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Abstract 
 
The Behavior-Based Robotics course at Northwestern University is a project-oriented course that gives 
undergraduate and graduate students exposure to programming research-grade robots for real-time 
autonomous activity.  The course, which has been running for five years, combines lectures on theory with 
large amounts of concrete project work in which students are encouraged to creatively select their own 
goals and approaches.  One of the most unusual aspects of the course is its use of low cost, state-of-the-art 
hardware that provides not only SONAR and odometric sensing, but also a number of real-time vision 
systems.  We will discuss the curriculum of the course and our experiences with it.  We will also discuss 
the evolution of the hardware and software infrastructure used in the course and its impact on the students’ 
learning experience. 
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Introduction 
Robotics has received a great deal of attention as a vehicle for motivating students to learn artificial 
intelligence, computer science, and even general science and engineering [2].  A large number of courses 
and competitions have been developed that involve the construction and programming of simple robots.  
These robots are usually composed of a microcontroller, some bump switches and IR receiver-detector 
pairs, motors, and a body built using a mechanical prototyping technology such as Lego Technic.  While 
these courses are excellent vehicles for teaching general engineering concepts, especially electrical and 
mechanical engineering, they tend to be dominated by hardware concerns.  The kinds of issues that robotics 
researchers think of as being core concerns in designing autonomous robots – representation, planning, 
sensor fusion, etc. – can’t be addressed because the robots lack the sensor suites needed to make these 
problems practical. 
 
At Northwestern, we have taught a laboratory course for the last five years that uses research-grade mobile 
robots to explore concepts of autonomy, such as sensor interpretation, planning, and action selection.  In 
this paper, we will discuss the history of the course - the different approaches we tried, the pitfalls we 
encountered, and the successes we encountered. 

Goals 
The principal goal of the course was to teach students the issues and approaches involved in modern 
autonomous mobile robot programming.  This was partly a selfish goal.  Autonomous robots require large 
amounts of mundane infrastructure, from device drivers to simple vision algorithms, that, while necessary, 
is not in itself publishable research.  Most autonomous robot labs are therefore dependent on highly 
motivated undergraduates for whom such tasks are still fresh and exciting.  Teaching a robot course that 
provides background on current research topics is both a way of recruiting these students and a mechanism 
for training them in. 



 
We wanted to teach a laboratory course rather than a straight lecture course.  This was due in part to a 
general bias toward project-oriented courses within our department.  We believe that students learn better 
by doing than by sitting through lectures or doing pencil and paper exercises.  However, the lecture 
component of the course has grown over the years and there is now a large amount of lecture material in 
addition to the laboratory assignments. 
 
Our eventual goal is to teach a course that starts with linear control theory and moves all the way through 
symbolic planning and knowledge representation.  For various infrastructure reasons (see below), that 
hasn't yet been practical.  We have therefore focused the course on behavior-based control of visually 
guided robots.  When we teach the course this fall, we intend add units on sequencers and STRIPS 
planning. 
 
 

Course lectures 
The course uses Arkin’s Behavior-Based Robotics [1] as its primary text.  Since the book covers the 
material at a relatively high level, we supplement it with lecture notes on the nuts and bolts of robot 
programming.  There is also a large amount of documentation on the programming environment and 
utilities.  Although the course is not ultimately about traditional control theory, we have organized the 
course around the vocabulary of control theory: 
 
The environment and robot form coupled dynamic systems. 
Dynamic systems have state spaces and dynamics (transition functions or differentials) 
State estimators compute an approximate state for the robot/environment from old state estimates, the 
actions the robot has taken, and new sensor data. 
Control policies compute actions from estimated states and/or sensor data.   
 
The course begins with a brief review of dynamic systems where these ideas are presented for both discrete 
and continuous state spaces.  We then discuss rudimentary control theory (for linear single-input/single-
output systems) as a starting point for thinking about robot programming.  Unfortunately, typical 
commercial mobile robots are controlled by sending velocity commands over a low-speed serial port.  To a 
control theoretician they look like first-order systems with long lags and peculiar nonlinearities.  This 
makes it difficult to design lab activities in which students can apply the formal aspects of classical control 
theory.  If we ignore the lags and non-linearities, robot bases look like trivial systems that scarcely need to 
be controlled.  However, if we include the lags and non-linearities, they look too complicated to model in 
an undergraduate course, much less one that only can spend a week or so on control theory.  For this 
reason, we focus on the qualitative aspects of classical control, such as how lags induce oscillation, or how 
stiction can induce integrator wind-up by breaking a feedback loop.  We also discuss the typical work-
arounds for these problems, such as controller detuning, ad-hoc gain scheduling, and conditional 
integration.  Ultimately, we would like to extend the course to cover adaptive control.  However, this will 
probably require extending the course to a two-quarter sequence. 
 
