
Tagged Behavior-Based Systems:
Integrating Cognition with Embodied Activity
Ian Horswill, Computer Science Department, Northwestern University, Evanston, IL
60201
ian@cs.northwestern.edu

To Appear in IEEE Intelligent Systems special issue on Semi-Sentient Robots

Abstract
Classical artificial intelligence systems presuppose that all knowledge is stored in a
central database of logical assertions or other symbolic representations and that reasoning
consists largely of searching and sequentially updating that database. While this model
has been very successful for disembodied reasoning systems, it is problematic for robots.
Robots are distributed systems; multiple sensory, reasoning, and motor control processes
run in parallel, often on separate processors that are only loosely coupled with one
another. Each of these processes necessarily maintains its own separate, limited
representation of the world and task; requiring them to constantly synchronize with the
central knowledge base is probably unrealistic. I will discuss an alternative class of
architectures – tagged behavior-based systems – that support a large subset of the
capabilities of classical AI architectures, including limited quantified inference, forward-
and backward-chaining, simple natural language question answering and command
following, reification, and computational reflection, while allowing object representations
to remain distributed across multiple sensory and representational modalities. Although
limited, they also support extremely fast, parallel inference.

Introduction

Automated reasoning systems are typically built on a transaction-oriented model of
computation. Knowledge of the world is stored in a database of assertions in some
logical language, indexed perhaps by predicate name (Russell and Norvig 95). When the
system is given a query like “are there any blood disorders with symptoms that affect the
gastrointestinal tract?” the system might translate the query from natural language into a
logical assertion like “there exist X and Y such that X is a blood disorder, X has symptom
Y, and Y involves the gastrointestinal tract.” It would then answer the question by
attempting to prove or disprove the assertion. The backtracking control structure used by
a logic-programming engine to check the assertion would amount to a series of nested
loops:

for each X such that blood-disorder (X) appears in the database
 for each Y such that symptom (X,Y) appears in the database
 for each Z such that involves (Y,Z) appears in the database
 if Z=gastrointestinal-track
 then return true
return false

Of course, this is a very simple case of automated reasoning; it doesn’t really use much in
the way of inference rules. However, even simple examples like this can be extremely
problematic to implement on a robot. Suppose, we instead wish to ask the robot, “are
there any predators here that could eat you?” (ignoring the issue that robots aren’t
particularly digestible). That query would translate into the sentence “there exists X such
that X is nearby, X is a predator, and X can eat me.” Again, a reasoning system
attempting to verify this sentence would need to perform a search that would amount to a
set of nested loops:

for each X such that nearby (X) appears in the database
 if predator (X) appears in the database
 then for each Y such can can-eat (X,Y) appears in the database
 if Y=me, then return true
return false

The problem occurs when we ask how the database is filled in to begin with. Unlike
blood disorders, the set of objects near the robot is in continual flux. The only way the
robot can know about them is to direct its sensors and sensory processes toward the
objects in question and measure whatever properties of them are relevant to the task at
hand. However, automated reasoning systems typically have no good way of directing
perceptual attention. They either assume that all relevant information is already stored in
the database or they provide a set of epistemic actions that fire task-specific perceptual
operators to update specific parts of the database. The former approach requires that the
perceptual systems run some very expensive loops of their own in parallel with the
reasoning system:

for each object X in view
 for each property P of X
 measure P(X)
 retract the old value of P(X) from the database
 assert the new value
 for each other object Y in view
 for each spatial relation R
 determine whether R(X,Y) holds
 update the database accordingly
 … etc…

The epistemic action approach requires that the programmer design the rule base to
ensure that the appropriate actions are fired at the appropriate times. This is more
complicated than it might seem at first. Epistemic actions not only need to be fired when
information in the database is missing, but also when it is out of date. In effect, the
database is functioning as a cache for sensory data. As with any cache system, it must be
kept coherent with the rest of the system – in this case, the sensory systems, and more
importantly, the external world.

This analog of the cache coherence problem is an instance of a more general problem in
robot design, which I will call the model coherence problem. Real robots consist of a
large number of sensory, motor, and reasoning processes operating in parallel, often on
separate processors, and often on very simple processors with little or no operating
system. Each of these processors has, in some sense, its own limited model of the world
and/or of the robot’s current task. All these models must be kept consistent with one
another and with the external world. This cannot be done by fiat nor, I would argue, can
it be done as an afterthought. It must be designed in as a central architectural tenet of the
system.

