
APRIL 13-18, 1996 CH196

An interface design tool
based on explicit task models

Tom Hinrichs, Ray Bareiss, Lawrence Bimbaum, and Gregg Collins
The Institute for the Learning Sciences

Northwestern University
1890 Maple Ave., Evanston IL 60201

(847) 467-1870
E-mail: {hinrichs, bareiss, birnbaum, collins} @ils.nwu.edu

ABSTRACT

Producing high-quality, comprehensible human interfaces is
a difficult, labor-intensive process that requires experience
and judgment. In this paper, we describe an approach to
assisting this process by using explicit models of the user’s
task to drive the interface design and to serve as a functional
component of the interface itself. The task model helps to
ensure that the resulting interface directly and transpru-ently
supports the user in performing his task, and serves as a
scaffolding for providing in-context help and advice. By
crafting a library of standardized, reusable tasks and interface
constructs, we believe it is possible to capture some of the
design expertise and to amortize much of the labor required
for building effective user interfaces.

Keywords

Model-based Interface Design Tools, Task Analysis

INTRODUCTION

Because the success of an interface turns on how well it
supports the user in what he is trying to do, task analysis
and modeling have assumed a central role in the process of
interface design. The current standard practice in this area is
to model tasks empirically, on a case-by-case basis. We
believe there are a number of advantages to taking a more
design-oriented approach to the problem, in which models
of particular user tasks are developed by combining and
pararneterizing entries selected from a library of standardized,
abstract, and explicitly represented task models. In
particular, by tying model components to appropriate
interface objects, and combining and pararrteterizing those
objects as the designer combines and parametrizes the
corresponding models, it is possible to automatically
compile a significant portion of the user interface [3, 5, 6].
We have developed a prototype tool, MODEST (MOdel-

based Design Employing Standardized Tasks), based on this

approach.

Permission to make digilallhard copies of all or part of this mawrial for
personal or classroom use is granted wi[houl fee provided that the copies
are not made or distributed for protil or commercial advantage, Ihe copy-
right notice, the title of the publictr(ion and its date appear, and notice is

given ~+ copyright is by perl~lission of the ACM, Inc. TO COPYolhe~ise,
to repubhsh, to post on sewers or to redistribute to tisls, requires specific
perrniasion and/or fee.
CHI ’96 Companion, Vancouver, BC Canada
@ 1996 ACM ()-89791 -83~-0/96/04+ .$3.5(3

THE DESIGN TOOL

MODEST consists of three components: A model editor, a
dirdog manager, and an interface previewer/graphical editor.

The Model Editor is a window that displays a graphical
representation of a portion of the current model of the user’s
task. The designer chooses the next sub-task to refine by
selecting a portion of the model.

The Dialog Manager is an interaction window in which the
designer answers questions in order to set parameters of the
task model, by either selecting from a menu of preexisting
objects, or creating a new kind of object. This dialog
proceeds in two phases. In the first phase, the designer
specializes and instantiates the actions and entities of the
task. In the second, the designer specifies the graphics,
sounds, and movies that display the entities to the user.

The Interface Previewer/Editor permits the designer to
arrangeand scale the graphical objects on the screen and to
run the interface to verify its behavior. Rather than trying
to automate graphical layout, MODEST focuses on
generating the appropriate interface behavior for graphical
objects from the task model.

THE DESIGN PROCESS

As an initial design experiment, we have used MODEST to
rationally reconstruct the interface for Sickle Cell
Counselor, an educational program we previously developed
[1]. That program involves a simulation in which the
student takes a blood sample from a patient, runs it through
a gel-electrophoresis machine, and interprets the results to
determine the patient’s blood hemoglobin type.

We developed an abstraction of this task called Sample-
Test-Interpret, which comprises taking a sample of
something, testing it for some property, and interpreting the
results. Driving down a level, the Sample sub-task
involves extracting samples (e.g., blood) from one or more
sample sites (e.g., a person), perhaps by using some sample
extraction device (e.g., a syringe), and placing the samples
in a storage container (e.g., a test tube).

In the first phase of the dialog, the designer associates the
entities to be manipulated in a particular application (e.g., a

269

CH196 APRIL 13-18, 1996

syringe) with their corresponding roles in the abstract task
model (e.g., sample extraction device). The key point is
that the behavior of these entities, in functional terms, is
largely determined by the nature of the task at this rather
abstract level: A sample extraction device can either be
empty or full. It can be filled, if empty, only when
positioned over an appropriate sample site. It can be
emptied, if full, only over an empty container.