Most of the rest of the course is devoted to behavior-based control and behavior-based architectures.  We 
begin by introducing the notion of primitive behaviors as gated control loops.  These are task-specific 
controllers (typically non-linear) together with some kind of triggering logic.  The triggers enable their 
control loops when the robot/environment system enters the appropriate region of its state space.   Control 
policies are then built by combining primitive behaviors.  Different techniques can be used to combine 
behaviors and we can think of these techniques “higher-order” operators that map behaviors to more 
complex behaviors.  We provide the students with implementations of a number of these combination 
operators, or combinators, allow them to experiment with them, and allow them to try developing new 
combinators. 
 
For a behavior-based control policy to be effective, it must activate the right behavior at the right time.  
More properly, it must activate the right behavior in the right region(s) of state space.  Standard computer 



programs use sequencing as their major way of combining primitives.  First you call this routine, then you 
call that routine.  Unfortunately, sequential controllers, also called plans, require position within the plan to 
correspond reliably with location in state space in order to function properly.  Thus, the plan’s program 
counter must effectively encode some kind of ad-hoc state estimate.  While this is perfectly reasonable in a 
sort routine, it can be difficult to achieve reliably in robot programs if the environment is stochastic or 
poorly modeled.  
 
For this reason, behavior-based controllers generally combine behaviors in parallel.  The triggers act as 
specialized task-specific state estimators and the system runs whichever behavior(s) are triggered at a given 
time.  Such parallel control policies are effective when (roughly): 
 
The behaviors do sensible things in their respective regions of the state space, 
Their triggers accurately detect these regions of state space, and 
Those regions cover the state space. 
 
In practice, of course, the regions overlap, meaning that multiple behaviors can be coactive, so some kind 
of arbitration is necessary.  Different behavior-based architectures break down roughly according to what 
arbitration mechanism they use.  Motor schemas use vector summation.  Subsumption uses a prioritization 
scheme.  Behavior-nets use spreading activation.  And so on.   In laboratory exercises, students are given 
implementations of each of these combinators and told to experiment with them on different tasks.  Coming 
from a computer science background, our students generally have a bias toward using sequential control.  
Their first few robot programs tend to be filled with large numbers of ad-hoc timers and sequencers that are 
carefully contrived to cause the robot to do the right thing in the imagined “typical” case, but that tend to 
fail if someone unexpected walks in front of the robot or even just if shadow moves in the environment.  
Much of the focus of the first few assignments is to wean them from sequential control. 
 
Issues of hardware design, sensing and state estimation a distributed throughout the course.  The course 
begins with a discussion of common robot hardware: batteries, power-train components, infrared proximity 
detectors, SONARS, cameras, computers, etc.  These topics are discussed at the functional level of what 
they’re supposed to do and how they commonly fail, rather than at the level of how a student would design 
a new robot. 
 
A fair amount of class time is devoted to the sensor failure modes, particularly specular reflection and 
corner reflection of SONAR pulses.  The sources of drift in odometric position estimates are also discussed 
at length. Although these issues are discussed at the beginning of the quarter, students are always shocked 
and outraged when their robots crash into the wall because of a “bad” SONAR. 
 
We also discuss simple active vision algorithms.  The students do most of their navigation using the Polly 
algorithm [3] for obstacle sensing, and so become experts in its failure modes.  The algorithm can’t sense 
any object that doesn’t generate a grey-level edge in the image, so objects that happen to be the same 
brightness as the floor are invisible to it.  It is not uncommon to come into the lab in the morning and find 
black electrical tape strung along the bottom of some recalcitrant piece of furniture. 
 
Stochastic state estimation is covered toward the end of the course.  For continuous state spaces, we discuss 
least squares fitting and recursive least squares.  Kalman filtering is also discussed, although no real 
attempt is made to prove its correctness in class.  For discrete state spaces, we discuss Bayesian inference 
and Markov models.  While we explain the basic ideas behind Markov Decision Processes (MDPs) and 
Partially Observable MDPs, we do not attempt to present the literature on POMDP planning. 
 