In this particular case, however, the problem is easily solved by making the perceptual
system emulate the database. A typical automated reasoning system implements two
functions, ask and tell, which query and modify the database, respectively, by performing
the appropriate database searches. The database, for its part, typically implements
simpler versions of these operations. For queries, these operations often amount to
enumerating the set of variable bindings that match a given literal. A literal is an
expression consisting of an application of a predicate to a set of argument expressions.
These argument expressions may or may not contain variables. When the literal contains
no variables, the database need only answer whether it appears in the database. When the
literal does contain variables, the database needs to act as an abstract iterator, generating
a series of values for the variables until either a set of values is found that make the
sentence true, or all possible values are exhausted in which case the sentence is false.

Fortunately, these sorts of enumeration operations are relatively straightforward to
implement directly in the perceptual system. When the reasoning system asks to
enumerate the variable bindings of red (X), the database can defer to the perceptual
system. The perceptual system allocates a color tracker, records the fact that it is
“bound” to the variable X, and sets it looking for a red object. When the reasoning
system asks for the next binding of X, the perceptual system redirects the tracker to a new
red object.

The Bertrand system

Figure 1: The Bertrand system searches for a blue block stacked on a red block using the query blue(X),
on(X,Y), red(Y). Each screen image shows the original NTSC camera image (upper left), the edges
detected in the image (upper right), the color blobs extracted from the image (middle right), the salient
pixels given the current search criteria (bottom left), and the selected most salient blob (middle left). In the
first frame, the system searches for a blue block and finds two blue objects. In the second frame (top right),
it happens to select the correct blue object, and binds a tracker to it (the red X). In the next frame, it
searches for an object underneath the selected object by highlighting all points immediately beneath it as
salient (bottom left frame). Only one object is in the salient region. In the last frame, an other tracker is
bound to it (green X). If the system had chosen the wrong blue object in the first step, it would have
backtracked when the search for a red object underneath it failed. In the bottom two frames, the external
view of the robot is shown as it executes the query and drives to the chosen blocks.

The Bertrand system (Horswill 95) was a “database-free” logic programming system that
answered blocks-world queries using real blocks and a real-time vision system. Bertrand
used an implementation of current theories of human intermediate-level vision (Ullman
84) to search the scene for specified configurations of colored blocks. Enumeration
operations in Bertrand were handled by a visual routine processor, a specialized “vision

computer” whose “registers” were object trackers1 and whose “instruction set” consisted
of the operations:

• Bind a specified tracker to an object of a specified color
• Bind a specified tracker to a different object of its specified color that has not

already been searched
• Test a specified tracker to determine its color
• Bind a specified tracker to an object beneath/beside/above the object tracked

by another specified tracker
• Bind a specified tracker to a different object beneath/beside/above that has not

already been searched
• Test whether the objects tracked by two trackers lie in a specified spatial

relationship.

Whereas a conventional compiler for a logic programming language might compile the
query “blue(X), above(X,Y), red(Y)” (i.e. “is there a blue object above a red object?”)
into something like:

Find the first instance of blue() in the database
Bind X to its argument
repeat
 find the first instance of above(X, …) in the database
 bind Y to its second argument
 repeat
 if red(Y) appears in the database, return true
 find the next instance of above(X, …) in the database
 rebind Y to its second argument
 until no more instances of above(X, …)
 find the next instance of blue(…) in the database
 rebind X to its argument
until no more instances of blue(…)

The execution of this query under Bertrand is shown in figure 1. Bertrand compiled the
same query into a series of visual operations:

find a blue patch in the image and bind tracker 1 to it
repeat
 find a colored patch under the region tracked by tracker 1
 bind tracker 2 to it
 repeat
 if tracker 2 is tracking a red patch, return true
 find the next colored patch beneath tracker 1
 rebind tracker 2 to it

1 Since Bertrand only answered static queries about the scene, it didn’t actually track objects, it only
searched for them and temporarily stored their positions. I use the term “object tracker” here for
consistency with the other systems described here, which do true object tracking.

 until the bottom of the image is reached
 rebind tracker 1 to another blue patch
until no more blue patches

This allowed Bertrand to execute queries without the need for separate epistemic actions
because the inference operations were epistemic actions.

The Ludwig system

Theme

X

Y

.

.

.

Description buffer (VRP programs)

Trackers

T

X

Y

Visual Routine
Processor

Semantic
analysis

Phrase
boundary
detector

VRP instructions

Program selector

Parser

Current instruction
Program select

Shift left/right

cmd

fail?

Figure 2: Architecture of the Ludwig system. The parser compiles noun phrases
to visual routine processor programs to find their referents and loads them into
shift registers in the description buffer. The VRP opportunistically runs these
programs in parallel with the parsing process to bind trackers to the referents of
the query’s noun phrases.

