
Today

 Unstructured

 Structured or DHT

Peer-to-Peer Protocols



MSIT Peer-to-Peer Computing 

Northwestern University

Definition

Significant autonomy form central servers

Exploits resources at the edges of the network

– Storage and content – Gnutella, Kazaa, eDonkey

– Bandwidth – BitTorrent, CoralCDN

– CPU cycles – SETI@home, fold@home

– People cycles :) – Wikipedia, NASA clickworkers

Resources at the edge have intermittent connectivity –

churn

A broad definition

– P2P file sharing, P2P communication, P2P computation, DHT 

and its apps …

2



MSIT Peer-to-Peer Computing 

Northwestern University

Overlay networks

P2P applications rely on overlay network protocols for 

object storage/retrieval & message routing

Peer hosts connect to each other in arbitrary ways

– Typically TCP connections

Overlay must be built, maintained and refined

3



MSIT Peer-to-Peer Computing 

Northwestern University

P2P and overlays

Unstructured

– Few constraints on overlay construction & data placement

– Could support arbitrary complex queries, highly resilient to 

churn

– Restricted to inefficient, near-blind search strategies

Structured (DHT ~ Distributed Hash Tables) 

– Constraining overlay structure & data placement

– Efficient object discovery

– Potential problems handling churn, exploiting node 

heterogeneity & supporting complex queries

Overlays are not new

– e.g. DNS

4



MSIT Peer-to-Peer Computing 

Northwestern University

P2P computing – SETI@home

Search for Extra-Terrestrial Intelligence

– Search for evidence of radio transmission from ET

Central site collects radio telescope data

Data is split into work chunks of 300KB

Users get client that runs in the background

– Sets up TCP connection to central and downloads chunk

– Peer does FFT on chunk, uploads results and get new chunk

No really peer to peer but leverage resources at the 

edge of the network

5



MSIT Peer-to-Peer Computing 

Northwestern University

Unstructured P2P systems

Many unstructured P2P systems attempt to maintain a 

random graph:

Basic idea – each node contacts a randomly selected 

other node

– Let each peer maintain a partial view of the network, 

consisting of c other nodes

– Each node P periodically selects a node Q from its partial 

view

– P and Q exchange information and exchange members from 

their respective partial views

An exclusive pull/push model can easily conduct to 

disconnected overlays

In general, much easier to leave/join the network

6



MSIT Peer-to-Peer Computing 

Northwestern University

Super-peers in unstructured P2P systems

Sometimes it may help break with the symmetric 

nature of P2P – super/ultra-peers

Some obvious examples

– Transiency – pick the most stable ones

– Search – have them keep the indexes for scalable searches

– Organization – have them monitor the state of the network

7



MSIT Peer-to-Peer Computing 

Northwestern University

Gnutella – unstructured P2P network

One of the three most popular P2P networks, by mid 
2005, Gnutella's population was 1.8 million

Developed in 2000, out of Nullsoft (bought by AOL)

Peers setup random connections with other peers
– They need a bootstrap mechanism - website

– All peers are equal & can connect to anyone (V0.4) or 

– (weak) leaf-peers can only connect to super-peer (V0.6)

Ping/pong & byes for control

No constraints on placement of data objects (or 
pointers to) 

Flooding (ask 7, who will ask other 7, who …) or 
random walk for search

8



MSIT Peer-to-Peer Computing 

Northwestern University

Structured P2P systems

Organize the nodes in a structured overlay network 

such as a logical ring, and make specific nodes 

responsible for services based only on their ID

The system provides an operation LOOKUP(key) to 

route the lookup request to the associated node

Node join is straightforward

– Generate a random id

– Do a lookup on id, getting 

the succ(id)

– Contact succ(id), and its 

predecessor, to insert itself 

in the ring

– Transfer data items from succ(id)

to new node

9

Mapping data 

items onto Chord 

nodes



MSIT Peer-to-Peer Computing 

Northwestern University

Distributed Hash Tables (DHT) - Chord

Consider the organization of nodes into a logical ring

– Each node is assigned a random m-bit identifier.

– Every entity is assigned a unique m-bit key.