We also discuss hierarchical organizations, such as means-ends analysis and Tinbergen hierarchies.  Next 
year, we hope to add a real unit on symbolic problem solving and planning.  We believe we can integrate it 
cleanly with behavior-based curriculum by treating planning as another kind of combinator, but one which 
uses non-determinism (i.e. search), rather than parallelism.  Non-deterministic programming languages 
been shown to be an accessible way of teaching search algorithms in introductory AI classes. 



Lab assignments 
Lab assignments are performed by the students in the hallways of the computer science department.  
Students are not allowed to modify the environment to suit their needs, nor are they allowed to ask passers 
by to move out of the way or to otherwise avoid the robots.  In this sense, the entire building forms a kind 
of "open lab" for the students’ experiments.  This serves a number of purposes.  To begin with, it makes the 
assignments much more realistic.  Students coming from “Lego robotics” background, where they compete 
in specially designed, tightly controlled robot rinks, often don’t understand why the techniques of behavior-
based control are necessary, since simple timing loops and odometry often suffice in these artificial rinks.   
 
However, a more important reason is that putting lab assignments out in the world helps generate a sense of 
excitement, not only among them, but also among other students.  As students go about their day, they walk 
past robotics students frantically hacking away on their latest assignment.  This obviously helps motivate 
the robotics students, but it also helps build a general sense among the other students that there are cool 
things happening in the department. 
 
Students work on assignments in groups of 2-4.  They are given 24-hour access to the robots.  While this 
makes the course popular with the students, it does have some disadvantages.  First, students tend to book 
the robots 24 hours a day in the final day or two before an assignment is due.  That means that the teaching 
staff needs to closely monitor the condition of the robots to make sure that the batteries are not being 
overdischarged, that the wheels are still aligned, etc.  Unfortunately, it also means that the teaching staff 
has to monitor the condition of the students, since they have a tendency to spend more time on their 
robotics assignments than is really healthy for them or for their grade point averages.  Working through the 
night is the norm in the class.  It is not uncommon for student to stay up 24 hours.  In some cases, students 
have even gone for 48 hours or more.  It is important for the teaching staff to monitor the students and 
encourage them to go home and sleep, eat, shower, and so on. 
 
Most assignments are structured as semi-formal competitions.  It's not clear to us that this is a good thing.  
However, experience has shown that the students will turn any assignment we give them into a road race 
whether we like it or not.  The only way we have found to prevent them from trying to make the robots run 
as fast as possible is to give them some other criterion, such as energy consumption or smoothness of 
velocity, to try to optimize.  This may be a reflection of the predominantly male undergraduate population 
in CS.  In any case, we have reluctantly decided to embrace their enthusiasm by structuring assignments as 
mock-competitions.  Each assignment specifies: 
 

• A number of trials that each group will get and a duration for each trial. 
• A set of formal benchmarks, such as time, velocity, or energy that will be used to compute a 

quantitative evaluation of the system. 
• A set of constraints, such as requiring that robots not collide with any objects or that they never 

back up.  These count as penalties if they are violated. 
• A set of subjective criteria, such as perceived smoothness of the robots’ trajectories, general 

coolness, etc. 
 
The teams have one week to do the assignment, at the end of which trials are held in class.  Each team gets 
a specified number of trials and statistics are recorded about their performance in each trial.  The students 
are graded based on the statistics from their best trial.  The students are also required to give a 5 minute in-
class presentation on how their system works.  Finally, the students are asked to grade each other on the 
subjective criteria. 
 
Most assignments involve the design of a specific behavior, such as: 
  
• PD-controller for ballistic turns.  Groups compete for the fastest settling time.  This is really just an 

assignment to get them used to working with the hardware.  It has the advantage that the robot doesn't 
actually translate, so it isn't as bad when they forget to remove the charging cable before enabling the 
motors.  While a simple task, it isn't entirely trivial as it sounds since the plant they're controlling has a 
number of non-linearities. 



• Freespace follower.  Students are given the basic visual operators for computing a depth map and for 
computing the minimal distance within regions of the map.  The students then build a reactive control 
loop to wander about the lab avoiding obstacles.  Here students begin to experiment with techniques 
like gain scheduling.  Some years, this is given as a boundary follower instead of a freespace follower. 