Ludwig (Horswill 95) was a simple natural-language question answering system based on
the same approach. It could answer simple queries involving colors and spatial relations,
such as “is there a blue block on a red block on a yellow block?” or “is the block on the
yellow block blue?” Although syntactically and semantically simple-minded – the only
words it paid attention to in “where is the blue block?” were “where,” “is,” and “blue” –
it was unusual in that it was directly grounded in real-time vision.

What made Ludwig most unusual was that it used a behavior-based architecture in the
general sense that it was built as a parallel network of communicating finite-state
machines similar to Brooks’ subsumption architecture (1986). Instead of having a single,

centralized representation, information about an object was distributed between different
specialized representational mechanisms (figure 2).

Ludwig’s parser consisted of a pipeline of finite-state machines built from (simulated)
logic gates and latches. Each word from the user’s query was presented to the parser as it
was typed, one word per cycle. Whenever it saw an adjective or proposition, it compiled
it into a visual routine processor instruction; “blue” compiled into “place tracker N on a
blue object”, for example, while “on” compiled into “place tracker M on the object
immediately below tracker N in the image.” The parser then latched the instruction into a
shift register, gradually accumulating a visual routine processor program, represented
within the shift register, which would search for the referent of the noun phrase.

In parallel with this semantic analysis, another set of finite-state machines performed a
simple syntactic analysis to find phrasal boundaries. Verbs (of which Ludwig understood
only “is”) and the end of an utterance signified phrasal boundaries. However, a noun
followed by an adjective, as in “is the block on the blue block • red?” also signals a
boundary between two NPs. When the parser encountered a phrasal boundary, it marked
the current shift register completed and switched to a new shift register. The really cool
thing about Ludwig was that as the new NP was parsed, the visual routine processor
would automatically begin searching for the referent of the old NP using the completed
shift register. Thus, semantic analysis, syntactic analysis, and visual processing all
occurred in a pipelined, parallel fashion.

Ludwig kept track of the relationship between the programs, stored in shift registers, that
represented the description of an object, and the visual trackers that represented its
position and identity, using a system of associative tagging. Object representations, both
descriptions (programs) and trackers, are tagged with the names of the objects they
represent. For example, in the command “face the green block on the blue block,”
(Ludwig had a very limited motor control capability) the theme of a sentence is “the
green block on the blue block.” The description of the theme,

green(Theme), on(Theme, X), blue(X)

would be stored in a shift-register tagged Theme. When the control system needed the
referent of the theme, it would tell the visual routine processor to run the Theme
program, knowing that the end effect of this would be that the referent of the description
would be tracked by whatever tracker was bound to Theme. The VRP would execute
the program tagged Theme, which would involve allocating trackers and tagging them
Theme and X. and directing them toward their intended referents. Upon completion of
the program, the top-level control system then needs to tell the motor control system to
servo toward the Theme. To do this, it need only send the tag Theme to the turn
behavior. The behavior then forwards it to the trackers and whichever tracker is tagged
Theme responds with the coordinates of the object.

Tagging provides an alternative mechanism for coordinating the different representations
of an object. Rather than copying all the data to a centralized database, or passing

complicated symbolic expressions between components of the system, components
communicate by passing simple tags. Tagged behavior-based systems preserve the
simplicity, parallelism, and efficiency of traditional behavior-based systems, while
providing additional flexibility and programmability.

Forward-chaining inference for control
While the Bertrand/Ludwig architecture works well for question answering, it doesn’t
work as well for controlling action. Being a backward-chaining inference engine, its
control structure is necessarily top-down and serial. If the scene changes as the robot
scans it, the robot won’t notice since (1) it only attends to the particular property or
spatial relation it’s measuring at the moment and (2) it doesn’t keep any sort of
dependency graph to link premises to their conclusions; without a dependency network,
conclusions can’t be retracted when their premises change. This is a problem when we
look at control applications. If we build a package delivery system using serial
backward-chaining, the system can infer that it needs to pick the package up before
driving to the destination, but if the package falls out of the gripper in route, it may not
even notice. Current reactive planners often require the programmer to explicitly
program when to check these sorts of sensory conditions. When unanticipated changes
occur, the robot’s behavior can be quite pathological.

What is needed here is a forward-chaining inference system, one where any inference that
is computed is continually recomputed, or at least recomputed whenever its antecedents
change. Compiling forward-chaining propositional inference into parallel networks is
relatively simple (see, for example, Kaelbling and Rosenschein 91). For every
proposition in the system, we have a wire that holds its truth-value. An axiom such as
facingObject and objectNear ⇒ objectGraspable, is implemented by connecting an
AND gate to the facingObject and the objectNear wires and using its output to drive the
objectGraspable wire.

