disconnected com-
ponents. Approximating these components with a single
vertex can introduce severe distortion. We have found it
useful to perform a topology check to determine if a new
cluster contains topologically disjoint components.

The topology check is a breadth first search on the ver-
tices and edges contained in a cluster. We use a bit array
to record the vertices visited during the search, making it
linear in complexity. If the cluster contains disjoint com-
ponents, each component is placed into a separate clus-
ter. Although this topology check increases the overall
simplification time, the resulting increase in quality of the
simplification is considerable.

5.6 Post processing

Once the simplification stage is finished two tasks remain.
The first is to compute the location of the representative
vertex (() for each cluster. The second is to re-triangulate
the output surface.

To represent a cluster’s faces as accurately as possible,(should be as close as possible to all the faces. [5, 13, 17]
all minimize the summed distance from the planes con-
taining the cluster’s faces. [5, 13] minimize the squared

distance:

� � (� " (x p (�� |�� x (�� d (5)

Where
� � �.� � "7r is the plane equation for face / , p is

as previously defined, � " i Y� � � &� � , and d�" i Y� � I� .
Since � is a quadratic then � � (� is minimum when its

partial derivatives equal zero. This occurs when:

(S���,� " n p]� G � (6)

We re-triangulate using a method similar to that used
by [18]. After (=� is computed for each cluster, the (=� s are
output to a simplified vertex list TvP>N . In LJP>N , all vertex
references (WJPJ�) contained in the cluster � are pointed at
the new entry in T�PON . We then traverse the global face listLJM>N . Any face referencing three different vertices in T�P>N
is retained and output to the simplified face list TvM>N . All
other faces have degenerated into lines or points and are
discarded.

6 Results

Simplification algorithms are usually judged by two crite-
ria. The first criterion is speed, the time required to sim-
plify a model. The second and more difficult to measure
criterion is quality. Intuitively speaking, quality of a sim-
plification is its appearance or its geometric accuracy.

In the following subsection we present execution times
for two different input models. We also present qual-
ity results, including images allowing for comparison of
appearance and geometric accuracy measured with the
Metro [2] tool.

6.1 Performance
Five different models were used in our comparisons.
All models were simplified on a 195 MHz R10000 SGI
Onyx2 with 512 MB of main memory.

We compared R-Simp to two other simplification al-
gorithms. We chose the fastest vertex clustering algo-
rithm and the fastest vertex merge algorithm. The first
is Rossignac and Borrel’s [18] vertex clustering algo-
rithm (with unweighted centroid calculations). The sec-
ond, QSlim [5], is one of the fastest vertex merge algo-
rithms.

Figure 1 compares the performance of R-Simp to QS-
lim and vertex clustering with the Stanford bunny. R-
Simp is considerably faster than QSlim; it is able to pro-
duce a simplified model of up to 20000 polygons before
QSlim removes a single face. R-Simp’s complexity is����� � �
	���� � �

where
� �

is the input model size and
� �

is
the output model size. Thus R-Simp is linear for a fixed
output size. The speed of vertex clustering is not related
to output size.

0.1

1

10

10 100 1000 10000 100000

T
im

e
In

 S
ec

on
ds

Output Model Size (Faces)

R-Simp
QSlim V2.0

Vertex Clustering

Figure 1: The effect of output model size on simplifica-
tion time for the Stanford bunny.

0

20

40

60

80

100

120

140

0 100000 200000 300000 400000 500000 600000 700000 800000 900000

T
im

e
In

 S
ec

on
ds

Input Model Size (Faces)

R-Simp
QSlim V2.0

Vertex Clustering

Figure 2: The effects of input model size on simplification
time. Output model size is 2100 polygons.

Figure 2 shows how the size of the input model af-
fects simplification time. The dragon was initially sim-
plified using QSlim to various sizes. These models were
then simplified by R-Simp, QSlim, and vertex clustering
to 2100 polygons. As the graph shows, the larger the input
model, the longer it takes to simplify. However, QSlim’s
curve is significantly steeper than R-Simp’s. Vertex clus-
tering is fastest but is affected by input size.

To compare model quality we took seven models and
simplified them. Table 1 summarizes the results. The ta-
ble shows the mean Hausdorff distance between the orig-
inal and the simplified surface as a percentage of the di-
agonal of the bounding box of the original surface [2].

Figures 3a-h show the original bunny and dragon mod-
els and the corresponding simplifications produced by all
three algorithms.