• Wanderer.  Groups augment their freespace follower with an "unwedger", a behavior that detects when 
the freespace follower has reached a cul de sac or other local minimum and overrides it with a ballistic 
turn or other motion to get it out of the local minimum.  The wanderer assignment comes in different 
flavors: 

• Normal.  Groups are scored based on the maximal distance they get from their starting point 
in a set period of time. 

• Limo mode.  The run-time system of the robot is instrumented to compute the RMS value of 
the robot's linear acceleration.  Groups compete for the lowest mean acceleration.  This 
encourages smooth velocity profiles, i.e. low energy trajectories. 

• Energy saver.  An alternative form is to instrument the run-time system to compute the total 
energy expenditure through the motors based on measured battery voltage and motor currents.  
Students then compete for the highest mean velocity sustained using the smallest number of 
joules of energy over a standard period of time. 

• Marathon man.  The run-time system of the robot is instrumented to compute the minimum 
velocity over the course of the robot's run.  Groups compete to achieve the highest possible 
minimum velocity.  This also encourages smooth, lower-energy trajectories. 

• Tailing.  Students write a behavior to track a person and follow them.  Groups compete to design the 
most responsive behavior possible. 

 
However, there are also assignments that involve building more complete “applications”, such as: 
 
• Road race.  This is a race from Ken Forbus' office in the East wing of the building to Roger Schank's 

office in the west wing.  Students have to tune a freespace or boundary follower to run as fast as 
possible.  They also typically add some kind of simple sequencer and landmark detector to switch 
modes when they reach different locations in the lab. 

• Fetch.  Given visual primitives for tracking a brightly colored ball, students write a behavior-based 
system to play fetch. 

• Place recognition.  Groups write a number of ad-hoc  landmark detectors and build a topological 
navigation system based on these detectors.  Groups compete for accuracy in detecting their chosen 
landmarks. 

• Town crier.  Groups write a program to patrol the lab and announce a talk or other event. 
• Pest.  Groups write a program to lurk in the hallways and accost passers by. 
 
At the end of the quarter, the students do a final project of their own choosing.  Some students build useful 
bits of infrastructure for the robots, such as a network server to allow students to control the robots 
remotely.  Others try to do a better job on some past assignment that they really enjoyed.  Many students 
try to apply ideas from other classes to the robots, such as interfacing a planner to an existing suite of robot 
behaviors. 
  

Hardware 
One of the most difficult aspects of the course has been that we have gone through four different 
generations of robot hardware in five years.  Our requirements for the course hardware were: 
 
• Low cost.  In order to properly service a lab course, we need many copies of the hardware.  This means 

the robots have to cost less than $10,000 and ideally should cost less than $2,000. 
• Durability.  The robots have to be able to withstand repeated crashes at 1 m/s.  The batteries must be 

able to withstand accidental deep discharge without failing. 
• Safety.  The robots have to be able to crash into humans at 1 m/s without causing serious damage to 

either party.  Sharp corners must be removed.  Laser range finders must be eye safe. 



• Debugability.  It can be very difficult to distinguish between bad code and bad sensor data, even for 
experts.  For students to have a fighting chance of debugging a complex multi-behavior system, there 
must be some way for them to obtain real-time displays of the robot's internal state. 

• Real-time vision.  Sensing modalities such as SONAR, bump switches, etc., do not naturally parse the 
world into objects.  They simply report the presence and non-presence of undifferentiated matter.  
While this supports many tasks, such as collision avoidance, boundary following, and even landmark 
detection, it makes it difficult to teach "cognitive" material like planning and knowledge 
representation, since that material generally presupposes the ability to sense individual objects. 

 
The first three points argue for a "small" robot, i.e. one less than 50Kg.  The latter two argue for a “fancy” 
robot, which often means a big, heavy, dangerous robot.  We have tried several different configurations 
over the years, none of which has been completely satisfying. 
 

 
Figure 1: Kludge: An RWI B14 with real-time vision system 
 
The first four years of the course were taught with two Real-World Interface B14 systems, which we had 
shortened to increase mechanical stability at high speeds (figure 1).  The robots were controlled by a 
custom DSP/framegrabber combination (the DIdeas Cheap Vision Machine), for which we wrote a boot 
ROM with a variety of active vision subroutines and a simple LISP interpreter for scripting and debugging.  
LCD displays were mounted on top of the robots to display debugging information. 
 