The problem comes when we try to implement quantified inference (inference with
variables). To implement an inference rule like facing(X) and near(X) ⇒
graspable(X), we would need an infinite number of wires, one for each possible value of
X, and an infinite number of AND gates. This is not a purely theoretical problem; it is a
general problem of connectionist and behavior-based control systems that representing
predicate/argument structure in fixed, parallel networks is deeply problematic. In such
situations, behavior-based systems often use multiple copies of behaviors to handle all
their possible arguments. One behavior-based dialog system, for example, used a
separate behavior for each possible utterance of each speaker.

Fortunately, tagging gives us a partial solution to this problem. In a tagged behavior-
based architecture, we have a fixed set of tags that we use to identify the objects referred
to by a given tracker or memory representation. If we restrict the system’s inference to
the set of objects actually represented in working memory, then we can represent a
predicate graspable with the set of tags for which it’s true. Assuming the set of tags is
relatively small, we can represent a tag set using a fixed vector of bits, one bit per tag.
The predicate is true of a given object if and only if the bit position corresponding to its

tag is set to one. If the number of tags is manageable (we presently use about 20), then
this still allows for a relatively compact network. We simply take the original
propositional network and replace individual wires with 20-bit busses, or time-multiplex
a single network.

Of course, no one actually builds parallel hardware like this. Real robots are built from
loosely coupled networks of microcontrollers, PCs, and other serial processors, not from
custom parallel hardware. Fortunately, tagging is also very efficient on conventional
serial processors. Instead of using a 20-bit bus to represent a predicate, we use a single
32-bit machine word. The graspable rule above can then be compiled to a simple
assignment statement, written here in C++:

graspable_tags = facing_tags&near_tags;

If, for example, all rules are Horn sentences (implications with conjunctions on the left),
then we can compile all the rules into a series of such assignment statements and
reexecute them on every cycle of the system’s decision loop, effectively recomputing the
entire knowledge base on every cycle. While this sounds expensive, it is cheap enough
that it is effectively free. Since each rule is compiled to a small number of load, store,
and bit-mask instructions, it’s possible to run 1000 rules at 100Hz and still use less than
1% of a modern CPU.

Tagging is only a partial solution to the problem of representing predicate/argument
structure. It doesn’t support term expressions. It’s limited to reasoning over the set of
objects to which the robot is presently attending. And it is also effectively limited to
unary (signal argument) predicates; if there are n tags, then binary predicates would
require n2 wires, ternary relations, n3 wires, etc. However, tagged architectures are
sufficient to do most of the kinds of reactive reasoning that robots do today, only
considerably more efficiently.

Role passing

inference rules

parser

odometers

trackers
descriptions

Representation pools

Behaviors

Figure 3: Role-passing architecture used on the Kluge robot. Nearly all data
passed between subsystems is in the format of tag sets (roles).

Tracker
Pool

see

near

facing

in-hand

graspable

goal(in-hand)

Description
Pool

grasp!

approach!

track!
know(color)

Figure 4: Equivalent control circuit for the grasping inference rules given in the
text. Note that each wire here is really a bus with one bit per role and that logic
operations are bitwise ANDs and NOTs on these bit-vectors. Data flows from the
goal input, the description pool, and the vision system and its outputs drive the
grasp, approach, and visual tracking behaviors. Inferences are recomputed with
each successive frame of the video stream.

Figure 5: Kluge follows the command “continually bring green to blue.” The
parser binds the object role to the color green and the destination role to blue,
then asserts the goals in-hand(object) and near(destination). The robot grasps
the green ball then drives toward the blue trashcan.

We’ve used this feed-forward tagging scheme to program a robot, Kluge, to follow
simple natural language commands, such as “get the green ball,” “go to the blue ball,”
“follow me,” etc. (Horswill 98). Kluge uses a custom 25MIP DSP board with an
attached frame grabber (the DIdeas Cheap Vision Machine) and video camera. The
electronics are housed on a commercial synchrodrive base (a Real World Interface
B14S). The robot can track up to three colored objects simultaneously and performs
visual navigation at about 1m/s. The vision system runs at 10 frames/second and the
inference engine and motor control behaviors completely update themselves on every
frame.

Kluge can represent objects in three different modalities (figure 3). It can remember
what color it is by tagging one of a set of color representations held in its description
pool. Given the color, it can allocate a visual tracker from its tracker pool, assigning it an
appropriate tag, and set it searching for that color. And when the object goes out of view,
it can still keep a rough idea of its location using an odometric tracker pool.