– Entity with key k falls under jurisdiction of node with smallest 

id ≥ k (called its successor)

Non-solution – linear search along the ring

Finger tables – each node p maintains a finger table 

FTp[] with at most m entries: FTp[i] = succ(p + 2i−1)

– Basically shortcuts to nodes in the identifier space

FTp[i] points to first node succeeding p by at least 2i−1.

– To look up key k, p forwards the request to node with index j 

satisfying q = FTp[j] ≤ k < FTp[j + 1]

– If p < k < FTp[1], the request is also forwarded to FTp[1]

10



MSIT Peer-to-Peer Computing 

Northwestern University

Chord DHT – resolving keys

Resolving key 26 from node 1 

and key 12 from node 28

11

Entity with key k falls under 

jurisdiction of node with 

smallest id ≥ k (called its 

successor)



MSIT Peer-to-Peer Computing 

Northwestern University

12

Kademlia

Each peer & each object has a unique hash ID
– 160-bit

<key,value> pairs stored on nodes with IDs “close” to 
the key
– distance (x, y) = x XOR y

XOR is a good metric for a number of reasons
– d(x,x) = 0, d(x,y) > 0 if x!=y and d(x,y) + d(y,z) ≥ d(x,z) and

symetric d(x,y) = d(y,x)

– XOR is unidirectional – i.e. for any given point x and distance 
D > 0, there’s only one point y such that d(x,y) = D (path 
convergence)

Peer’s routing table has list of k-buckets; bucketi with 
IDs of peers sharing an i-bit long prefix

List is kept sorted by time last seen



MSIT Peer-to-Peer Computing 

Northwestern University

13

Kademlia

Joining is easy
– A peer n contact an already participant node m

– Inserts m into the appropriate k-bucket

– Perform a peer lookup for its own peer ID, thus populating its 
own k-buckets and inserting itself in others’ k-buckets

Iterative lookup, reply with k closest nodes to key, from 
the appropriate bucket: lookup upper-bound is 
O(log(n))

When a node receives any msg, it updates its k-bucket
– If node’s there, move it to the tail (most recently seen)

– If not there and fewer than k entries, add it to tail

– If not there but bucket’s full, ping the head node (least recently 
seen) and if alive, move to head, otherwise replace

• Never delete an old node! Lifespan distribution of nodes says is good for 
you



MSIT Peer-to-Peer Computing 

Northwestern University

14

Routing in Kademlia

Bucket ID Common prefix 

length

Bucket entries

B0 0 1001..., 1100…, 

1101…

B1 1 0110…, 0100…

B2 2 000…

B3 3 0010…

Routing table for 

0011…

01

0

0

0

01

1

1

1

1

1

1 1

1

1

1

1

1 0

0 01

1 0

0

0

1

0

0

0

0

0

11…11 00…00Space of x-bit numbers

0



MSIT Peer-to-Peer Computing 

Northwestern University

Exploiting network proximity

The logical organization of nodes in the overlay may 

lead to erratic message transfers in the underlying

– Topology-aware node assignment – When assigning an ID to 

a node, make sure that nodes close in the ID space are also 

close in the network. Can be very difficult.

– Proximity routing – Maintain more than one possible 

successor, and forward to the closest.

• Example: in Chord FTp[i] points to first node in INT = [p + 2i−1, p + 2i − 1]. 

Node p can also store pointers to other nodes in INT.

– Proximity neighbor selection – When there is a choice of 

selecting who your neighbor will be (not in Chord), pick the 

closest one.

15



MSIT Peer-to-Peer Computing 

Northwestern University

Combining structured and unstructured

Distinguish two layers: (1) maintain random partial 

views in lowest layer; (2) be selective on who you 

keep in higher-layer partial view

Lower layer feeds upper layer with random nodes; 

upper layer is selective when it comes to keeping 

references

– Instead of simple random, ranking peers based on some 

simple function (latency, semantic) may help

16



MSIT Peer-to-Peer Computing 

Northwestern University

Question 2

Discuss the tradeoffs between efficient use of the 

underlying network by P2P overlay networks and 

measurement overhead

17