These systems were probably the easiest of all our robots to program.  You turned one on, pushed reset, and 
it was booted and ready to go within 500ms.  If your program crashed, you dropped into a debugger.  If the 
actual hardware crashed, there was a freespace follower in ROM that you could use to herd it back to home 
base.  An important feature of this system was that the Lisp interpreter had a number of hard-coded 
safeguards to prevent students from damaging the robot.  It implemented acceleration and velocity caps that 
could not be overridden.  It also had low-voltage and over-current interrupts that would kill the students' 
programs if they tried to abuse the batteries.  However, a serious disadvantage of the machine was that you 
could only conveniently program with the on-board Lisp interpreter.  Writing new vision operators required 
off-board compilation and linking of C code, which was then burned into a ROM and tested.  This is not for 
the faint of heart. 
  



Figure 2: Sony robot with homemade wheeled base 
 
Eventually, the DSP cards in the B14s began to die and we needed another solution.  Our initial choice was 
to develop our own platform based on a DEC StrongARM evaluation board with a Quickcam.  We believed 
that we could build $1,000 platform that would support real-time vision and scripting in Scheme.  
However, we were unable to obtain the evaluation boards.  We also discussed using the Sony Aibo system, 
and ported most of our code to it (figure 2).  However, Aibo development kits proved to be too scarce to 
support the class, so ended up writing a second port of our code to a cheap single-board computer (based on 
the Wilke Technologies BASIC Tiger) running on an RWI Magellan base.  These had the advantages of 
being cheap and plentiful, but the serious disadvantages of not having a video display for debugging, and 
being too slow to support vision. 
 

Figure 3: RWI Magellan w/Laptop and board camera 
 
We have now re-re-ported our code to Windows 98.  Our current hardware configuration consists of a 
Magellan base with a commercial laptop (Dell Latitude), a USB frame grabber (Nogatech), and a CCD 
board camera (figure 3).  This is a relatively expensive configuration (about $10K), but most of the cost is 
actually in the base.  A cheaper base could probably be substituted since the sonars on the Magellan are 
really only used as backup for the vision system. 



Programming environment 
As we said before, it is critical to provide real-time displays of sensor data and internal state for debugging 
purposes.  Without it, students will typically just try to debug their programs by trial and error.  At the end 
of an assignment, they often can't explain why it is that their programs work (or don’t).  Our experience 
with the different hardware platforms underscores this.  The B14+DSP configuration and the 
Magellan+laptop configuration were considered easy to program, while the microcontroller configuration 
was regularly cursed by the students. 
 
We also felt that it was important to have an interactive programming environment.  We specifically 
wanted to support some dialect of Lisp, since it is the language of choice for AI courses and we wanted to 
integrate an AI curriculum into the robotics curriculum.  The Lisp system on the B14s was a simple 
interpreter written over a weekend by the author that took up about 8K of the boot ROM.  It didn't support 
macros, or even garbage collection, but it was still a big step up from cross-compiled C code. 
 

Figure 4: Screenshot from the current programming environment 
 
 
Our current programming environment is based on the Scheme48 system of Jonathan Rees and Richard 
Kelsey [5].  It is a small byte coded system that runs comfortably in 2Mb and can be forced to fit into as 
little as 100Kb [6].   We've ported the system to Win32 and linked in our vision and graphics code via a 
foreign function interface, allowing students to experiment interactively with behaviors and graphically 
display their internal states (figure 4). 

Programming language 
The course was initially taught in Lisp.  However, we found that students had difficulty transferring the 
concepts discussed in lecture to their laboratory assignments.  In the literature, behavior-based systems are 
most commonly described as parallel networks of simple computational elements (adders, multipliers, 



finite state machines, etc.) communicating over fixed signal paths.  However, what gets drawn as a box an 
pointer diagram on the chalkboard gets implemented in practice as a while loop containing a series of 
assignment statements in which each signal from the box-and-pointer diagram is successively updated and 
stored in a variable.  For example, a behavior that drove the translate motor with a low-pass filtered version 
of some sensor signal might get implemented in C as something like this: 
 