In the second phase of the dialog, the designer must
associate the entities with media elements that represent
them in their different states. For example, what does a
syringe look like when it is empty? What does it look like
when it is full? Finally, he must choose interface idioms
that correspond to actions in the model, e.g., dragging and
dropping to represent movement of an object, or clicking a
button to represent starting a process. This process
continues until all the necessary media resources and
interface idioms have been identified, at which point the
designer previews, edits, and runs the graphical interface.

ISSUES

The viability of our approach depends on addressing two key
challenges: Generativity and appropriate abstraction.

Generativity

Flexibility in supporting the design of interfaces for a wide
range of tasks entails the ability to compose more complex,
aggregate tasks from simpler ones. Achieving this sort of
generativity is one of the chief design goals for our task
modeling language. The temptation here is to try to
provide a fine-gained, fully compositional programming
language for task modeling. Even if achievable, however,
this would not necessarily give designers the leverage we
seek; in the worst case, task model-based design would
simply reduce to programming once again.

The alternative we are pursuing is to develop hierarchical
libraries of reusable, standardized sub-tasks that can be
connected together like circuit boards on the back-plane of a
computer, using a variety of combiners. This simplifies
the job of the application designer, while maintaining a
high degree of flexibility. The design of the sub-task
models themselves, like the design of circuit boards, would
be a more specialized job in our approach.

Appropriate Abstraction
The appropriate level of abstraction for task models is
determined by a tradeoff between the desire for broad
coverage and the need to provide as much specific
information as possible about the functional behavior of the
corresponding interface entities. The long-term feasibility
of our approach depends upon being able to find a rich set of
models that strike the appropriate balance. In other words,
we are banking on the existence of a basic level for tasks,
similar to Rosch’s basic level for object categories [4]. Our

investigations into such abstract tasks as Sample-Test-
Interpret, Threat Detection, and Strategic Planning provide
us some measure of optimism in this regard [2].

CONCLUSIONS AND CURRENT STATUS

We have described an approach to interface design based on
combining and parameterizing explicit, standardized task
models selected from a library. Our approach is embodied
in MODEST, a prototype tool implemented in ScriptX,
that automatically compiles large portions of the user
interface for Sample-Test-Interpret tasks as the designer
carries out this process. MODEST currently assumes that
tasks are discrete and serializable, and so does not yet deal
with real-time, concurrent, or continuous tasks. We are in
the process of developing a task model for Threat Detection,
which is leading us to address these issues.

ACKNOWLEDGMENTS

We would like to thank Nathalie Gru6, Bob Hooker, and
Chris Johnson for programming and content analysis. This
work was supported in part by the Advanced Research
Projects Agency, monitored by Rome Laboratory under
contract F30602-94-C-02 19. Chris Johnson is supported
by a National Science Foundation Graduate Research
Fellowship. The Institute for the Learning Sciences was
established in 1989 with the support of Andersen
Consulting, and receives additional support from Ameritech.

REFERENCES

1.

2,

3.

4.

5.

6.

Bell, B., Bareiss, R., and Beckwith, R. Sickle Cell
Counselor: A prototype Goal-Based Scenario for
instruction in a museum environment. Journal of the

Learning Sciences 3,4 (1993/1994), 347-386.

Birnbaum, L., and Collins, G. Towards a general theory
of planning and design. Technical report no. 44,
Northwestern University, The Institute for the Learning
Sciences, Evanston, IL, 1993.

Puerta, A., Eriksson, H., Gennari, J., and Musen, M.
Model-based automated generation of user interfaces. In
Proc. MI ’94, pp. 471-477.

Rosch, E., Mervis, C., Gray, W., Johnson, D. &
Boyes-Braem, P. Basic objects in natural categories.
Cognitive Psychology 18, (1976), 382-439,

Szekely, P., Luo, P., and Neches, R. Beyond Interface
Builders: Model-Based Interface Tools. In Znterchi ’93,

ACM, (1993), 383-390.

Wilson, S., Johnson, P., Kelly, C., Cunningham, J.,
and Markopoulos, P. Beyond hacking-A model based
approach to user interface design. In People LUZZ’

Computers VIII, Proceedings of the HCI’93 Conference,

Cambridge University Press, 1993.

270