Model Input Output % of Error & Simplification Time (s)
Faces # Faces Cluster RSimp QSlim

Bunny 69451 1600 0.302% 0.09 0.155% 1.58 0.071% 7.85
Cow 5782 1600 0.256% 0.03 0.118% 0.12 0.060% 0.45
Dragon 871306 2100 0.428% 0.29 0.241% 18.9 0.175% 129
Horse 96966 1600 0.266% 0.05 0.147% 2.29 0.052% 11.5
Chair 2481 800 0.658% 0.00 0.215% 0.05 0.019% 0.17
Torus 20000 400 0.460% 0.05 0.265% 0.32 0.160% 1.74
Spring 9386 800 1.012% N/A 0.594% 0.13 0.295% 0.75

Mean 0.483% 0.09 0.242% 3.34 0.119% 21.6

Table 1: Simplification error and time of RSimp, QSlim, and vertex clustering. The error is the percentage of mean
error returned by Metro [2].

6.2 Discussion
As we noted earlier, in applications where the model is
created in response to user input there is no time for
pre-computation. Models must be simplified in reason-
able time. Generation of iso-surfaces is one example
of such an application; the surface is not known before
a user inputs an iso-value. The models in dynamically
modifiable virtual environments are by definition not pre-
computable. In many modeling applications users are
constantly modifying complex models. Applications that
deal with extremely large models must ensure that the
simplification algorithm is able to handle models of arbi-
trary size.

Algorithms useful for such applications should possess
several characteristics:

K Interactive response: Most importantly, algorithms
should be able to guarantee displayable results
within a specified time limit. R-Simp’s speed and
coarse to fine pattern of simplification make it ideal
for this application. Vertex clustering is even faster
although precise control of execution time is diffi-
cult. Because QSlim is slower and simplifies from
fine to coarse it cannot make any time guarantees.

K Control of output model size: Control of output
model size is important if results are to be dis-
playable. R-Simp and QSlim provide a straight for-
ward way to control the output model size but most
vertex clustering algorithms do not. In these algo-
rithms one can only specify the number of voxels;
the number of vertices and faces will typically be
much smaller. Thus, if displayability is to be guar-
anteed, quality suffers.

K High output quality: Algorithms should output mod-
els of the best possible quality despite time con-
straints. QSlim clearly generates the best quality

models. R-Simp’s output quality is not as good, ver-
tex clustering is worst.

K Iterative improvement: When time constraints re-
quire the output of a crude simplification, it should
be possible to refine the result after the time demands
have been met. R-Simp’s coarse to fine pattern of
simplification makes this fairly simple; one must
only save the priority queue of clusters. With QS-
lim there is no need for refinement, the more impor-
tant question is whether the time constraints could be
met. Vertex clustering uses a one pass, one resolu-
tion approach and thus refinement is not possible.

K Continuous level of detail: Many interactive appli-
cations require level of detail hierarchies. Both R-
Simp and QSlim are able to produce hierarchies but
much of the hierarchy initially output by QSlim will
not be displayable because they will be too large
to display. Vertex clustering cannot produce hierar-
chies without fundamental changes to the algorithm.

K Scalability: Simplification algorithms need to scale
so that they are able to gracefully handle extremely
large models. QSlim’s complexity is

�������
	������
while R-Simp’s is linear for a fixed output size.

To summarize, QSlim generates the best quality models
but it is not suitable for interactive applications because
it is too slow and cannot guarantee a bounded runtime.
Vertex clustering algorithms are extremely fast but gen-
erate poor quality models and do not provide an easy way
to control output model size. We believe R-Simp’s time
guarantees and quality/speed tradeoff make it ideal for use
in interactive applications.

R-Simp can simplify any model, regardless of topol-
ogy or manifold characteristics. In output it can simplify
topology and thus does not guarantee topology preserva-
tion.

7 Future work and other applications

The quality of R-Simp’s simplifications might be im-
proved by adding a look-ahead feature, comparing the
normal variation before and after the cluster split. It
should also be possible to modify R-Simp to consider
boundaries as well as face and vertex attributes (e.g.
colour) during simplification. For large environments
consisting of many objects, it should be possible to add a
distance threshold to the topology check, so that disjoint
but neighbouring objects remain in the same cluster and
are merged.

To enable management of the quality/speed tradeoff, R-
Simp might be used as part of a two stage simplification
process. If speed is particularly important, vertex cluster-
ing could be used to simplify the model to a medium level
of complexity and the result input to R-Simp. If quality is
important, the output of R-Simp could be input to QSlim.

We have already discussed the use of R-Simp for level
of detail hierarchies. The bounding box around the clus-
ters in these hierarchies can be used to speed up colli-
sion detection. We have experimented with such bound-
ing boxes as an error measure during simplification and
found no loss in quality or speed. For view based level of
detail control, the error measure should limit the distance
between the simplified and original surfaces.

Since R-Simp simplifies in a coarse to fine direction, it
should be well suited for application in progressive trans-
mission of 3D models. Approximations of previously un-
compressed models could be transmitted quickly.