(Code fragment 1) 
while (1) { 
  … 
  sensor = … code to read sensor value …; 
  … 
  filtered_sensor = k1*sensor+k2*filtered_sensor; 
  set_translate_velocity(filtered_sensor); 
} 

 
This is fine, so far as it goes, but suppose we wanted to implement a separate behavior that overrides this 
behavior and stops the motor when some other sensor returns a reading over threshold.  Students will 
almost always write the code like this: 
 

(Code fragment 2) 
while (1) { 
  … 
  if (sensor2() > threshold) 
    set_translate_velocity(0); 
  else { 
    … 
    sensor = … code to read sensor value …; 
    … 
    filtered_sensor = k1*sensor+k2*filtered_sensor; 
    set_translate_velocity(filtered_sensor); 
  } 
} 

 
or, more readably: 
 

(Code fragment 3) 
while (1) { 
  … 
  if (sensor2() > threshold) 
    run_behavior1(); 
  else 
    run_behavior2(); 
} 
 

where run_behavior1()  and run_behavior2()  are defined as the bodies of the consequent and 
alternative of the conditional in fragment 2.  Unfortunately, neither of these examples is correct because 
they only update the internal state of the low pass filter when behavior2 is running.  This leads to bizarre 
transients when the robot switches modes.  These kinds of bugs are very subtle and most students can’t find 
them.  While there are ways to avoid running into these problems by cleaver structuring of the code, most 
students do just the opposite – they learn that breaking their code up into separate procedures is bad and so 
they write huge blocks of spaghetti code which quickly becomes unmaintainable.  Moreover, any sense of 
the program being structured as behaviors and combinators gets lost because there are no objects in the 
source language that correspond to behaviors or to combinators. 
 



We eventually dealt with this problem by designing a specialized language, called GRL, for writing 
behavior-based systems in which signals and functions over signals can be composed in a natural functional 
manner.  In GRL, a correct version of fragment 3 would be written simply as:1 
 

(prioritize (behavior (> sensor2 threshold) 0) 
            (behavior #t (low-pass-filter sensor1))) 

 
A full description of GRL is outside the scope of this paper.  The interested reader should see [4].  What 
matters for our purposes is that finite-state transducers like low pass filters, as well as behaviors, and the 
operation of overriding one behavior with another are all first-class data objects in the language and 
compose in the natural manner. 
 
The disadvantage of introducing GRL was that it meant that the students had to spend time learning the 
language, and more importantly, learning to think in the language.  However, once we introduced GRL into 
the curriculum, large classes of bugs, like the one in fragment 3, simply stopped appearing.  Although it is 
still difficult to convince students to structure their code as discrete behaviors and arbitration mechanisms, 
it is considerably easier to do when the students are writing GRL code. 

Conclusions 
Mobile robotics is a field with inherent appeal for most engineering students.  It is highly successful at 
motivating students to work.  One year, 30% of our class was in the lab working on Superbowl Sunday.  
This was surprising given that the lab is located half a mile off campus and there was a snowstorm going 
on.  It was mildly stupefying because we hadn’t given them any assignments to work on.  They wanted to 
get their previous assignments to work better, even though it wouldn’t affect their grades. 
 
Sadly, students are not always motivated to work on the things that we as teachers feel they should want to 
work on. Again, we found that students tended to want to make their robots run as fast as possible, even 
when they knew it was counter-productive.  The only way we found of overcoming this tendency was to 
give them a different criterion to optimize. We also found that students weren’t necessarily interested in 
trying out motor schemas, layered architectures or any of the other interesting theoretical constructs we 
discussed in class.  They just wanted to win the contest.  Even more irritating was the fact that the winners 
usually weren’t the ones using the nice theoretical constructs.  This situation was helped by giving them a 
programming language that makes it easier to write these constructs, but it can still be an uphill battle to get 
them to write structured code. 
 
Finally, it should be noted that although demos and contests are valuable motivators for many students, 
they are intimidating for others.  Contests are good for the winners, but embarrassing for the losers, 
particularly if they already have low confidence as programmers.  In general, we think it is useful to 
structure assignments more as “talent shows” where there are a few different ways in which students can be 
perceived as doing well (e.g. high speed, pretty code, and general coolness) and so there are no absolute 
winners or losers.  
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1 It should be noted that prioritize  is really called behavior-or  because it behaves like the or  
operation in Lisp. 
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