
Today

 Processes and Threads

 Clients and servers

 Thin-client computing

 Code migration

Introduction Distributed Systems
Processes & Threads

MSIT Peer-to-Peer Computing

Northwestern University

Processes and threads

Distributed system

– A collection of independent, interconnected processors …

Processes – virtual processors, offer concurrency

transparency, at a relatively high price on performance

Threads offer concurrency w/ much less transparency

– Applications with better performance that are harder to

code/debug

– Advantages of multithreading

• No need to block with every system call

• Easy to exploit available parallelism in multiprocessors

• Cheaper communication between components than with IPC

• Better fit for most complex applications

– Alternative ways to provide threads

• User-, kernel-level threads, LWP and scheduler activations

2

MSIT Peer-to-Peer Computing

Northwestern University

Threads in distributed systems – clients

Client usage is mainly to hide network latency

E.g. multithreaded web client:

– Web browser scans an incoming HTML page, and finds that

more files need to be fetched

– Each file is fetched by a separate thread, each doing a

(blocking) HTTP request

– As files come in, the browser displays them

Multiple request-response calls to other machines:

– A client does several RPC calls at the same time, each one by

a different thread

– It then waits until all results have been returned

– Note: if calls are to different servers, we may have a linear

speed-up compared to doing calls one after the other

3

MSIT Peer-to-Peer Computing

Northwestern University

Threads in distributed systems – servers

In servers, the main issue is improved performance

and better structure

Improve performance:

– Starting a thread to handle an incoming request is much

cheaper than starting a new process

– Having a single-threaded server prohibits simply scaling the

server to a multiprocessor system

– As with clients: hide network latency by reacting to next

request while previous one is being replied

Better structure:

– Most servers have high I/O demands. Using simple, well-

understood blocking calls simplifies the overall structure.

– Multithreaded programs tend to be smaller and easier to

understand due to simplified flow of control

4

MSIT Peer-to-Peer Computing

Northwestern University

Server design

Server – a process that waits for incoming service

requests at a specific transport address

Iterative vs. concurrent servers: Iterative servers can

handle only one client at a time, in contrast to

concurrent servers

In practice, there is a 1-to-1 mapping between port

and service, e.g. ftp: 21, smtp:25

Superservers: Servers that listen to several ports, i.e.,

provide several independent services; start a new

process to handle new requests (UNIX inetd/xinetd)

– For services with more permanent traffic get a dedicated

server

5

MSIT Peer-to-Peer Computing

Northwestern University

Out-of-band communication

How to interrupt a server once it has accepted (or is in

the process of accepting) a service request?

Solution 1: Use a separate port for urgent data

(possibly per service request):

– Server has a separate thread (or process) waiting for

incoming urgent messages

– When urgent msg comes in, associated request is put on hold

• Require OS supports high-priority scheduling of specific threads or

processes

Solution 2: Use out-of-band communication facilities of

the transport layer:

– E.g. TCP allows to send urgent msgs in the same connection

– Urgent msgs can be caught using OS signaling techniques

6

MSIT Peer-to-Peer Computing

Northwestern University

Servers and state

Stateless servers: Never keep accurate information

about the status of a client after having handled a

request:

– Don’t record whether a file has been opened (simply close it

again after access)

– Don’t promise to invalidate a client’s cache

– Don’t keep track of your clients

Consequences:

– Clients and servers are completely independent

– State inconsistencies due to client or server crashes are

reduced

– Possible loss of performance because, e.g., a server cannot

anticipate client behavior (think of prefetching file blocks)

7

MSIT Peer-to-Peer Computing

Northwestern University

Servers and state

Stateful servers: Keeps track of the status of its

clients:

– Record that a file has been opened, so that pre-fetching can

be done

– Knows which data a client has cached, and allows clients to

keep local copies of shared data

Observation: The performance of stateful servers can

be extremely high, provided clients are allowed to

keep local copies. As it turns out, reliability is not a

major problem.

8

MSIT Peer-to-Peer Computing

Northwestern University

Thin-client computing

Thin-client

– Client and server communicate over a network using a remote

display control

• Client sends user input, server returns screen updates

– Graphical display can be virtualized and served to a client

– Application logic is

executed on the

server

Technology enablers
– Improvements in network bandwidth, cost and ubiquity

– High total cost of ownership for desktop computing

Big business opportunity

– Sun Microsystems, Google, Microsoft, AT&T Virtual Network

Computing, …

9

MSIT Peer-to-Peer Computing

Northwestern University

Code migration

Instead of passing data around, why not moving code?

What for?

– Improve load distribution in compute-intensive systems

– Save network resource and response time by moving

processing data closer to where the data is

– Improve parallelism w/o code complexities

• Mobile agents for web searches

– Dynamic configuration of distributed systems

• Instantiation of distributed system on dynamically available resources;

binding to service-specific, client-side code at invocation time

10

MSIT Peer-to-Peer Computing

Northwestern University

Models for code migration

Process seen as composed of three segments

– Code segment – set of instructions that make up the program

– Resource segment – references to external resources needed

– Execution segment – state of the process (e.g. stack, PC, …)

Some alternatives

– Weak/strong mobility – code or code and execution segments

– Sender or receiver initiated

– A new process for the

migration code?

– Cloning instead

of migration

11

MSIT Peer-to-Peer Computing

Northwestern University

Question 3

What drives the market for application service

providers? What would be the main factor limiting

wide-area thin-client performance?

12

13

