Truth
Maintenance
Systems

EECS 344
Winter 2008

Outline

e Whatis a TMS?
 Basic TMS model
o Justification-based TMS

Whatis a TMS?

* A useful problem-solver module

Justifications, assumptions

Inference

Engine

Beliefs, contradictions

How using a TMS helps

Identify responsibility for decisions
Recover from inconsistencies
Maintain and update cache of beliefs
Guide backtracking

Support default reasoning

Advantages of a TMS

Meets the desiderata

Frees designer to work on domain issues
Avoids reinventing the wheel

Avoids reinventing the wheel badly

Change underlying implementation as needed

Desiderata 1
Identify Responsibility

* Providing answers is not enough
— Cut the patient’s heart out
— That design won’t work

* Explanations are needed
— Radical bypass surgery is required because...
— No material will stand the projected stresses.

Desiderata 2
Recover from Inconsistencies

 Data can be wrong
— The patient’s temperature is 986 degrees.

* Constraints can be impossible
— Our new computer should
» Run off batteries for 8 hours
» Fit in an earphone

» Run faster than a Cray MP-X

Desiderata 3
Maintain and Update Cache

* All Al problem solvers search

* Changing assumptions requires updating
consequences of beliefs
* Rederivation can be expensive

— Large, complex calculations (e.g., computational fluid dynamics)
— Physical experiments

Desiderata 4
Guide Backtracking

* Avoid rediscovering contradictions

* Avoid throwing away useful results

Example

Choose in sequence:
— AorB
— CorD
— EorF

Given: A and C cannot hold together
Given: B and E cannot hold together

Assume we want all consistent solutions

Assume that we cannot test until every choice has
been made

Example Search Space
(global view)

{A,C,E} {A,D,E} {B,C,E}

Chronological Backtracking

e Often wastes computation

Example: Suppose D and F together cause lots of
work. Popping context loses this work

A B

{A,D,F}
{B,D,F}

Chronological Backtracking
Rediscovers Contradictions

Example: Useless to try B and E together more than
once

{B,C,E}

{B,D,E}

Dependencies can guide
backtracking

Better tactic

Bad tactic

Desiderata 5
Support default reasoning

* Simple defaults

Bird (Tweety) implies Can-Fly (Tweety)
unless Broiled (Tweety)

* Closed-world assumptions

The design can use either NMOS or CMOS
The only possible bugs are in the fuel pump or the carburetor

How does the TMS do it?

Justifications express relationships between beliefs
— Justifications for a belief provide explanations, ability to
pinpoint culprits

Belief in an assertion expressed via its label
— P being in database no longer is the same as believing P
— Assertions and justifications serve as cache
— Rules/other computations need only be executed once

Justifications can be used to record inconsistencies
— Dependency-directed backtracking

Defaults can be represented via explicit
assumptions

Justification-based TMS

One element of a TMS design space

— JTMS = justification-based TMS
— LTMS = logic-based TMS
— ATMS = assumption-based TMS

Simplest

Good model for most “embedded” dependency
systems

Can quickly focus on how to use it

JTMS nodes

Each belief is represented by a TMS node

Typically, TMS nodes are associated 1:1 with
assertions

The label of a node represents the belief status of
the corresponding problem solver fact.

The relationships between beliefs are expressed by
the justifications it participates in.

JTMS Labels

* Every assertion is either IN or OUT
— IN = “believed”
— OUT = “not believed”

 Warning: IN does not mean TRUE

Pin P out
(not P) in Contradiction (not P) true
(n0t P) out P true Don’t know

JTMS Justifications

e Must be Horn clauses

* Nomenclature

— Consequent is the node whose belief is supported by a the
justification

— Antecedents are the beliefs which, when IN, support the
consequent

— Informant records information from external systems

=D
<

Dependency Networks

e Kach node has:

— Justifications = the justifications which have it as the consequent
— Consequences = justifications which use it as an antecedent

— Support = a single justification taken as the reason for it being
IN, if any.

~) >D—_
o

—

Special states of JTMS nodes

* Assumptions are IN if enabled.
* Premises are always IN.

e Contradictions should never hold.

Enforcing constraints between
beliefs

A node is IN when either:

1 Itis an enabled assumption or premise
2 There exists a justification for it whose antecedents are all IN

* Assumptions underlying a belief can be found by
backchaining through supporting justifications

 JTMS operations must preserve well-founded
support.

A TMS operates incrementally

* At any time, the inference engine can add
— new justifications

— declare a statement to be a premise or contradiction
(permanently)

— Assume a statement

* In all cases,

1 Set the directly affected node, if any.
2 Propagate the consequences (propagate-inness)

Propagation of Belief Example

Initial state of dependency network

0.
B

Example of Propagate-inness

Suppose inference engine enables A:

0o,
B

Example of Propagate-inness

D becomes believed via J1:

0o,
S o

Example of Propagate-inness

F becomes believed via J3:

-0
S S

Retracting information

Premises, contradictions cannot be retracted

Justifications cannot be retracted

— They comprise the problem solver’s cache
— Rules need only be run once for each set of matching data

Assumptions can be retracted

Algorithm:

1 Make assumption OUT
2 Retract all nodes which rely on it (propagate-outness)

3 Find alternate support for newly OUT nodes.

Retraction Example

Initial state:

0o,
S S

Retraction Example, cont

Retract C:

0o,
S S

Retraction Example, cont.

E becomes out:

0o,
S S

Retraction Example, cont.

F becomes out:

0o,
S o

Retract, then Resupport

Initial state:

G
2
sgeEe

Resupport D via J4:

DG
[Loss of well-founded
support!

Whither Context?

No explicit representation of context

Context implicit in union of premises and enabled
assumptions

Advantages
— Context is often very large
— Context often changes slowly

Drawbacks

— Hard to compare two contexts
— Context switching can be expensive

Non-monotonicity

e Attempt to capture default reasoning
* Divide antecedents into in-list and out-list.
* A node is IN if either

— itis an enabled assumption or premise

— at least one justification has all in-list nodes IN and all out-list
nodes OUT

Bird
Tweety Can-Fly

Tweety

Broiled
Tweety

Problems with out-lists

 Beliefs become order-sensitive
c><<]°>C>

* Odd loops don’t converge