As with Ludwig, Kluge uses a finite-state parser whose “output” is set of tag bindings in
the other components of the system, specifically the representation pools. In this system
and subsequent systems, we have adopted the practice of using linguistic role names,
such as agent, patient, etc. as our tags. So when the user types “get the green ball,” the
parser binds the role object to the the color green in its pool of color descriptions and
asserts that in-hand(object) is a goal (see below).

Most of the communication between the parser, inference engine, and peripheral systems
consists of passing sets of linguistic roles in this bit-vector representation. On every
control cycle, the vision system grabs a new frame and processes it. The different

tracking systems independently determine whether their targets are nearby. The vision
system ORs together the roles (represented as bit-vectors) of all the trackers with nearby
targets. The result is the extension of the predicate near, which it passes to the inference
engine. Similarly, it ORs together the roles of all tracked objects it is facing to form the
facing predicate. In parallel, the odometry system, which tracks the locations of objects
using dead reckoning, determines which of its targets are nearby and/or faced by the
robot, and ORs their tags into the bit-vectors representing near and facing. These bit-
vectors are cheap to compute compared to the cost of doing the tracking in the first place,
so they can be recomputed on every decision cycle.

Kluge then uses a set of inference rules to control the firing of different behaviors. A
simplified version of the rules used to control grasping and approaching objects is:2

near(X), facing(X) ⇒ graspable(X)
goal(in-hand(X)), not in-hand(X), graspable(X) ⇒ grasp!(X)
goal(in-hand(X)), not in-hand(X), not graspable(X) ⇒ approach!(X)

These rules are transformed into the feed-forward logic network shown in figure 4. The
inference engine ANDs the near and facing bit-vectors to form the bit-vector for the
graspable predicate. It ANDs this with the bit-vector of objects it wants to have in its
hand and with the complement of the bit-vector of objects it already has in its hand (as
determined by the vision system). The result is a bit-vector specifying the object to try
and grasp, if any. By feeding this bit-vector to the grasp! behavior, the inference engine
can control grasping. When the bit-vector is non-zero, the behavior fires and tries to grab
the specified object. When the behavior succeeds in grasping the object, the in-hand
predicate will change, automatically deactivating the behavior. Since these bit-vector
inference operations are cheap to perform, Kluge can recomputed them on every cycle of
its decision loop, continually updating its knowledge base. So if the object slips out of
the gripper after being grasped, the grasp behavior immediately re-fires.

For its part, the grasp! behavior doesn’t need to know which tracker is tracking the
object, or even which sensory modality is tracking it. It simply passes the tag on to the
tracking systems. All trackers match the tag to their own tags in parallel and the
matching tracker drives the behavior’s input bus with the coordinates of the object.
Again, this matching and transmission is performed on every cycle, so the behavior is
able to close a feedback loop around the tracked position of the object. Since nearly all
the data coordination between the various subsystems of the robot is performed by
passing sets of linguistic roles, we call this flavor of tagged architecture “role passing.”

Unfortunately, the inference rules above are useless unless the vision system is tracking
the object. When the robot is told “get the green ball”, the parser only binds the role
object to the description pool; it doesn’t do anything to the vision system. In order to
even know whether it’s facing the object or not, Kluge has to direct its visual attention
toward the relevant objects. It does this using the inference rules:

2 In the real system, grasp! isn’t an atomic behavior. Separate rules are used to open and close the gripper,
to drive toward the object, etc.

see(X) ⇒ know(near(X))
see(X) ⇒ know(facing(X))
see(X) ⇒ know(in-hand(X))
goal(see(X)), not see(X), know(color(X)) ⇒ track!(X)

The first three rules state that it knows whether objects are nearby, etc. when it can see
them, that is, when the vision system is tracking them. The last rule says that if it wants
to see something but doesn’t, and it knows what color the object is, then it should fire the
track! behavior on it. The track! behavior allocates a tracker, binds it to the specified
role, and sets it searching for the right color. These rules are also compiled into the
control network shown in figure 4. A screen capture from the running robot is shown in
figure 5 as it tries to deliver a green ball to a blue target which a mischievous human
repeated steals the ball from it.

The Cerebus Project

Figure 6: The hardware used by Cerebus. A commodity laptop with USB frame
grabber, and NTSC board camera mounted on an RWI Magellan robot base.

The unifying theme of all these systems is the attempt to import the useful features of
traditional symbolic AI systems into behavior-based systems without also importing the
model-tracking and model-coherence problems. I’ve argued that you can implement
forward- and backward-chaining inference for useful subsets of predicate logic using the
kinds of parallel, distributed computations commonly employed in behavior-based
systems.