8 Conclusion

We presented R-Simp, an algorithm that simplifies 3D
models in reverse and is well suited for interactive appli-
cations such as generation of iso-surfaces. Given a lim-
ited amount of time most other algorithms cannot guar-
antee displayable results or results of reasonable quality.
R-Simp also allows iterative improvements, precise con-
trol of output size, and construction of level of detail hi-
erarchies.

Acknowledgments

We would like to thank Oleg Verevka for suggesting the
comparison of quantization to model simplification and
Carolina Diaz-Goano for her mathematical assistance.
We are grateful to Alex Brodsky for all his helpful and
insightful comments and to Greg Turk for his comments,
geometry filters, and models. This research was sup-
ported by an NSERC grant: RGPIN203262-98.

References
[1] Maria-Elena Algorri and Francis Schmitt. Mesh sim-

plification. Computer Graphics Forum, 15(3):C77–C86,
September 1996.

[2] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: mea-
suring error on simplified surfaces. Technical report,
Istituto per l’Elaborazione dell’Infomazione - Consiglio
Nazionale delle Ricerche, 1997.

[3] Jonathan Cohen, Dinesh Manocha, and Marc Olano. Sim-
plifying polygonal models using successive mappings. In
Proceedings IEEE Visualization’97, pages 395–402, 1997.

[4] Michael Garland. Quadric-Based Polygonal Surface Sim-
plification. PhD thesis, Carnegie Mellon University, 1999.

[5] Michael Garland and Paul S. Heckbert. Surface simplifi-
cation using quadric error metrics. In SIGGRAPH 97 Con-
ference Proceedings, pages 209–216, August 1997.

[6] Allen Gersho and Robert M. Gray. Vector Quantization
and Signal Compression. Kluwer Academic Publishers,
Norwell, Massachusetts, 1992.

[7] Taosong He, L. Hong, A. Kaufman, A. Varshney, , and
S. Wang. Voxel-based object simplification. In Proceed-
ings IEEE Visualization’95, pages 296–303, 1995.

[8] P. Hinker and C. Hansen. Geometric optimization. In Pro-
ceedings IEEE Visualization’93, pages 189–195, 1993.

[9] Hugues Hoppe. Progressive meshes. In SIGGRAPH 96
Conference Proceedings, pages 99–108, August 1996.

[10] Hugues Hoppe, Tony DeRose, Tom Duchamp, John Mc-
Donald, and Werner Stuetzle. Mesh optimization. In SIG-
GRAPH 93 Conference Proceedings, pages 19–26, August
1993.

[11] I. T. Jolliffe. Principle Component Analysis. Springer-
Verlag, New York, 1986.

[12] Alan D. Kalvin and Russell H. Taylor. Superfaces: Polyg-
onal mesh simplification with bounded error. IEEE Com-
puter Graphics and Applications, 16(3):64–77, May 1996.

[13] Peter Lindstrom and Greg Turk. Fast and memory efficient
polygonal simplification. In Proceedings IEEE Visualiza-
tion’98, pages 279–286, 1998.

[14] Kok-Lim Low and Tiow-Seng Tan. Model simplification
using vertex-clustering. In 1997 Symposium on Interactive
3D Graphics, pages 75–82, April 1997.

[15] Barret O’Neill. Elementary Differential Geometry. Aca-
demic Press Inc., New York, New York, 1972.

[16] William H. Press, Saul A. Teukolsky, William T. Vettert-
ing, and Brian P. Hannery. Numerical Recipies in C, The
Art of Scientific Computing. Cambridge University Press,
New York, NY, 1992.

[17] Remi Ronfard and Jarek Rossignac. Full-range approxi-
mation of triangulated polyhedra. Computer Graphics Fo-
rum, 15(3):C67–C76, C462, September 1996.

[18] Jarek Rossignac and Paul Borrel. Multi-resolution 3D ap-
proximations for rendering complex scenes. In Modeling
in Computer Graphics: Methods and Applications, pages
455–465, 1993.

[19] William J. Schroeder, Jonathan A. Zarge, and William E.
Lorensen. Decimation of triangle meshes. Computer
Graphics, 26(2):65–70, July 1992.

[20] Greg Turk. Re-tiling polygonal surfaces. Computer
Graphics, 26(2):55–64, July 1992.

(a) Original (b)

(c) 0.21 Seconds Vertex Cluster (d) 2.63 seconds

(e) 1.65 Seconds R-Simp (f) 19.72 seconds

(g) 7.74 Seconds QSlim (h) 128.43 Seconds

Figure 3: Visual results of the three simplification algorithms. (a) Original bunny 69451 faces. (b) Original dragon
871306 faces. (c)(e)(g) are 1900 faces. (d)(f)(h) are 2500 faces.

