
Truth
Maintenance

Systems

EECS 344
Winter 2008

Outline

• What is a TMS?

• Basic TMS model

• Justification-based TMS

What is a TMS?

• A useful problem-solver module

Justifications, assumptions

Inference

Engine
TMS

Beliefs, contradictions

How using a TMS helps

• Identify responsibility for decisions

• Recover from inconsistencies

• Maintain and update cache of beliefs

• Guide backtracking• Guide backtracking

• Support default reasoning

Advantages of a TMS

• Meets the desiderata

• Frees designer to work on domain issues

• Avoids reinventing the wheel

• Avoids reinventing the wheel badly• Avoids reinventing the wheel badly

• Change underlying implementation as needed

Desiderata 1
Identify Responsibility

• Providing answers is not enough
– Cut the patient’s heart out

– That design won’t work

• Explanations are needed• Explanations are needed
– Radical bypass surgery is required because...

– No material will stand the projected stresses.

Desiderata 2
Recover from Inconsistencies

• Data can be wrong
– The patient’s temperature is 986 degrees.

• Constraints can be impossible
– Our new computer should– Our new computer should

» Run off batteries for 8 hours

» Fit in an earphone

» Run faster than a Cray MP-X

Desiderata 3
Maintain and Update Cache

• All AI problem solvers search

• Changing assumptions requires updating
consequences of beliefs

• Rederivation can be expensive• Rederivation can be expensive

– Large, complex calculations (e.g., computational fluid dynamics)

– Physical experiments

Desiderata 4
Guide Backtracking

• Avoid rediscovering contradictions

• Avoid throwing away useful results

Example

Choose in sequence:

– A or B

– C or D

– E or F

Given: A and C cannot hold together

Given: B and E cannot hold together

Assume we want all consistent solutions

Assume that we cannot test until every choice has
been made

Example Search Space
(global view)

A B

C D C
D

C D C

E

F

E

F

E

F
F

E

{B,D,F}

{B,D,E}

{B,C,F}

{B,C,E}

{A,D,F}

{A,D,E}

{A,C,F}

{A,C,E}

Chronological Backtracking

• Often wastes computation

Example: Suppose D and F together cause lots of
work. Popping context loses this work

A BA B

D
D

F
F

{B,D,F}

{A,D,F}

Chronological Backtracking
Rediscovers Contradictions

Example: Useless to try B and E together more than
once

B

C
D

E E

{B,D,E}
{B,C,E}

Dependencies can guide
backtracking

A

CC

E

{A,C,E}

Bad tactic

Better tactic

Desiderata 5
Support default reasoning

• Simple defaults
Bird(Tweety) implies Can-Fly(Tweety)

unless Broiled(Tweety)

• Closed-world assumptions

The design can use either ;MOS or CMOS

The only possible bugs are in the fuel pump or the carburetor

How does the TMS do it?

• Justifications express relationships between beliefs

– Justifications for a belief provide explanations, ability to
pinpoint culprits

• Belief in an assertion expressed via its label
– P being in database no longer is the same as believing P

– Assertions and justifications serve as cache– Assertions and justifications serve as cache

– Rules/other computations need only be executed once

• Justifications can be used to record inconsistencies

– Dependency-directed backtracking

• Defaults can be represented via explicit
assumptions

Justification-based TMS

• One element of a TMS design space

– JTMS = justification-based TMS

– LTMS = logic-based TMS

– ATMS = assumption-based TMS

• Simplest

• Good model for most “embedded” dependency
systems

• Can quickly focus on how to use it

JTMS nodes

• Each belief is represented by a TMS node

• Typically, TMS nodes are associated 1:1 with
assertions

• The label of a node represents the belief status of • The label of a node represents the belief status of
the corresponding problem solver fact.

• The relationships between beliefs are expressed by
the justifications it participates in.

JTMS Labels

• Every assertion is either I; or OUT

– I; = “believed”

– OUT = “not believed”

• Warning: I; does not mean TRUE• Warning: I; does not mean TRUE

Contradiction (not P) true

Don’t knowP true

P in P out

(not P) in

(not P) out

JTMS Justifications

• Must be Horn clauses

• ;omenclature

– Consequent is the node whose belief is supported by a the
justification

– Antecedents are the beliefs which, when I;, support the
consequent

– Informant records information from external systems

CA

B

Dependency ;etworks

• Each node has:

– Justifications = the justifications which have it as the consequent

– Consequences = justifications which use it as an antecedent

– Support = a single justification taken as the reason for it being
I;, if any.I;, if any.

N

Special states of JTMS nodes

• Assumptions are I; if enabled.

• Premises are always I;.

• Contradictions should never hold.

AssumptionAssumption

PremisePremise

ContradictionContradiction

Enforcing constraints between
beliefs

• A node is I; when either:

1 It is an enabled assumption or premise

2 There exists a justification for it whose antecedents are all I;

• Assumptions underlying a belief can be found by • Assumptions underlying a belief can be found by
backchaining through supporting justifications

• JTMS operations must preserve well-founded
support.

A TMS operates incrementally

• At any time, the inference engine can add

– new justifications

– declare a statement to be a premise or contradiction
(permanently)

– Assume a statement– Assume a statement

• In all cases,

1 Set the directly affected node, if any.

2 Propagate the consequences (propagate-inness)

Propagation of Belief Example

Initial state of dependency network

A

C

B
J3

J1

J2 E

D

F

Example of Propagate-inness

Suppose inference engine enables A:

A

C

B
J3

J1

J2 E

D

F

Example of Propagate-inness

D becomes believed via J1:

A

C

B
J3

J1

J2 E

D

F

Example of Propagate-inness

F becomes believed via J3:

A

C

B
J3

J1

J2 E

D

F

Retracting information

• Premises, contradictions cannot be retracted

• Justifications cannot be retracted

– They comprise the problem solver’s cache

– Rules need only be run once for each set of matching data– Rules need only be run once for each set of matching data

• Assumptions can be retracted

• Algorithm:

1 Make assumption OUT

2 Retract all nodes which rely on it (propagate-outness)

3 Find alternate support for newly OUT nodes.

Retraction Example

Initial state:

A

C

B
J3

J1

J2 E

D

F

Retraction Example, cont

Retract C:

A

C

B
J3

J1

J2 E

D

F

Retraction Example, cont.

E becomes out:

A

C

B
J3

J1

J2 E

D

F

Retraction Example, cont.

F becomes out:

A

C

B
J3

J1

J2 E

D

F

Retract, then Resupport

Initial state:

A

C

B
J3

J1

J2 E

D

F

J4

Retract A:

A

C

B
J3

J1

J2 E

D

F

J4

Retract D via J1:

A

C

B
J3

J1

J2 E

D

F

J4

Resupport D via J4:

A

C

B
J3

J1

J2 E

D

F

J4

Loss of well-founded

support!

Whither Context?

• ;o explicit representation of context

• Context implicit in union of premises and enabled
assumptions

• Advantages• Advantages

– Context is often very large

– Context often changes slowly

• Drawbacks

– Hard to compare two contexts

– Context switching can be expensive

;on-monotonicity

• Attempt to capture default reasoning

• Divide antecedents into in-list and out-list.

• A node is I; if either

– it is an enabled assumption or premise– it is an enabled assumption or premise

– at least one justification has all in-list nodes I; and all out-list
nodes OUT

Can-Fly

Tweety

Bird

Tweety

Broiled

Tweety

Problems with out-lists

• Beliefs become order-sensitive

• Odd loops don’t converge