My group’s current effort in this direction is the Cerebus system (figure 6), an attempt to
build, within a nominally behavior-based architecture, a “self-demoing robot.”3 The
goal is for Cerebus to be capable not only of interacting with the world, but of using
reflective knowledge about its own capabilities to interactively describe and demonstrate
those capabilities. Cerebus combines a set of perceptual-motor systems with reflective
knowledge about those systems, allowing it to perform limited reasoning about its own
capabilities. Cerebus distributes its representations of itself and its world through a
number of semi-autonomous representational systems linked by role-passing:

• Tracker and description pools, as in Kluge
• A pool of place nodes in a topological map. Places can be bound to roles and

the map reports the role of the robot’s current location (if any) and the
direction of the next waypoint on the path from the current location to the goal
location.

• A lexicon pool, entries of which are automatically bound to roles by the
parser as the user types an utterance.

Cerebus also includes a set of reflective pools that give the robot access to its own
internal state:

• The behavior pool holds bindings between tags and specific robot behaviors.
Each behavior continually compares its tag to the set of tags on a global call
signal. Whenever a behavior detects a match, it activates itself.4 Active
behaviors also drive a global running? signal with the bit-vector of their tags.
The signal therefore holds the tags of all running behaviors, allowing any part
of the system monitoring the signal to determine whether the behavior bound
to a given tag is running.

• The proposition pool holds bindings between tags and specific binary-valued
signals in the system. The pool generates a true? signal comprised of the set
of all tags bound to propositions that are presently true. This allows one
component of the system to “pass” a signal to another component by binding
it to a tag that has been agreed upon in advance. The receiving component
can then monitor the signal by inspecting the appropriate bit of the true?
signal.

• The predicate pool holds bindings between tags and unary predicates. The
predicate pool generates vector of signals, indexed by role, whose elements
hold the extensions of all bound predicates – role 0 in element 0, role 1 in
element 1, etc. Again, this provides an indirection facility for passing signals
between components.

3 The name “Cerebus” is not a reference to the cerebrum of the brain, but rather to a barbarian aardvark in a
satirical comic book series written by artists Dave Sim and Gerhard. Like our robot, Cerebus is short,
brutish, stupid, and only speaks of itself in the third person.
4 Of course, behaviors can also be activated in all the normal ways, including bottom-up self-activation.

Finally, Cerebus includes a marker-passing semantic net. Nodes within the net can be
bound to role tags and then propagated as markers along links in the net to perform
retrieval and inference from long-term memory.

It is important to understand that a given object or concept might be represented in
several of these pools simultaneously, with each pool representing different aspects of the
object. This is supported in part by allowing elements of different pools to share a single
tag register. For example, the lexicon pool entry for the word “show,” the behavior
show, and the semantic net node representing information about the behavior, all share a
common tag register. Therefore, when the parser binds “show” to a role, the behavior
that can implement the verb is automatically bound to the same role at the same time.
Conversely, if some other process binds the behavior to a role, the lexical entry is
automatically bound, thereby insuring that the robot will be able to name the behavior
verbally, should it be necessary.

Allowing system components such as behaviors and signals to be tagged gives the system
the ability to reify those components – to make them data objects that can be
manipulated, inspected, and passed as parameters in their own right. Allowing them to
be associated with nodes in the semantic net gives the system the ability to store
reflective knowledge about its own structure and capabilities.

Reification of behaviors allows Cerebus to implement higher-order behaviors: behaviors
that are parameterized by other behaviors. One trivial example of a higher-order
behavior is handle-imperative. Suppose the user types the command “show me
freespace following.” Cerebus’ parser reads keypresses in real time as it continues with
its other activities and breaks it into words. It finds the verb of the sentence, “show,”
which it binds to the activity role, and identifies its objects, “me” and “follow-freespace,”
the latter of which is treated as a single word. Based on the verb’s lexical entry, it knows
that the first object should be bound to destination, that the second should be bound to
object, and that the subject should be bound to agent. Since the subject is absent the
parser defaults it to “Cerebus.” Cerebus happens to have behaviors by the names show
and follow-freespace, each of which shares its tag register with its respective entry in
the lexicon. Therefore, upon completion of the parse, the show behavior is bound to
activity and the follow-freespace behavior is also bound to object.

The handle-imperative behavior automatically activates itself whenever agent is bound
to the word “Cerebus” and activity is bound to a behavior. It responds by driving the call
bus with the bit-vector representing activity, thereby activating the show behavior. It
then waits until the running? signal no longer includes the activity role, the signal that
show, or whatever other behavior was specified by the user’s command, has terminated,
at which point handle-imperative deactivates itself.

For its part, show, another higher-order behavior, works by driving the call bus with the
object tag, thereby activating whatever behavior was bound to that tag by the parser, in
this case, follow-freespace. It then waits for 60 seconds and then stops the behavior by

driving another global bus, the stop bus, with the object tag, which stops the freespace
follower.

Agent:

Activity:

Destination:

Object:

X:

"cerebus"

"show"

"user"

"follow-freespace"

show behavior

follow-freespace
behavior

follow-freespace
demo behavior

follow-freespace

follow-freespace-
demo

demo link

Lexicon Semantic net Behavior pool

Figure 7: Tag bindings in the task "show me freespace following". Tags are
shown on the left, and their respective bindings within pools are shown on the
right. Objects which share a single tag register are shown linked in dashed
rectangles. The parser established the initial bindings of agent, activity,
destination, and object in the lexicon. Activity and object are then implicitly
bound in the semantic net and behavior pools by virtue of register sharing. The
show behavior, then binds follow-freespace-demo to the scratch role X, by
performing a marker passing operation in the semantic net.

However, a much more interesting case is when show uses information from the
semantic net to determine how to demonstrate the behavior (figure 7). In reality, the
freespace follower also shares a binding register with a node in the semantic net, which
can hold reflective information about the behavior. When that node is linked to another
node by a demo link, the other node is assumed to contain information about how to
demonstrate the behavior. In particular, show assumes the other node will be linked to a
special “demo” behavior used to show off the freespace follower. When the show
behavior detects that the object role is bound to a semantic net node with a demo link, it
binds the linked node to another role. Since the new net node shares a tag register with
the actual demoing behavior it represents, the behavior is tagged at the same time,
allowing show to activate it using the call bus.

Cerebus is still very much a work in progress. Its parser can resolve references to objects
in its various pools, and its primitive natural language generator can produce descriptions
of the object bound to a given role, regardless of the representational system(s) tracking
it. However, most of the work on Cerebus has gone into building infrastructure – the
paser/generator, the reification system, the semantic net, etc. – rather than filling that
infrastructure up with content. Thus, as of this writing, there is a limit to what Cerebus
can actually do with a user. A typical interaction with Cerebus might be:

Cerebus: Hello.
User: What can you do?
Cerebus: cerebus can do follow-freespace, follow-color, follow-human, and
answer-question.
Users: Show me freespace following.
Cerebus: ok. cerebus show user freespace-following.
 … Cerebus shows off freespace following …
User: (Interrupting) Stop.
Cerebus: ok. cerebus stop.
User: Give a talk.
Cerebus: ok. cerebus give user talk.

… Cerebus does a simple tree-walk of its semantic net to generate a
 largely pre-scripted talk

User: (Interrupting) Stop.
Cerebus: ok. cerebus stop.
User: Die.
Cerebus: ok. cerebus die.
 … the Cerebus program exits.

Note that Cerebus is pointedly dysfluent. This is partly because it generates sentences by
walking the bindings of its internal representations (semantic net, lexicon, reified
behaviors, etc.), which are fairly simple to begin with. Thus, it cannot generate complex
noun phrases, or even noun phrases with determiners (a, the, some). However, we have
also intentionally exaggerated that dysfluence, for example by having it refer to itself in
the third person. If the robot only generates simple sentences, hopefully the user will
only give it simple sentences.

Conclusion

It is common to see behavior-based systems and symbolic reasoning systems presented as
distinct, or even incompatible, approaches to intelligent control. This view has left
behavior-based systems representationally impoverished, and therefore, highly limited.
However, not only is symbolic reasoning compatible with behavior-based systems, it’s
implementable by behavior-based systems. The relevant distinction is not between
symbolic and non-symbolic computation, but rather between a transaction-based model
of computation and a circuit-based model of computation. Although nearly always
implemented in conventional programming languages, behavior-based systems have
traditionally used styles of computation that are analogous to parallel circuits. This style

of computation is typically easier to interface to sensors and effectors and, since it
recomputes everything on every clock tick, is highly reactive. Symbolic reasoning
systems have traditionally been implemented in LISP, or more recently, Java. However,
the same input/output behavior can often be implemented in circuit-style computation,
allowing greater reactivity, and easier interface to sensory systems.

Of course, just because something is possible doesn’t necessarily mean it’s a good idea.
Hand-engineered rules in straight logic have many limitations. Learning approaches, as
well as probabilistic or fuzzy reasoning systems, have also shown great promise.
However, these systems, like behavior-based systems, have traditionally been
representationally impoverished. Hopefully the techniques described here can also be
used to extend these systems to more powerful representations. And, of course, many
things are not implementable in this framework and probably never will be. Full-blown,
domain-independent planning, for example, necessarily involves unbounded search and
so cannot be done with a fixed parallel network. When such techniques are necessary, a
tagged architecture would need either to make out-calls to a more traditional LISP
program or effectively emulate a LISP interpreter. Both approaches are worth
investigating.

These caveats aside, I believe that there is a rich, and largely untouched, area of research
in trying to extend parallel distributed control architectures to support more expressive
representations. Even if tiered architectures do ultimately prove necessary, their
performance can be improved dramatically by pushing as much work as possible down
from the deliberative components into the behavior-based components. There is a great
deal of interesting work still to be done: What other techniques beside tagging can be
used to extend distributed representations? How can exception handling and meta-level
reasoning be incorporated into these architectures? Can on-line statistical learning
techniques be extended to more expressive representations? If so, can it leverage those
representations to improve performance? The answers are by no means obvious, but any
advances that can be made will have a high payoff.

As a final comment, I would like to suggest that one of the reasons that behavior-based
systems have lagged behind traditional symbolic systems is because we haven’t yet found
the right set of tools for building them. While symbolic reasoning systems have very
advanced languages, compilers and development environments for them, most behavior-
based systems are still written in procedural languages like C++ that don’t have built-in
notions of circuits or finite-state machines, much less of reified behaviors. Programmers
therefore have to in some sense program in two languages at once. They first conceive of
their program within some higher-level behavior-based architecture, then hand-compile it
to C or Java code. As modifications are made, they must solve problems at both these
levels and incrementally recompile manually. The process tends to be painful and error
prone. Debugging has to be done at the C level rather than at the architectural level –
assuming some kind of thread-safe parallel debugger is available at all. In my own work,
I have used a functional language for circuit layout (Horswill 2000). While it’s been a
big help – we couldn’t have built Cerebus without it – it’s still far too limited. What’s

needed is some equivalent of a LISP or Prolog integrated development environment for
behavior-based systems.

Acknowledgements
The role passing systems, Kluge and Cerebus, were developed at Northwestern
University with the students of the Autonomous Mobile Robotics Group at Northwestern
who worked to make the course possible: Chris Beckmann, Maj. Pete Beim, Lars
Bergstrom, Matt Brandyberry, Mark DePristo, Aaron Khoo, Dac Le, Karl Marsilje,
Cuong Pham, Maj. Clifton Poole, Ivan Yen, and Robert Zubek. This work was made
possible in part by a grant from the National Science Foundation CAREER program
under grant IRI-9625041, as well as the Defense Advanced Research Projects agency
under US Army Soldier Systems Command contract number DAAN02-98-4023 and the
U.S. Navy Space Warfare Systems Command award number N66001-99-8919. The
Bertrand and Ludwig systems were developed at the MIT Artificial Intelligence
Laboratory with support in part from the University Research Initiative under Office of
Naval Research contract N00014-86-K-0685, in part from the Advanced Research
Projects Agency under Office of Naval Research contract N00014-85-K-0124, and in part
from the National Science Foundation under grant number IRI-9407273. I would also
like to thank the Ben Slivka, Lisa Wissner-Slivka, the Microsoft Corporation, and the
Sony D21 laboratory for their generous support, and the people at the Real World
Interface division of IS/Robotics for their high level of tolerance for fixing our robots no
matter what we did to them.

References

Arkin, A. (1998). Behavior-Based Robotics. MIT Press, Cambridge, MA.

Brooks, R. (1986). “A Robust Layered Control System for a Mobile Robot,” IEEE
Journal of Robotics and Automation, Vol. RA-2, No. 1, pp. 14-23.

Horswill, I. (1995). “Visual routines and visual search: a real-time implementation
and an automata-theoretic analysis.” In Proceedings of the 1995 International Joint
Conference on Artificial Intelligence, Montreal, Canada, August 1995.

Horswill, I. (1998). “Grounding Mundane Inference in Perception,” Autonomous Robots,
Vol. 5, pp. 63-77. Kluwer Academic Publishers, the Netherlands.

Horswill, I. (2000). “Functional Programming of Behavior-Based Systems,”
Autonomous Robots 9, 83-93. Kluwer Academic Publishers, the Netherlands.

Kaelbling, L. and Rosenschein, S. (1991). “Action and Planning in Embedded Agents,”
in Designing Autonomous Agents, ed. P. Maes, MIT Press, Cambridge, MA, pp. 35-48.

Russell, S. and P. Norvig (1995). Artificial Intelligence: A Modern Approach. Prentice
Hall.

Ullman, S. (1984). “Visual Routines.” In Visual Cognition, MIT Press, 1984.

